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Abstract Galaxy clusters present unique advantages for cosmological study. Here we
collect a new sample of 10 lensing galaxy clusters with X-ray observations to con-
strain cosmological parameters. The redshifts of the lensing clusters lie between 0.1
and 0.6, and the redshift range of their arcs is from 0.4 to 4.9. These clusters are
selected carefully from strong gravitational lensing systems which have both X-ray
satellite observations and optical giant luminous arcs with known redshifts. Giant arcs
usually appear in the central region of clusters, where mass can be traced with lumi-
nosity quite well. Based on gravitational lensing theory and a cluster mass distribution
model, we can derive a ratio using two angular diameter distances. One is the distance
between lensing sources and the other is that between the deflector and the source.
Since angular diameter distance relies heavily on cosmological geometry, we can use
these ratios to constrain cosmological models. Moreover, X-ray gas fractions of galaxy
clusters can also be a cosmological probe. Because there are a dozen parameters to
be fitted, we introduce a new analytic algorithm, Powell’s UOBYQA (Unconstrained
Optimization By Quadratic Approximation), to accelerate our calculation. Our result
demonstrates that this algorithm is an effective fitting method for such a continuous
multi-parameter constraint. We find an interesting fact that these two approaches are
separately sensitive to ΩΛ and ΩM. By combining them, we can get reasonable fitting
values of basic cosmological parameters: ΩM = 0.26+0.04

−0.04, and ΩΛ = 0.82+0.14
−0.16.
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1 INTRODUCTION

Cosmic acceleration expansion was initially discovered from supernovae observations (Riess et al.
1998; Perlmutter et al. 1999). Then, the cosmic microwave background (CMB) anisotropy power
spectrum (Spergel et al. 2003) confirmed that our universe is almost flat and that the density of matter
is relatively low. Such conclusions have subsequently been supported by more precise supernova data
(Riess et al. 2004; Davis et al. 2007; Kowalski et al. 2008) and CMB observations (Spergel et al.
2007; Komatsu et al. 2009).
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Furthermore, many other independent works, such as the light element abundance from Big
Bang Nucleosynthesis (Burles et al. 2001), the baryon acoustic oscillations (BAO) detected in the
SDSS sky survey (Eisenstein et al. 2005), radio galaxies (Daly et al. 2009) and gamma-ray bursts
(Amati et al. 2008), etc., all give consistent results. If there is a component with negative pressure
filling our universe, dubbed dark energy, then such acceleration can be explained within an existing
theoretical framework. Various models have been proposed to explain dark energy, such as typical
dynamical scalar field quintessence (Caldwell et al. 1998), phantom corrections (Caldwell 2002), a
joint quintom scenario (Feng et al. 2005) and chaplygin gas (Zhu 2004; Gorini et al. 2005; Zhang
& Zhu 2006), etc. In addition, there are still many other astronomers who doubt the existence of
such a strange material. They are trying to find another way to understand this accelerating universe.
Modified Newtonian dynamics (MOND, Milgrom 2001), the Modified Friedmann Equation (Freese
& Lewis 2002; Zhu et al. 2004b), the Dvali-Gabadadze-Porrati Mechanism (DGP, Dvali et al. 2000)
and so on are all such attempts. However, until now none of these models have presented over-
whelming advantages. We need more observational evidence. In addition to updating the precision
of current data, we are also searching for new potential probes, for example, galaxy clusters.

Galaxy clusters, as the largest dynamic systems known in the universe, retain a deep imprint of
the big bang. Their correlation function provides direct measurement of the matter distribution power
spectrum. The BAO peak has already been found for luminous red galaxies (Eisenstein et al. 2005).
When there are enough galaxy clusters, we can perform the same measurement at a much larger
scale (Borgani & Guzzo 2001) and their mass distributions at different redshifts can be described by
the Press-Schechter function (Press & Schechter 1974). This relation reflects the linear growth rate
of density perturbations. With such connection, clusters can provide constraints on matter and dark
energy densities (Borgani et al. 1999; Vikhlinin et al. 2009). Hot gases of galaxy clusters also interact
with cosmic microwave background photons and distort their spectrum. Such phenomenon is called
the Sunyaev-Zel’dovich effect (SZ effect for short, Sunyaev & Zeldovich 1972). Combining this
effect with the observations of corresponding clusters’ X-ray luminosity, we can measure the Hubble
constant for a certain cosmology or give a rough estimate of cosmological parameters (Mason et al.
2001; Reese et al. 2002; Schmidt et al. 2004; Zhu & Fujimoto 2004; Jones et al. 2005; Bonamente
et al. 2006). There have already been many attempts to combine multiple observations of galaxy
clusters to study dark energy (Molnar et al. 2004; Majumdar & Mohr 2004; Cacciato et al. 2009;
Oguri & Takada 2011). For more detailed reviews we suggest Rosati et al. (2002), Voit (2005) and
Borgani (2006).

