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Abstract We have calculated some properties of spin polarized strange quark matter
(SQM) in a strong magnetic field at zero temperature using the MIT bag model. We
showed that the equation of state of spin polarized SQM is stiffer than that for un-
polarized cases. We have also computed the structural properties of a spin polarized
strange quark star (SQS) and found that the presence of a magnetic field leads to a
more stable SQS when compared to the structural properties of an unpolarized SQS.

Key words: dense matter — equation of state — magnetic field

1 INTRODUCTION

Strange quark stars (SQSs) consist mainly of self-bound strange quark matter (SQM). The surface
density of an SQS is equal to the density of the SQM at zero pressure (∼ 1015 g cm3), which is
fourteen orders of magnitude greater than the surface density of a normal neutron star. The central
density of these stars is about five times greater than that of their surface density (Haensel et al.
2007; Glendenning 2000; Weber 1999; Camenzind 2007). The existence of SQSs made of SQM
was first proposed by Itoh (1970) before Quantum Chromodynamics (QCD) had even been fully
developed. Later Bodmer (1971) discussed the fate of an astronomical object collapsing to such a
state of matter. In the 1970s, after the formulation of QCD, perturbative calculations of the equation
of state of SQM were developed, but the area of validity for these calculations was restricted to very
high densities (Collins & Perry 1975). The existence of SQSs was also discussed by Witten (1984),
who conjectured that a first order QCD phase transition in the early universe could concentrate most
of the quark excess in dense quark nuggets. He suggested that the true state of matter was SQM.
Witten proposed that SQM composed of light quarks is more stable than nuclei, therefore SQM can
be considered as the ground state of matter. An SQS would be the bulk SQM phase consisting of
almost equal numbers of up, down and strange quarks, plus a small number of electrons to ensure
charge neutrality. A typical electron fraction is less than 10−3 and it decreases from the surface to
the center of an SQS (Haensel et al. 2007; Glendenning 2000; Weber 1999; Camenzind 2007). SQM
would have a lower charge-to-baryon ratio compared to the nuclear matter and can show itself in the
form of an SQS (Witten 1984; Alcock et al. 1986; Haensel et al. 1986; Kettner et al. 1995).

The collapse of a massive star may lead to the formation of an SQS. An SQS may also be formed
from a neutron star and is denser than the neutron star (Bhattacharyya et al. 2006). If sufficient
additional matter is added to an SQS, it will collapse into a black hole. Neutron stars with masses
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of 1.5 − 1.8M� with rapid spins are theoretically the best candidates for conversion to an SQS.
An extrapolation based on this indicates that up to two quark-novae occur in the observable universe
each day. In addition, recent Chandra observations indicate that objects RX J185635–3754 and 3C58
may contain SQSs (Prakash et al. 2003).

It is known that compact objects such as neutron stars, pulsars, magnetars and strange quark
stars are under the influence of a strong magnetic field, which is typically about 1015 − 1019 G
(Kouveliotou et al. 1999, 1998; Haensel et al. 2007; Glendenning 2000; Weber 1999; Camenzind
2007). Therefore, in astrophysics, it is of special interest to study the effect of a strong magnetic
field on SQM properties, which can be found in the core of neutron stars and also in SQSs. We note
that in the presence of a magnetic field, the conversion of neutron stars to bare quark stars cannot
take place unless the value of the magnetic field exceeds 1020 G (Ghosh & Chakrabarty 2001).

Recent investigations also show that the object SWIFT J1749.4–2807 may be an SQS (Yu & Xu
2010). We have also computed the structural properties of a neutron star with a quark core at finite
temperature (Yazdizadeh & Bordbar 2011).

In this article, we focus on an SQS that is purely composed of spin polarized SQM and investi-
gate the effects of a strong magnetic field on the different properties of such a star. In Section 2, we
study spin polarized SQM in the absence and presence of a strong magnetic field. In Section 3, by
numerically solving the Tolman-Oppenhaimer-Volkoff equation, we obtain the structural properties
of a spin polarized SQS. Moreover, we discuss the stability of spin polarized SQSs.

