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Abstract We performed joint analysis of five cosmological models invoked to ex-
plain the accelerating expansion of the Universe. We used the data from strong grav-
itational lensing systems, locations of cosmic microwave background acoustic peaks
and baryon acoustic oscillation data in combination with supernova Ia data (Union2
compilation). The observables we used came from both standard rulers and standard
candles, so they had different parameter degeneracies and different restrictive pow-
ers in the parameter spaces of cosmological models. The best fits we obtained for the
model parameters in joint analysis turned out to prefer cases effectively equivalent
to the ΛCDM model. They were also in agreement with other combined studies per-
formed by other authors on different sets of diagnostic probes. Information theoretic
methods used to assess which model is most supported by the data lead to the con-
clusion that the concordance model ΛCDM is clearly preferred in joint analysis. The
quintessence (both having constant or time varying equation of state) and Chaplygin
gas get considerably less support from the data while the brane world (DGP) scenario
is practically ruled out.
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1 INTRODUCTION

One of the most important issues in modern cosmology is the problem of the currently accelerating
expansion of the Universe as inferred from the SNIa Hubble diagram (Perlmutter et al. 1999; Riess
et al. 1998, 2004, 2007; Astier et al. 2006; Wood-Vasey et al. 2007; Kowalski et al. 2008; Hicken
et al. 2009; Kessler et al. 2009; Amanullah et al. 2010) and supported by other independent stud-
ies including: cosmic microwave background radiation (CMBR) anisotropies (Hinshaw et al. 2009;
Komatsu et al. 2009) and baryon acoustic oscillations imprinted in the large scale structure power
spectrum (Eisenstein & Hu 1999; Eisenstein et al. 2005; Cole et al. 2005; Hütsi 2006a,b; Percival
et al. 2007).

The explanation of this phenomenon is far from obvious and, broadly speaking, involves either
invoking an unknown exotic (with negative net pressure) material component (so called “dark en-
ergy”) or modification of gravity at cosmological scales. Lacking clear theoretical guidance, we are
left with the phenomenological approach based on upgrading observational fits of quantities which
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parametrize the unknown (such as density parameters or coefficients in the cosmic equation of state)
and seeking coherence among alternative tests and techniques.

In this spirit, we performed a joint analysis of various dark energy models using the data from
supernovae, CMBR acoustic peaks, baryon acoustic oscillations (BAO) and strong lensing systems.
These different tests will be called diagnostics for short. Part of the diagnostics makes use of the
angular diameter distance and part of them uses the luminosity distance. These are two distance
concepts which, although theoretically related to each other, clearly have different systematic un-
certainties and different parameter degeneracies. Hence their joint analysis is more restrictive in the
parameter space.

The next section describes these diagnostics and the data sets used. Section 3 presents cosmo-
logical scenarios tested and the results obtained. In Section 4, we pose the question which model is
the best supported by combining evidence from the data and attempt to answer it with information-
theoretic criteria. The final section contains the conclusions.

2 DATA SETS AND DIAGNOSTIC TOOLS

The main paradigm of modern cosmology is that the geometry of the Universe can be described as
one of three possible Friedman-Robertson-Walker (FRW) solutions to the Einstein equations repre-
senting homogeneous and isotropic spacetime. Currently there exists strong evidence, coming from
independent and precise experiments, that the Universe is spatially flat. For example, a combined
analysis of WMAP5, BAO and supernova data (Hinshaw et al. 2009) gives Ωtot = 1.0050+0.0060

−0.0061.
Hence we will assume the flat (k = 0) FRW model from now on. The only gravitational degree of
freedom is the scale factor a(t) depending on cosmic time t and which is responsible for temporal
changes of spatial length-scales (known as cosmic expansion). In particular, there is a unique cor-
respondence between a(t) and redshift z which is an observable quantity. By virtue of the Einstein
equations, the expansion rate H = ȧ

a is determined by some set of parameters like present ex-
pansion rate H0, present density of (pressureless) matter Ωm, radiation Ωr or any other material
component Ωx (if considered) and the equation of state parameter w (assuming a hydrodynamical
energy momentum tensor using the p = wρ relation). We will use a shorthand notation of p for such
parameters. Their full specification will be given in Section 3, which presents the models tested.
Technically speaking, testing cosmological models means determining parameters p.