The two methods adopted here are based on the physical structure and properties of individual
clusters. They can give a good estimate of cosmological parameters, as we will see. The first one
comes from strong lensing arcs. From X-ray luminosity and temperature, we can model the mass
distribution of a cluster. Giant arcs generated by the highly concentrated gravity of a galaxy cluster
are perfect indicators of its projected surface mass density. Then we can derive an observational
value to constrain cosmological models. This method was first used by Sereno (2002) and improved
in Sereno & Longo (2004). We collect a new data set from literature and the online database BAX.
Several effective criteria are introduced to rule out improper clusters. There are 10 clusters selected
to make up a new sample. This new set can give more reasonable results compared with the last one
supplied by Sereno & Longo (2004). We will discuss it in detail in Section 2. The second way is
based on the assumption of constant X-ray gas mass fraction. This method was developed by Allen
et al. (2001, 2004, 2008) and has been proven to be effective. Due to the complex physical mecha-
nism involved, there are many parameters to fit. To search multi-parameter space more effectively,
we introduce a new optimization algorithm UOBYQA (Unconstrained Optimization By Quadratic
Approximation) (Powell 2002) to marginalize external parameters. This algorithm has been widely
accepted in the field of mathematics. This should be its first application in cosmology. The algorithm
is summarized in Section 3. The combined analysis and discussions are presented in the last section.
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2 LENSING CLUSTER

2.1 Theoretical Foundation

Gravitational lensing is a successful prediction of general relativity. After it was confirmed by quasar
observation in 1979 (Walsh et al. 1979), Paczynski & Gorski (1981) tried to use lensing images as
indicators to estimate cluster mass and constrain cosmological constants. However, it is very difficult
to find the deflectors in lensing cases of point-like sources, so this approach was seldom used until
recent years (Futamase & Yoshida 2001). Later, giant arcs around galaxy clusters were discovered
in clusters A370 and Cl2224 (Lynds & Petrosian 1986). They can also be used to constrain clusters’
projected mass, since clusters are easy to observe. Breimer & Sanders (1992) did pioneering work.
They estimated the virial mass of cluster A370 with nearly 30 member galaxies’ velocities, then
compared with the lensing condition and obtained an original estimate of cosmological parameters.
However, member galaxies are discrete and the velocity dispersion of distant objects is usually hard
to obtain. Subsequently, Sereno & Longo (2004) used continuous X-ray luminosity instead. When a
galaxy cluster is relaxed enough, the pressure of its hot gas can balance its self-gravity. In this case,
we can use a hydrostatic isothermal spherically symmetric β-model (Cavaliere & Fusco-Femiano
1976) to describe the intracluster medium (ICM) density profile

ne(r) = ne0

(
1 + r2/r2

c

)−3βX/2
, (1)

where ne0 is the central electron density, βX describes the slope and rc stands for the core radius.
Assuming all the gases have the same emissivity of hot bremsstrahlung radiation, in other words,
isothermal (with the temperature TX), the gravity of a relaxed cluster and its gas pressure should
balance each other according to the hydrostatic equilibrium condition. With the approximation of
spherical symmetry we can estimate mass distribution with gas density, which comes from the lumi-
nosity fitting result. The cluster’s mass profile can be given in the form

M(r) =
3kBTXβX

Gμmp

r3

r2
c + r2

, (2)

where kB is the Boltzmann constant, mp is the proton mass and μ is the mean molecular weight,
which is usually 0.6 (Rosati et al. 2002). Then we can obtain the projected surface mass density.
Combining the result with the critical surface mass density of lensing arcs (Schneider et al. 1992),
an independent Hubble constant ratio can be expressed by several observational parameters