2 ENERGY CALCULATION FOR SPIN POLARIZED SQM

Several authors have investigated the properties of SQS using different methods (Alverdyan 2010;
Li et al. 2011). We consider spin polarized SQM composed of u, d and s quarks with spin up (+)
and down (−). We denote the number density of quark i with spin up by ρ

(+)
i and spin down by

ρ
(−)
i . We introduce the polarization parameter ξi by

ξi =
ρ
(+)
i − ρ

(−)
i

ρi
, (1)

where 0 ≤ ξi ≤ 1 and ρi = ρ
(+)
i + ρ

(−)
i . Under the conditions of beta-equilibrium and charge

neutrality, we get the following relation for the number density,

ρ = ρu = ρd = ρs, (2)

where ρ is the total baryonic density of the system.
Now, we calculate the energy density of spin polarized SQM. To calculate the total energy of

spin polarized SQM, we use the MIT bag model, in which the total energy is the sum of the kinetic
energy of the quarks plus a bag constant (Bbag) (Chodos et al. 1974). The bag constant Bbag can
be interpreted as the difference between the energy densities of the noninteracting and interacting
quarks. Dynamically, it acts as a pressure that keeps the quark gas at a constant density and potential.
In MIT bag models, different values are considered for the bag constant such as 55 and 90MeV

fm3 . We
calculate the energy density of SQM in the absence and presence of a magnetic field in the following
two subsections.

2.1 Energy Density of Spin Polarized SQM in the Absence of a Magnetic Field

The total energy of spin polarized SQM in the absence of a magnetic field (B = 0) is given by

ε
(B=0)
tot = εu + εd + εs + Bbag, (3)
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where εi is the kinetic energy per volume of quark i,

εi =
∑
p=±

∑
k(p)

√
m2

i c
4 + �2k(p)2c2. (4)

We ignore the masses of quarks u and d, while we assume ms = 150MeV for quark s. After
performing some algebra, supposing that ξs = ξu = ξd = ξ, we obtain the following relation for the
total energy of spin polarized SQM,

ε
(B=0)
tot =

3
16π2�3

∑
p=±

[
�

c2
k

(p)
F E

(p)
F

(
2�

2k
(p)2
F c2 + m2

sc
4
)
− m4

sc
5 ln

(
�k

(p)
F + E

(p)
F /c

msc

)]

+
3 �cπ2/3

4
ρ4/3

[
(1 + ξ)4/3 + (1 − ξ)4/3

]
+ Bbag, (5)

where
k±

F = (π2ρ)1/3(1 ± ξ)1/3, (6)

and

E±
F =

(
�

2k
(±)2
F c2 + m2

sc
4
)1/2

. (7)

In Figure 1, we have plotted the total energy density of spin polarized SQM as a function of
the density for different values of the polarization (ξ) in the absence of a magnetic field. Figure 1
shows that the energy is an increasing function of the density, however the rate of increase of energy
versus density increases with increasing polarization. For each density, we see that the energy of spin
polarized SQM increases with increasing polarization, especially at high densities.

For spin polarized SQM, we can also calculate the equation of state (EoS) using the following
relation,

P (ρ) = ρ
∂εtot

∂ρ
− εtot, (8)

where P is the pressure and εtot is the energy density which, in the absence of a magnetic field, is
obtained from Equation (5).

In Figure 2, we have shown the pressure of spin polarized SQM as a function of the density for
various values of the polarization parameter in the absence of a magnetic field. We see that for a
given density, the pressure increases with increasing polarization. This shows that the EoS of spin
polarized SQM is stiffer than that of the unpolarized case. From Figure 2, it can be seen that by
increasing polarization, the density corresponding to zero pressure takes lower values.