It is quite obvious that one very direct approach could be to test the distance – redshift relation
D(z) whenever there is the possibility to determine distances and redshifts independently. However,
as a consequence of the assumed non-euclidean geometry, one distinguishes three types of distances
in cosmology:

(i) comoving distance

r(z;p) = c

∫ z

0

dz′

H(z′;p)
=

c

H0
r̃(z;p), (1)

where r̃(z) denotes a reduced (dimensionless) comoving distance, i.e. a comoving distance ex-
pressed as a fraction of the Hubble horizon dH = c/H0,

(ii) angular diameter distance

DA(z;p) =
1

1 + z
r(z;p), (2)

(iii) luminosity distance
DL(z;p) = (1 + z)r(z;p). (3)

Angular diameter distance can be used as a standard ruler for objects whose size is known a
priori. It is also used in gravitational lensing theory (because gravitational lensing deals with light
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deflection which is essentially connected with angles). The luminosity distance is a measure invoked
while using standard candles (in a cosmological context: SNIa or gamma ray bursts). Both distance
measures are related to each other by a (1+z)2 factor (see above) which is known as the Etherington
reciprocity relation.

2.1 Standard Rulers

2.1.1 Strong lensing systems

Strong gravitational lensing occurs whenever the source, the lens and observer are so well aligned
that the observer–source direction lies inside the so-called Einstein ring of the lens. In a cosmological
context, the source is most often a quasar with a (usually elliptical) galaxy acting as the lens. Strong
lensing reveals itself as multiple images of the source. The image separations in the system depend on
angular-diameter distances to the lens and to the source, which in turn are determined by background
cosmology. This opens a possibility to constraining the cosmological model provided that we have
good knowledge of the lens model. Fortunately, there is growing evidence for a homologous structure
of elliptical galaxies (Treu et al. 2006a,b; Koopmans et al. 2006, 2009). In particular, it was shown in
Koopmans et al. (2009) that inside one effective radius, massive elliptical galaxies are kinematically
indistinguishable from an isothermal ellipsoid.

The Einstein radius in an Singular Isothermal Sphere (SIS) lens (or its Singular Isothermal
Ellipsoid (SIE) equivalent)

θE = 4π
σ2

SIS

c2

Dls

Ds
, (4)

depends on the cosmological model through the ratio of (angular-diameter) distances between lens
and source and between observer and source. Then, if one knows the Einstein radius θE (from image
astrometry) and stellar velocity dispersion σSIS (from central velocity dispersion σ0 obtained from
spectroscopy) one can use them to test the background cosmology.

Starting with the Lens Structure and Dynamics (LSD) survey and the more recent SLACS survey
(Sloan Lens ACS Survey 1) spectroscopic data, the central parts of lens galaxies became available al-
lowing researchers to assess their central velocity dispersions. In practice, central velocity dispersion
σ0 is estimated from the velocity dispersion within Re/8 where Re is the effective optical radius.
Detailed discussion of this issue can be found in Treu et al. (2006) and Grillo et al. (2008), where
the arguments in favor of using σ0 to represent σSIS are presented.

This method is independent of the Hubble constant’s value (which gets canceled in the distance
ratio) and is not affected by dust absorption or source evolutionary effects. This aspect was dis-
cussed in (Biesiada 2006) and also later in Grillo et al. (2008). In a recent paper (Biesiada et al.
2010), the dark energy equation of state (in the Chevalier-Polarski-Linder (CPL) parametrization)
was estimated using a sample of strong lenses. The present paper extends it substantially both by
considering more dark energy scenarios and by analyzing lenses jointly with other probes.