Dds

Ds

∣∣∣
obs

=
μmpc2

6π

1
kBTXβX

√
θt

2 + θc
2, (3)

where TX, βX and θc all come from the X-ray data fitting. Here the θ terms are dimensionless
angular variables, the radius divided by angular diameter distance to the cluster (r/Dd). Under a flat
Friedman-Walker metric, the angular diameter distance between an observer at zd and a source at zs

is not equal to Ds − Dd. It should be integrated from zd to zs as

Dds =
c

H0(1 + zs)

∫ zs

zd

dz

E(z)
. (4)

The position of tangential critical curve θt is usually deemed equal to observed arc position θarc.
Considering the deviation of the extended lensing source position, the deflection angle is slightly
different from the arc radius angle, θt = εθarc. The correction factor is ε = (1/

√
1.2) ± 0.04 (Ono

et al. 1999). Then the χ2 test can be carried out between observational data and theoretical models.
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2.2 Data Selection

The number of clusters with arcs is still very limited and just a small fraction of these arcs have
known redshifts. At first, we refer to the sample of Sand et al. (2005) to look for arcs with redshifts.
Their catalog contains 104 tangential arcs from 128 clusters, but only 58 arcs from 27 clusters have
redshift values. When there are several arcs from the same source (with the same redshift), we prefer
to select the farthest one in general. Because strong lensing arcs usually happen in the very central
part of galaxy clusters, giant arcs are always close to the cores of clusters. In addition, the beta model
brightness profile usually has better fitting results in outskirts. Therefore, we choose the farthest part
in order to avoid possible substructures and to decrease the fitting deviation from the β model. In
this case, arc H5b (26.3 arcsec) of A2390 is adopted instead of H5a (20.7 arcsec). For arcs from
different sources around one cluster, we treat them as independent events. They will all be adopted
as long as they can satisfy the criteria given below.

In the second stage, redshifts and temperatures of these galaxy clusters can be found directly
from on-line databases, such as CDS (the Strasbourg Astronomical Data Center) or NED (the
NASA/IPAC Extragalactic Database), with their full name. Here we choose a new database estab-
lished especially for X-ray galaxy clusters – BAX1. It provides detailed information about clusters.
Following referred literature given by BAX, we can get fitting parameters β and θc. To minimize
systematic error caused by different work and systems, it is better to limit data sources within a few
articles. In this paper, we use the fitting result of Chandra (Bonamente et al. 2006). For the clusters
not presented by that paper, we refer to the catalog2 of Ota & Mitsuda (2004), which is based on
the observations of the ROSAT and ASCA satellites. The clusters inherited from Sereno & Longo
(2004) are all updated in this way.

Table 1 Sample of Lensing Galaxy Clusters with X-ray Observations

Cluster Arc zd zarc θarc(′′) kBTX(keV) βX θc(′′) ρ/ρ0 Ref

3C220.1 A1 0.61 1.49 8.6 5.56±1.38 0.84±0.45 8.1±4.2 29219 [1]
Abell 2390 H5b 0.228 4.05 26.3 9.35±0.15 0.46±0.01 12.1±1.4 59463 [1]
Abell 2667 A1 0.226 1.034 14.7 6.15±0.61 0.52±0.01 13.4±0.8 65462 [1]
MS 0451.6–0305 A1 0.550 2.91 31.8 10.4±0.7 0.767±0.018 33.5±1.2 4177 [2]
MS 1512.4 cB58 0.372 2.72 5.1 3.39±0.4 0.54±0.06 8.3±2.4 52805 [1]
MS 2137.3–2353 A01 0.313 1.501 15.5 4.96±0.11 0.6±0.04 8.3±1.5 38603 [1]
PKS 0745–191 A 0.103 0.433 19.2 7.97±0.28 0.52±0.01 16.4±0.9 271090 [1]
Abell 68 C0c 0.255 1.6 8.0 10.0±1.1 0.721±0.035 49.6±3.6 17867 [2]
CL0024.0 E 0.391 1.675 4.0 4.38±0.27 0.41±0.03 11.1±4.1 31586 [1]
MS 2053.7 AB 0.583 3.146 15.1 4.7±0.5 0.639±0.033 15.3±1.6 6324 [2]

Notes: Reference [1] Ota & Mitsuda (2004) and [2] Bonamente et al. (2006).