2.2 Energy Density of Spin Polarized SQM in the Presence of a Magnetic Field

In this section, we consider spin polarized SQM which is under the influence of a strong magnetic
field (B). For this system, the contribution of magnetic energy is EM = −M ·B. If we assume the
magnetic field is along the z direction, the contribution of the magnetic energy of the spin polarized
SQM is given by

EM = −
∑

i=u,d,s

M (i)
z B, (9)

where M
(i)
z is the magnetization of the system corresponding to particle i which is given by

M (i)
z = Niμiξi. (10)
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Fig. 1 Total energy density of spin polarized SQM as a function of density (ρ) at different values of
the polarization parameter (ξ) in the absence of a magnetic field.

Fig. 2 Same as Fig. 1, but for the equation of state of spin polarized SQM.

In the above equation, Ni and μi are the number and magnetic moment of particle i, respectively.
By some simplification, the contribution of the magnetic energy density of spin polarized SQM,
εM = EM

V , can be obtained as follows

εM = −
∑

i=u,d,s

ρiμiξiB. (11)
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Fig. 3 Total energy density of polarized SQM as a function of the polarization parameter (ξ) for
B = 5 × 1018 G at different densities (ρ).

Consequently, the total energy density of spin polarized SQM in the presence of a magnetic field can
be written as

ε
(B)
tot = ε

(B=0)
tot + εM. (12)

In Figure 3, we have shown the total energy density of spin polarized SQM as a function of the
polarization parameter (ξ), for B = 5×1018 G at various densities. From Figure 3, we have seen that
the energy curve shows a minimum for each relevant density. This behavior indicates that for each
density there is a metastable state. We have also seen that as the density increases, this metastable
state is shifted to lower values of the polarization parameter. Therefore, we can conclude that the
metastable state disappears at high densities. We have also found that at high densities, the system
becomes nearly identical to the unpolarized system. These results agree with those of reference (Pal
et al. 2009).

In Figure 4, we have plotted the total energy density of spin polarized SQM versus the number
density in the presence of a magnetic field. We have seen that the total energy increases by increasing
the density. We have found that the energy density of spin polarized SQM in the presence of a
magnetic field is nearly identical to that of the unpolarized case, which has been clarified in panel
(b) of Figure 4. As we will see in the next paragraph, this is due to the fact that the polarization
parameter in the presence of a magnetic field is very small, especially at high densities.

In Figure 5, we have presented the polarization parameter corresponding to the minimum point
of energy density as a function of the number density at B = 5×1018 G. We see that the polarization
parameter decreases by increasing the number density. From Figure 5, it can be seen that for ρ <
0.2 fm−3, the rate of decrease of polarization versus density is substantially higher than that for
ρ > 0.2 fm−3.
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Fig. 4 (a) Total energy density of spin polarized SQM vs. density (ρ) at B = 5 × 1018 G. (b)
Comparison between the total energy for two cases of B = 5 × 1018 G and B = 0.

Fig. 5 Polarization parameter (ξ) corresponding to the minimum points of energy density vs. density
(ρ) at B = 5 × 1018 G.

In Figure 6, we have shown the polarization parameter versus the magnetic field for different
values of the number density. For each density, we can see that polarization increases by increasing
the magnetic field. This figure also shows that the rate of increase of polarization versus magnetic
field increases with increasing density.
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Fig. 6 Polarization parameter (ξ) correspond-
ing to the minimum points of energy density vs.
magnetic field (B) for different values of den-
sity (ρ).

Fig. 7 Pressure (P ) vs. density (ρ) for spin po-
larized SQM at B = 5 × 1018 G.

Fig. 8 Energy per baryon vs. pressure (P ) for spin polarized SQM at B = 0 (solid line) and
B = 5 × 1018 G (dashed line).

We have also calculated the EoS of spin polarized SQM in the presence of a magnetic field,
where the contribution of magnetic pressure (B2

8π ) should be added to Equation (8) in which the total
energy density is obtained from Equation (12).