In the method used in this paper, the cosmological model enters not through a distance measure
directly, but rather through a distance ratio

Dth(zl, zs;p) =
Ds(p)
Dls(p)

=

∫ zs

0
dz′

h(z′;p)∫ zs

zl

dz′
h(z′;p)

, (5)

and its respective observable counterpart reads

Dobs =
4πσ2

0

c2θE
.

1 http://www.slacs.org/
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Cosmological model parameters (coefficients in the equation of state) are estimated by minimiz-
ing the chi-square

χ2(p) =
∑

i

(Dobs
i −Dth

i (p))2

σ2
D,i

, (6)

where the sum is over the sample and σ2
D,i denotes the variance of Dobs (contextual use of the

same symbol for variances and velocity dispersions should not lead to confusion). In calculating
σD , we assumed that only velocity dispersion errors contribute and the Einstein radii are determined
accurately.

We used a combined sample of n = 20 strong lensing systems with good spectroscopic mea-
surements of central dispersions from the SLACS and LSD surveys (essentially the same sample
as used in Grillo et al. 2008). Original data concerning the SLACS sample came from Treu et al.
(2006a, b). Data concerning LSD lenses are taken after Treu & Koopmans (2004); Koopmans &
Treu (2002, 2003).

The sample is summarized in table 1 of Biesiada et al. (2010) where one can find the source
and lens redshifts, Einstein ring diameters and central velocity dispersions. Here we just list the
names of lensing systems considered. From the SLACS survey are: SDSS J0037–0942, J0216–0813,
J0737+3216, J0912+0029, J0956+5100, J0959+0410, J1250+0523, J1330–0148, J1402+6321,
J1420+6019, J1627–0053, J1630+4520, J2300+0022, J2303+1422, and J2321–0939 and from the
LSD Survey are: Q0047–2808, CFRS03.1077, HST 14176, HST 15433, and MG 2016.

2.1.2 CMBR

Since the discovery of acoustic peaks in the power spectrum of the CMBR, it became clear that
the measured angular scale of the first acoustic peak, given by ϑA = rs(zlss)

DA(zlss)
where rs(zlss) is the

comoving size of the sound horizon at the last scattering surface and DA(zlss) is the angular diameter
distance to the last scattering surface, provided us with a very useful tool for testing cosmological
models. The size of the sound horizon serves here as a standard ruler. In practice, one uses the scaled
distance to the last scattering surface (at redshift zlss) in the form of the so-called shift parameter
(see e.g. Doran & Lilley 2002; Page et al. 2003 or most recently Shafieloo et al. 2009) R(p) =√

Ωm

∫ zlss

0
dz

h(z;p) , where Ωm is the present day matter density and h(z) is the dimensionless (i.e. with
H0 factored out) expansion rate which depends on the cosmological model (through parameters (p)).
The first results on the R shift-parameter came from WMAP’s 3-year results (Spergel et al. 2007)
and were confirmed later by WMAP’s 5-year data. We used the most recent result from WMAP7
(Komatsu et al. 2011) which is R(p) = 1.725± 0.018.

For comparison between theory and observations, we will use the chi-square function

χ2
CMB(p) =

[R(p) − 1.725]2

0.0182
,

i.e. just “one data point” for joint analysis.