Then we collect about 20 clusters with all necessary parameters. However, not all of them are
approximately isothermal, spherically symmetric or even in hydrostatic equilibrium. We must check
them carefully to eliminate the arcs generated by unrelaxed clusters (Smith et al. 2003).

2.3 Criteria

A static cluster should have regular morphology both in the optical and X-ray bands. In the opti-
cal band, they usually present spatial symmetry and have a regular shape. In the X-ray band, sharp

1 BAX: http://bax.ast.obs-mip.fr/, other databases such as Simbad, NED, etc., only accept clusters’ full name like
RXJ1347.5–1145. The abbreviations listed here are only for convenience and cannot be used to search directly.

2 Ota’s catalog was not contained in the article, but was put on her own website.
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Fig. 1 Relationship between lensing surface mass density (M� Mpc−2) and projected surface den-
sity from the X-ray model. Asterisks come from the standard model (ΩM = 0.3, ΩΛ = 0.7); Circles
are calculated under ΩM = 0, ΩΛ = 1.

central surface brightness and regular elliptical isophotes are both common characteristics of dy-
namically relaxed clusters. However, such descriptions rely heavily on the resolution of equipment.
We need more concrete standards.

Weak gravitational lensing was used to test X-ray mass distributions many years ago. Mahdavi
et al. (2008) confirm that they are consistent with each other at the inner part. Although he used the
Navarro-Frenk-White (NFW) dark matter halo model (Navarro et al. 1996), the results ensure that
hydrostatic equilibrium is applicable within radius r2500 (which means the mean mass density is
2500 times the universe’s critical density at that redshift). We can find from Table 1 that all our arcs
lie deep inside this region. To avoid a possible large disagreement with the inner mass estimation,
we also compare lensing mass with theoretical predictions to check our mass model. According to
the strong lensing equation of an isothermal sphere, the projected mass is

Σob =
c2

4πG

Ds

DdDds

√
θ2
t

θ2
c

+ 1. (5)

From Equation (2), we can derive a typical theoretical surface density, which is

Σth =
3

2Gμmp

kBTXβX

θc

1
Dd

. (6)

Mass values from the above two equations should be consistent with each other for a spherically
relaxed cluster, as shown in Figure 1. Because this test is not model independent, we do not take it
as a selection tool, but just use it to examine the data with the best fit model.

In Equation (4), the distance between lens and sources (integrated from zd to zs) should always
be smaller than that between the arc sources and the observer (integrated from 0 to zs), although
the angular distance does not monotonically ascend with redshift. So these clusters should satisfy:
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Fig. 2 3-D Hubble diagram distribution of the sample galaxy clusters. Here X axis is the redshift
of the deflectors, Y is that of the arc and Z is the second criterium Dds/Ds. The reference surface
comes from our best-fit model below. The intersecting line between the fitted surface and the bottom
of the box is zd = zs. The jagged edge is merely caused by our program.

Dds/Ds|obs < 1. In Figure 2 we can see this more clearly. The points above the box indicate that the
corresponding clusters are not self-consistent. They need more precise descriptions for cosmological
tests. Unfortunately, this condition rules out half of the selected lensing arcs.

We also discard the arcs whose positions are too far from the characteristic radius (θarc > 3θc).
Such a cluster has a relatively small core radius and a much bigger arc radius. In this case, the X-ray
observations cannot trace matter in the regions where lensing arcs exist. The extrapolation results
of the model for the inner region are no longer reliable. They may greatly influence the constraint
result. For example, the most luminous cluster in the sky, RXJ1347, is still undergoing a merging
process (Allen et al. 2004; Ota et al. 2008). It will cause a really serious deviation when counted in.
In fact, it is responsible for the high ΩΛ value (about 1) in the paper of Sereno & Longo (2004). This
may also explain the systematic bias in the articles of Breimer & Sanders (1992) and Sereno (2002).
A similar situation also happens to the C arc (38.1 arcsec) of A2390. Hence, only an inner arc H5b
is adopted.

Finally, we obtain the sample of 10 clusters listed in Table 1. The redshifts of these clusters
range from 0.1 to 0.6, and the farthest arc is H5b of A2390 z = 4.05. All of these arcs appear in the
very central region. The average surface density within the arcs is listed in the n column with the
unit of the critical universe density at the corresponding redshift. Data for cosmological fitting are
shown in Table 2. Errors are calculated with the error propagation equation.