In Figure 7, we have plotted the EoS of spin polarized SQM where the magnetic field is switched
on. We found that this EoS is nearly identical to that of the unpolarized case. This is due to the fact
that polarization at the energy minimum is very low, especially at high densities.
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In Figure 8, we have plotted the energy per baryon (E/A) for spin polarized SQM as a function
of pressure at B = 5 × 1018 G. Our results for the case of SQM in the absence of a magnetic field
(B = 0) are also given for comparison. We have seen that the zero point of pressure in the presence
of a magnetic field has a lower E/A compared to the case of SQM in the absence of a magnetic field
(B = 0). This indicates that in the presence of a magnetic field, spin polarized SQM is more stable
than that in the absence of a magnetic field.

3 STRUCTURE OF A SPIN POLARIZED SQS

The gravitational mass (M ) and radius (R) of compact stars are of special interest in astrophysics. In
this section, we calculate the structural properties of a spin polarized SQS and compare the results
of this calculation with those of the unpolarized case. Using the EoS of spin polarized SQM, we
can obtain M and R by numerically integrating the general relativistic equations of hydrostatic
equilibrium, the Tolman-Oppenheimer-Volkoff (TOV) equations, which are as follows (Shapiro &
Teukolsky 1983),

dm

dr
= 4πr2ε(r),

dP

dr
= −Gm(r)ε(r)

r2

(
1 +

P (r)
ε(r)c2

)(
1 +

4πr3P (r)
m(r)c2

)(
1 − 2Gm(r)

c2r

)−1

, (13)

where ε(r) is the energy density, G is the gravitational constant, and

m(r) =
∫ r

0

4πr′2ε(r′)dr′ (14)

has the interpretation of the mass inside radius r. By selecting a central energy density εc, under the
boundary conditions P (0) = Pc and m(0) = 0, we integrate the TOV equation outwards to a radius
r = R, at which P vanishes. This yields the radius R and mass M = m(R) (Shapiro & Teukolsky
1983).

Our results for the structure of a spin polarized SQS in the absence and presence of a magnetic
field are given in the two following subsections.

3.1 Structure of a Spin Polarized SQS in the Absence of a Magnetic Field

In Figures 9 and 10, we have plotted the gravitational mass and radius of a spin polarized SQS
in the absence of a magnetic field vs. the central energy density (εc) for different values of the
polarization parameter (ξ). From these figures, we see that for each central density, the mass and
radius of an SQS decrease by increasing the polarization parameter. This is due to the fact that by
increasing the polarization parameter, the pressure of spin polarized SQM increases, which leads to
a stiffer equation of state for this system (Fig. 2). Figures 9 and 10 show that for a given polarization
parameter, the gravitational mass and radius of an SQS increase by increasing the central density.
From Figure 9, it can be seen that the gravitational mass of an SQS reaches a limiting value called
the maximum mass.

In Figure 11, we have plotted our results for the gravitational mass of a spin polarized SQS as a
function of radius (mass-radius relation) in the absence of a magnetic field. For this system, we see
that the gravitational mass increases by increasing the radius. It is seen that the rate of increase of
mass versus radius increases with increasing the polarization.

In Table 1, the maximum mass (Mmax) and the corresponding radius (R) of a spin polarized
SQS are given for different values of the polarization parameter (ξ) in the absence of a magnetic
field. We can see that both maximum mass and the corresponding radius decrease with increasing ξ.
This shows that increasing polarization leads to a more stable SQS.
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Fig. 9 Gravitational mass of a spin polarized SQS vs. central density (εc) for different values of the
polarization parameter (ξ) in the absence of a magnetic field.

Fig. 10 Same as Figure 9, but for radius of a spin polarized SQS.

Fig. 11 Mass-radius relation for a spin polarized SQS in the absence of a magnetic field at different
values of the polarization parameter (ξ).
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Table 1 Maximum gravitational mass (Mmax) and the correspond-
ing radius (R) of a spin polarized SQS for different values of the
polarization parameter.