2.1.3 BAO

BAO are the pressure waves in the photon-baryon plasma of the early universe caused by dark
matter overdensities. Besides producing the acoustic peaks of the CMBR, they reveal themselves
in clustering properties of galaxies – as a bump in the two-point correlation function. The large-
scale correlation function of luminous red galaxies in the Sloan Digital Sky Survey (Eisenstein et al.
2005) is a combination of the correlations measured in the radial (redshift space) and the transverse
(angular space) direction (it is similar to the idea of the so called Alcock & Paczynski 1979 test).
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Thus, the relevant distance measure is the so-called dilation scale, DV (z;p) = [(1 +
z)2 DA(z;p)2cz/H(z;p)]1/3 at the typical redshift of the galaxy sample, z = 0.35. The abso-
lute scale of the BAO is given by the sound horizon at the last scattering surface (standard ruler).
Then the dimensionless combination

A(z;p) = DV (z;p)
√

ΩmH2
0/cz (7)

is an observable quantity, well constrained by the data at z = 0.35. Its most recent value is (Reid
et al. 2010)

A(0.35) = 0.493± 0.017.

We will use this value as a diagnostic tool in the joint analysis. A convenient form of A(z = 0.35;p),
which is observable and suitable for calculating its theoretical counterpart (dependent on the cosmo-
logical model) reads

A(p) =
√

Ωm

0.35

[
0.35

h(0.35;p)

(∫ 0.35

0

dz

h(z;p)

)2
]1/3

and the corresponding chi-square is

χ2
BAO =

[A(p) − 0.493]2

0.0172
.

2.2 Standard Candles

For more than a decade now, supernovae Ia have been used as standard candles in cosmology. We
will use the data set with n = 557 supernovae coming from the most recent compilation of SNIa
data given in (Amanullah et al. 2010) known as Union2.

The Union2 data set contains redshifts zi and distance moduli μi together with their errors σi.
This leads to the chi-square function

χ2
SNIa =

N=557∑
i=1

[
μobs(zi) − μth(zi;p)

σi

]2

. (8)

The distance modulus μ := m − M = 5 log10(DL(z;p)) + 25 contains (an unimportant) constant
term which can be understood by factoring out the Hubble distance scale from the luminosity dis-
tance, i.e. μth(zi;p) = 5 log10(dL(z;p))+μ0, where μ0 = 5 log10(cH

−1
0 )+25. For the purpose of

our analysis, μ0 is a nuisance parameter. Therefore instead of minimizing the original chi-square in
Equation (8), we used an approach equivalent to marginalization over the nuisance parameter, i.e. we
minimized the slightly modified expression for χ2

SNIa as described in Nesseris & Perivolaropoulos
(2005). The idea here is to write the chi-square function in Equation (8) as a function of μ0

χ2
SNIa = A − 2μ0B + μ2

0C,

where

A =
N=557∑

i=1

[
μobs(zi) − μth(zi;p, μ0 = 0)

σi

]2

,

B =
N=557∑

i=1

μobs(zi) − μth(zi;p, μ0 = 0)
σi

,
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and

C =
N=557∑

i=1

σ−2
i .

One can see that this is a quadratic function having a minimum value of χ2
SNIa,min = A − B2/C at

μ0 = B/C. Hence we used such a chi-square minimized over μ0. This procedure is equivalent to
marginalizing over H0 as a nuisance parameter. Let us remark here that our diagnostics of standard
rulers are independent of H0 as they can be verified by simple algebra from the respective formulae.
Marginalization over H0 in standard candles makes our joint analysis free from prior assumptions
on the value of the Hubble constant.

2.3 Joint Analysis

Standard rulers and standard candles, more precisely – the probes described above – were combined
by calculating joint likelihoods

Ltot = Lrul × Lcand = LCMB × LBAO × LLens × LSNIa,

which is equivalent to the assessment of

χ2
tot(p) = χ2

rul(p) + χ2
cand(p) = χ2

CMB(p) + χ2
BAO(p) + χ2

Lens(p) + χ2
SNIa(p).

Because standard rulers and standard candles probe distance measures based on different concepts
(angular diameter distance and luminosity distance), one step before making a full joint fit was that
we performed fits based on rulers and candles separately.