3 X-RAY GAS MASS FRACTION

There is another way to connect the physical characteristics of galaxy clusters to cosmological pa-
rameters. As mentioned above, in hydrostatic equilibrium both the X-ray gas mass distribution and
the total mass profile which balances it can be derived from the surface brightness profile (White &
Frenk 1991). Because of the large scale of the clusters, their matter content can be taken as a fair
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Table 2 Values of Dds/Ds from Equation (3)

Cluster Dds/Ds σ(Dds/Ds)

3C220.1 0.341 0.359
A2390 0.737 0.053
A2667 0.837 0.124
MS0451 0.785 0.087
MS1512 0.734 0.330
MS2137 0.778 0.105
PKS0745 0.818 0.065
A68 0.982 0.225
CL0024 0.919 0.430
MS2053 0.968 0.209

sample of the whole Universe (White et al. 1993). The baryonic fraction measurement of clusters
can be connected with the geometry. Sasaki (1996) and Pen (1997) first applied this property to a
cosmological test. Allen et al. (2001) assumed that the X-ray gas mass fraction within r2500 is in-
variant with redshift. Then the angular distance of clusters can be derived in a different way from
that in the reference cosmological model (Allen et al. 2004; Zhu et al. 2004a; Allen et al. 2008). In
reference cosmology with h = H0/100 km s−1 Mpc−1, ΩΛ = 0.7 and Ωm = 0.3, we have

fΛCDM
gas (z) =

KAγb(z)
1 + sz

Ωb

Ωm

[
dΛCDM

A (z)
dmod

A (z)

]1.5

, (7)

where K is a calibration constant, A is equal to (θΛCDM
2500 /θ2500)η , and γ stands for non-thermal

pressure in the clusters; b(z) is the depletion factor with the expression of b0(1 + αbz); s(z) models
the baryonic mass fraction in stars, which can also be expressed as s0(1+αsz). Two weak priors are
also needed here: Hubble parameter h = 0.72 ± 0.24 and mean baryon density Ωbh2 = 0.0214 ±
0.006 (Allen et al. 2008).

Obviously, so many parameters are not easy to calculate with common methods. Allen et al.
(2008) used the popular MCMC (Markov Chain Monte Carlo) program CosmoMC (Lewis & Bridle
2002). For such a nonlinear and non-derivable function, the stochastic process can generate the right
distribution, but it needs a large point set to draw smooth contour lines and obtain precise errors.
In fact, we do not need to obtain all parameters’ biases at the same time. In our case, we are only
concerned with cosmological parameters, so we can just constrain two parameters each time and
marginalize the rest. In the actual calculation, we assemble the parameters K , γ, b0 and S0 + 1
into one factor. Marginalizing them together will not affect our final results. Then we use grids to
generate reference points on parameters’ phase space. It is easy to calculate contour lines for them.
We just need to search for the most optimal value in the space of the rest of the parameters to ac-
complish marginalization. Considering that all the physical processes are still continuous, and their
functions have a definite slope, we attempt a new analytical algorithm – the Powell’s “Unconstrained
Optimization BY Quadratical Approximation” (UOBYQA) algorithm (Powell 2002). It was devel-
oped from a previous linear approximation algorithm (Powell 1994). Briefly, it constructs a quadratic
model by Lagrange interpolation to obtain curvatures of the objective function and searches for the
nearest optimum with these curvatures. This method is insensitive to noisy surfaces and its calculated
quantity will not increase too much with multiple parameters. Here we adopt a ready-made program
module CONDOR (COnstrained, Non-linear, Direct, parallel Optimization using the trust Region
method for high-computing load function)3. This specific module expands Powell’s algorithm to the
constrained condition by defining active sets for linear constraints and using sequential quadratic

3 It is available at http://www.applied-mathematics.net.
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Fig. 3 Dashed line gives the result of X-ray gas mass fraction, while the dash-dotted line comes
from the lensing cluster. Two “×” symbols give their best fitting values separately. The shaded
regions show the 1σ, 2 σ and 3 σ confidence regions for combining constraints, corresponding to
Δχ2 values of 2.30, 6.17, and 11.8. The small inner circle is the best fitting point: ΩM = 0.26+0.04

−0.04

and ΩΛ = 0.82+0.14
−0.16 .

programming to deal with non-linear constraints. It also adds the support of parallel programming
to increase efficiency (Frank & Bersini 2005).