Star Mmax (M�) R (km)

Unpolarized SQS (ξ = 0) 1.35 7.6
Polarized SQS (ξ = 0.33) 1.33 7.5
Polarized SQS (ξ = 0.66) 1.27 7.2
Polarized SQS (ξ = 1) 1.17 6.7

Table 2 Maximum gravitational mass (Mmax) and the correspond-
ing radius (R) of an SQS for B = 0 and 5 × 1018 G.

Star Mmax (M�) R (km)

Unpolarized SQS (B = 0) 1.35 7.6
Polarized SQS (B = 5 × 1018 G) 1.31 7.4

3.2 Structure of a Spin Polarized SQS in the Presence of a Magnetic Field

In this section, we present our calculations for the structure of an SQS in the presence of a magnetic
field. It should be noted that a strong magnetic field changes the spherical symmetry of the system.
However, for magnetic fields less than 1019 G, this effect is negligible (Felipe & Martı́nez 2009;
Perez Martinez et al. 2010), therefore, we can solve the TOV equations using a spherical metric,
which leads to Equation (13). Our results for the gravitational mass and radius of a spin polarized
SQS in the presence of magnetic field versus the central energy density (εc) are shown in Figures 12
and 13, respectively. In these figures, our results for an unpolarized SQS (B = 0) are also given for
comparison.

Figures 12 and 13 show that for all values of central density, mass and radius of an SQS decrease
when the magnetic field is switched on. From Figure 12, we see that as the central density increases,
the gravitational mass of an SQS increases and finally reaches a limiting value (maximum mass). In
Table 2, we have given the maximum mass and the corresponding radius of an SQS for two cases:
B = 0 (unpolarized SQS) and B = 5 × 1018 G. It is shown that the presence of a magnetic field

Fig. 12 Gravitational mass vs. central density (εc) for a spin polarized SQS at B = 0 and B =
5 × 1018 G.
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Fig. 13 Same as Figure 12, but for radius of a spin polarized SQS.

leads to lower values for both the maximum mass and the corresponding radius of an SQS showing
a more stable SQS compared to an unpolarized SQS.

4 SUMMARY AND CONCLUSIONS

We have studied spin polarized SQM both for cases in the absence and presence of a magnetic field.
We calculated some of the bulk properties of this system such as energy, equation of state (EoS) and
polarization. We have shown that the energy of spin polarized SQM in the absence of a magnetic
field increases with increasing polarization. Calculations of the energy in the presence of a magnetic
field demonstrated that for each density, there is a minimum point for the energy of SQM showing a
metastable state. We have seen that the EoS of spin polarized SQM becomes stiffer as the polarization
increases. We have also seen that spin polarized SQM in the presence of a magnetic field is more
stable than unpolarized SQM. The structural properties of a spin polarized SQS were also calculated
in the absence and presence of a magnetic field. We have seen that for each central density, the mass
and radius of a spin polarized SQS decrease with increasing polarization. We have also seen that both
maximum mass and the corresponding radius of this system decrease by increasing polarization.

Our calculations indicated that in the presence of a magnetic field, the maximum mass and
the corresponding radius of a polarized SQS acquire lower values than those of an unpolarized
SQS. Therefore, we can conclude that the presence of a magnetic field leads to a more stable SQS
compared to an unpolarized SQS.

Our results for the maximum mass and radius of an SQS (Tables 1 and 2) are consistent with
those observed for the object SAX J1808.4–3658 (Li et al. 1999). We can conclude that this object
is a good candidate for an SQS.

One of the other astrophysical implications of our results is the calculation of the surface redshift
(zs) of an SQS. This parameter is of special interest in astrophysics and can be obtained from the
mass and radius of the star using the following relation (Camenzind 2007),

zs =
(
1 − 2GM

Rc2

)− 1
2 − 1. (15)

Our results corresponding to the maximum mass and radius of an SQS lead to zs = 0.45m s−1 in
the absence of a magnetic field and zs = 0.44m s−1 for a magnetic field B = 5 × 1018 G. This
indicates that the presence of a magnetic field approximately leads to lower values for the surface
redshift.
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