3 COSMOLOGICAL MODELS TESTED AND RESULTS

3.1 ΛCDM and Quintessence Models

The ΛCDM model is a Friedman - Robertson - Walker cosmology with non-vanishing cosmological
constant and pressureless matter including the dark matter component responsible for flat rotation
curves of galaxies. It is a standard reference point in modern cosmology and is also called the con-
cordance model since it fits rather well with independent data (such as CMBR data, Large Scale
Structure considerations, and supernovae data).

There are several reasons why we are not fully satisfied with the concordance scenario. First,
the cosmological constant suffers from the fine tuning problem: being constant, why does it start
dominating at the present epoch? Then if we imagine its origin as the quantum-mechanical energy
of the vacuum, field theoretical estimates predict its value to be 120 orders of magnitude larger than
what is observed — currently the biggest discrepancy of theoretical physics (Weinberg 1989).

Hence, another popular explanation of the accelerating Universe is to assume the existence of a
negative pressure component called dark energy. One can heuristically assume that this component
is described by a hydrodynamical energy-momentum tensor with (effective) cosmic equation of state
p = wρ where −1 < w < −1/3. In such a case, this component is called “quintessence.” One can
treat the cosmological constant as one possible explanation of dark energy, but since Λ has its own
history in General Relativity and cosmology which is independent of the accelerating expansion
puzzle, we consider it separately.

Usually, the quintessence is attributed to some sort of a scalar field and the only other scalar field
invoked by cosmologists, i.e. the inflaton, clearly had its own dynamics, since the inflationary epoch
ended. If we think that the quintessence has its origins in the evolving scalar field, it would be natural
to expect that the w coefficient should vary in time, i.e. w = w(z). An arbitrary function w(z) can
be Taylor expanded. Then, bearing in mind that both SNIa surveys and strong gravitational lensing
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Table 1 Expansion Rates H(z) in the Models Tested

Model Cosmological expansion rate H(z) (the Hubble function)

ΛCDM H2(z) = H2
0 [Ωm (1 + z)3 + ΩΛ]

Quintessence H2(z) = H2
0 [Ωm (1 + z)3 + ΩQ (1 + z)3(1+w) ]

Chevalier-Polarski-Linder H2(z) = H2
0 [Ωm (1 + z)3 + ΩQ (1 + z)3(1+w0+wa) exp(−3waz

1+z
)]

Chaplygin Gas H(z)2 = H2
0 [Ωm(1 + z)3 + ΩCh(A0 + (1 − A0)(1 + z)3(1+α))

1
1+α ]

Braneworld H(z)2 = H2
0 [(
�

Ωm(1 + z)3 + Ωrc +
�

Ωrc )2]

Notes: The quantities Ωi represent fractions of critical density currently contained in energy densities of
respective components (like clumped pressureless matter, Λ, quintessence, Chaplygin gas or brane effects).

Table 2 Fits to different cosmological models from combined
standard ruler data (R+BAO+Lenses).

Cosmological model Best fit parameters χ2

ΛCDM Ωm = 0.273 ± 0.018 63.961
Quintessence Ωm = 0.262 ± 0.035 63.829

w = −1.066 ± 0.188
Chevalier-Polarski-Linder Ωm = 0.276 ± 0.055 63.707

w0 = −0.824 ± 0.704
wa = −0.757 ± 2.148

Chaplygin Gas Ωm = 0.273 ± 0.018 63.961
A = 1.000 ± 0.001

α = −0.040 ± 2.260
Braneworld Ωm = 0.345 ± 0.021 72.697

Table 3 Fits to different cosmological models from the Union2
sample of n = 557 SNIa.