With a sample of 42 galaxy clusters (Allen et al. 2008), we run the program several times with
different starting points to make sure the result is stable. We do not find any exceptions. The final
optimum we obtain, with 68 percent confidence limits, is ΩM = 0.26±0.04 and ΩΛ = 0.9+0.14

−0.18 with
minimum χ2 = 41.8. Contours are shown with dashed lines in Figure 3. This result is very consistent
with the result of Allen et al. (2008), which is χ2 = 41.5, ΩM = 0.27±0.06 and ΩΛ = 0.86±0.19.

4 RESULT AND DISCUSSION

Our sample is not big enough to calculate a precise constraint for the equation of state, so we use
a simple cosmological model E(z) =

√
ΩM(1 + z)3 + ΩΛ + (1 − ΩM − ΩΛ)(1 + z)2. Because

these two methods use a different cluster sample, we fit them separately and sum their χ2 to get
the final fitting results. As can be seen in Figure 3, the dashed lines give the result of X-ray gas
mass fraction and the dash-dotted contours come from lensing clusters. The shaded region shows
the combined constraint. The small inner circle gives the best fitting values ΩM = 0.26+0.04

−0.04 and
ΩΛ = 0.82+0.14

−0.16 at 68% confidence limits. These results are in agreement with the basic facts we
know from other observations.

When combining results from these two methods, we find that these two constraining methods,
when separately applied to clusters, are sensitive to different cosmological parameters. Their contour
regions are nearly orthogonal. The angular diameter distance ratio estimated from strong lensing arcs
sensitively depends on ΩΛ. The best fitting value is ΩΛ = 0.74+0.18

−0.36. It is better than the result from
constraining the gas fraction. However, it cannot give any significant constraint for ΩM. In addition,
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the gas fraction of clusters is more effective in constraining ΩM. So, when we combine these two
methods together, the unified constraint is better than both of them taken separately. Such results are
still preliminary. Due to the complexity of clusters themselves, there is still a lot of work to do to
improve these methods.

The common radial temperature distribution of clusters makes it difficult to use an isothermal
approximation. However, in the small scale within arcs, temperatures will not change dramatically,
even for cool-core clusters. The clusters which have substructures or even whose which are experi-
encing merging cannot be described simply. At least we can rule them out by our criteria. The X-ray
observations of our new lensing cluster sample come from three different satellites: ROSAT, ASCA
(Ota & Mitsuda 2004) and CHANDRA (Bonamente et al. 2006). The different equipment may also
cause systematical errors, which are hard to estimate. Considering that two previous telescopes are
comparatively old, fitting results from CHANDRA or XMM may give better results.

These two methods use two different cluster sample sets with some common clusters (A2390,
MS2137, etc.). The deviation of different observations may also be indirectly counted. Hence, it is
necessary to select a unified set to share the same clusters and observational parameters. The mass
profile models used by these methods are different. The strong lensing approach uses the β-model
to fit surface brightness, while the gas fraction method uses the NFW model to describe the dark
matter halo. As we have seen in Table 1, lensing arcs usually appear in the central region of clusters,
where the NFW model can usually give a better fitting result than that of the isothermal sphere model
(Comerford et al. 2006; Schmidt & Allen 2007). If we can unify the two methods into the same mass
profile model, the results may be more convincing.

Compared with other cosmological observations, our cluster sample is quite small, and its range
of redshift is also limited. According to Yamamoto & Futamase (2001), a data set containing more
than 20 clusters can more precisely constrain the dark energy equation of state. It will not take long
to achieve that goal. There are many giant arc survey projects currently proceeding (Gladders et al.
2003; Hennawi et al. 2008). The number of newly discovered arcs is increasing rapidly. Waiting
for results from their redshift measurement is only a matter of time. The next generation of X-
ray telescopes, e.g. the International X-ray Observatory (IXO) (White et al. 2010), the extended
Roentgen Survey with an Imaging Telescope Array (eRosita) (Predehl et al. 2010) and the Wide
Field X-ray Telescope (WFXT) (Murray & WFXT Team 2010), will carry out new surveys more
precisely in a much larger field. Future observations will definitely enlarge our known data sets and
make these methods more powerful.
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