Cosmological model Best fit parameters χ2

ΛCDM Ωm = 0.275 ± 0.020 663.641
Quintessnce Ωm = 0.299 ± 0.075 663.532

w = −1.070 ± 0.215
Chevalier-Polarski-Linder Ωm = 0.228 ± 0.156 663.695

w0 = −0.993 ± 0.207
wa = 0.609 ± 1.071

Chaplygin Gas Ωm = 0.275 ± 0.020 663.641
A = 0.999 ± 0.004
α = 0.006 ± 0.372

Braneworld Ωm = 0.177 ± 0.015 664.276

systems are able to probe the range of small to moderate redshifts, it is sufficient to first explore the
linear order of this expansion. In earlier literature, the truncated Taylor expansion w(z) = w0 +w1z
was used. However, bearing in mind that the scale factor a(t) is a real physical degree of freedom,
unlike the redshift z; the parametrization of w(z) = w0+wa

z
1+z developed by Chevallier & Polarski

(2001) and Linder (2003) turned out to be well suited and robust for such a case. Therefore, we adopt
it as a phenomenological description of the evolving equation of state.

Expansion rates H(z) for cosmological models tested are given in Table 1. Table 2 contains the
results for combined standard rulers (Lenses+BAO+CMB) and standard candle results are given in
Table 3, whereas Table 4 contains the results of the full joint analysis (Lenses+BAO+CMB+SNIa).
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Table 4 Joint R +BAO +Lens + Union2 Fits to Different
Cosmological Models.

Cosmological model Best fit parameters χ2

ΛCDM Ωm = 0.274 ± 0.014 727.610
Quintessence Ωm = 0.274 ± 0.014 727.603

w = −1.004 ± 0.048
Chevalier-Polarski-Linder Ωm = 0.274 ± 0.014 727.584

w0 = −0.989 ± 0.124
wa = −0.082 ± 0.621

Chaplygin Gas Ωm = 0.274 ± 0.014 727.610
A = 1.0 ± 0.004

α = −0.112 ± 1.282
Braneworld Ωm = 0.267 ± 0.013 777.676

In flat ΛCDM cosmology, Ωm is the only free parameter. Of course, H0 is better constrained
by other methods. Neither of our standard ruler diagnostics needed the explicit numerical value of
H0 and the standard candle fitting procedure was equivalent to marginalizing over H0. The result of
our combined analysis, Ωm = 0.274 ± 0.014 (see Table 4), should be compared with independent
measurements.

The only method sensitive exclusively to matter density comes from studying peculiar velocities
of galaxies. The analysis of Feldman et al. (2003) gave Ωm = 0.30+0.17

−0.07 which agrees with our joint
analysis within the 1σ range around the central value. Later, Mohayaee & Tully (2005) applied orbit
retracing methods to motions in the local supercluster and obtained Ωm = 0.22±0.02, which is also
consistent with our findings.

In the class of quintessence models, the ESSENCE supernova survey team (Wood-Vasey et al.
2007) pinned down the equation of state parameter to the range w = −1.07± 0.09(stat)±0.12 (sys-
tematics) and Ωm = 0.274+0.033

−0.020 (stat 1σ). More recent estimates of Ωm = 0.274+0.016+0.013
−0.016−0.012 and

w = −0.969+0.059
−0.063 (stat) +0.063

−0.066 (systematics) come from the Union1 SNIa compilation (Kowalski
et al. 2008) and from Kessler et al. (2009) : Ωm = 0.265±0.16±0.025 and w = −0.96±0.06±0.12.
These results are in perfect agreement with our results shown in Tables 2–4. Confidence regions (cor-
responding to 68% and 95% confidence limits) in the (Ωm, w) parameter plane for standard rulers,
standard candles and the combined analysis are shown in Figure 1. One can see the different (almost
orthogonal) degeneracies of different techniques resulting in a higher restrictive power of combined
analysis.

As far as the Chevalier-Polarski-Linder parametrization is concerned, the joint constraint from
WMAP+BAO+H0+SN provided by Komatsu et al. (2011) gives the bound w0 = −0.93 ± 0.13 ,
wa = −0.41+0.72

−0.71. The earlier comprehensive analysis of Davis et al. (2007) yielded the best-fit pa-
rameter values: Ωm = 0.27±0.04, w0 = −1.1+0.4

−0.3 and wa = 0.8+0.8
−2.4. Our combined analysis gives

support to the models with a varying equation of state (in Chevalier-Polarski-Linder parametrization)
very close to the ΛCDM model. Respective confidence regions (corresponding to 68% and 95% con-
fidence limits) for standard rulers, standard candles and combined data are shown in Figure 2.

3.2 Generalized Chaplygin Gas Models

In the class of generalized Chaplygin gas models, the matter content of the Universe consists of
pressureless gas with energy density ρm representing baryonic plus cold dark matter (CDM) and of
the generalized Chaplygin gas with the equation of state pCh = − A

ρChα representing dark energy
responsible for the acceleration of the Universe. The original Chaplygin gas corresponds to α = 1.
In a cosmological context, it has been promoted to the role of a free parameter using a phenomeno-
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Fig. 1 Best fits (dots) and (68%, 95%) confidence regions in the (Ω, w) plane for the quintessence
model. Confidence regions are displayed separately for standard rulers, standard candles and joint
analysis.
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Fig. 2 Best fits (dots) and (68%, 95%) confidence regions in the (w0, wa) plane for the Chevalier-
Linder-Polarski model. Confidence regions are displayed separately for standard rulers, standard
candles and the joint analysis.

logical approach. Values of the α exponent close to zero mean that the model is equivalent to the
ΛCDM case.

This exotic form of the cosmic equation of state is inspired by some super-string theories, but at
the phenomenological level it has an advantage in that it smoothly interpolates the expansion history
of the Universe from matter dominated to dark energy dominated regimes. Chaplygin models have
been confronted with different cosmological data like supernovae (Biesiada et al. 2005), cosmic
microwave background radiation anisotropies (Amendola et al. 2003), BAO (Wu & Yu 2007), the
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integrated Sachs-Wolfe effect (Giannantonio & Melchiorri 2006), X-ray data (Cunha et al. 2004)
and age estimates of high-z objects (Alcaniz et al. 2003).

From Tables 2–4, one can see that standard candles and standard rulers consistently support
values of α close to zero (and A ≈ 1). This is in agreement with previous, independent fits (e.g.
Biesiada 2006) including the most recent ones (Wu & Yu 2007). Note that a negative central value of
the α fit in joint analysis, similar to that reported in Wu & Yu (2007) and in a recent paper by Freitas
et al. (2010) (based on the GRB Hubble diagram), is fully compatible with the α = 0 case when the
confidence intervals are considered. Therefore, we can say that our combined analysis constrains the
generalized Chaplygin gas scenario to cases effectively equivalent to the ΛCDM model.

3.3 Brane-world Scenario

Finally, the brane-world models belong to the class of theories which seek the solution that describes
the presently accelerating expansion of the Universe, not using an exotic material scheme, but in
modifications of gravity. Brane-world scenarios assume that our four-dimensional spacetime is em-
bedded in 5-dimensional space and gravity in 5-dimensions is governed by the usual 5-dimensional
Einstein-Hilbert action. The bulk metric induces a 4-dimensional metric on the brane. The brane
induced gravity models (Dvali et al. 2000; Dvali & Gabadadze 2001) have a 4-dimensional Einstein-
Hilbert action on the brane calculated with the induced metric. According to this picture, our 4-
dimensional Universe is a surface (a brane) embedded in a higher dimensional bulk space-time in
which gravity propagates. Therefore, there exists a certain cross-over scale rc above which an ob-
server will detect higher dimensional effects.

As a consequence of modified gravity, the Friedman equation reads

H2 +
k

a2
=

[√
ρ

3M2
Pl

+
1

4r2
c

+
1

2rc

]2

from which the expansion rate function shown in Table 1 can be derived in the flat (k = 0) case. In
a flat brane-world Universe, the following relation is also valid: Ωrc = 1

4 (1 − Ωm)2. Cosmological
models in brane-world scenarios have been widely discussed in the literature (Jain et al. 2002;
Alcaniz et al. 2002).

Further research performed in Fairbairn & Goobar (2006) based on the Supernova Legacy
Survey combined with SDSS disfavored flat brane-world models. Later analysis by the same au-
thors (Rydbeck et al. 2007) also using the ESSENCE supernovae sample and CMB acoustic peaks
lead to the conclusion that the flat brane-world scenario is only slightly disfavored, although inclu-
sion of the baryon acoustic oscillation peak would rule it out. A quite recent paper by Xu & Wang
(2010) presents one of the most comprehensive analyses of brane-world models by jointly consid-
ering the data from supernovae, gamma-ray bursts, BAO, and CMB peaks, as well as the look back
times and growth functions for the large scale structure. Their results (posterior probability distri-
butions for model parameters), obtained by using a Markov Chain Monte Carlo simulation, yield
Ωm = 0.266+0.0298

−0.0304 which agrees perfectly with our results of joint analysis reported in Table 3. Let
us note that their global best fit for the ΛCDM model, Ωm = 0.274+0.0323

−0.0253, also agrees with our joint
analysis results.

4 WHICH MODEL IS THE BEST?

In the previous section, we discussed the best fits of several alternative models to the combined data
from standard rulers and standard candles. Such an approach does not say much about the degree
of support given to a particular model by the data in comparison with other models. Indeed, each
one of the five analyzed models with parameters p were derived by minimizing the best joint chi-
square fits to the data. Minimizing the chi-square is good for finding the best parameters in a model,
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but it is insufficient for deciding whether the model itself is the best one. Comparing the models in
terms of chi-square values at the best fit or by calculating chi-square per degree of freedom does not
account for the relative structural complexity of the models. The sort of questions we raise here can
be answered with model selection techniques. Such an approach has already been used in cosmology,
see e.g. Liddle (2004, 2007); Liddle et al. (2006); Biesiada (2007); Davis et al. (2007) and references
therein and steadily gains popularity. Besides the fully Bayesian model selection techniques based
on calculating the Bayesian evidence pursued actively in Kunz et al. (2006); Trotta (2007, 2008),
there are two information-theoretic criteria: the Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) due to Schwarz.

The Akaike criterion is based on Kullback-Leibler (K-L) information I(f, g) between two dis-
tributions f(x) and g(x). The intuitive meaning of I(f, g) (also called K-L divergence) is the in-
formation lost when g is used to approximate f . It is convenient to think that f(x) denotes the true
mechanism behind the data and g(x|p) is its approximating model (parameterized by p). Of course,
the K-L divergence cannot be assessed without prior knowledge of the true model f(x) as well
as parameters p of the approximating model g(x|p). However, for a given g(x|p), the maximum
likelihood estimator p̂ of p parameters minimizes the K-L divergence.

As was shown by Akaike (1974), the quantity called Akaike Information Criterion

AIC = −2 ln(L(p̂|data)) + 2K (9)

is an approximately unbiased estimator of the K-L divergence between the model at hand g(x|p)
and an unknown true model f(x) which generated the data. In our case,

AIC = χ2(p̂|data) + 2K. (10)

The AIC value for a single model is meaningless (simply because the true model f(x) is un-
known).What is useful instead are the differencesΔi: = AICi−AICmin calculated over the whole set
of alternative candidate models i = 1, ..., N where by AICmin we denote min{AICi; i = 1, ..., N}.
Comparing several models, the one which minimizes AIC could be considered the best. The rela-
tive strength of evidence for each model can be calculated as the likelihood of the model given the
data L(gi|data) ∝ exp(− 1

2Δi). Relative likelihoods of the models L(gi|data) normalized to unity
are called Akaike weights wi. In Bayesian language, an Akaike weight corresponds to the posterior
probability of a model (under the assumption of equal prior probabilities). The (relative) evidence
for the models can also be judged by the evidence ratios of model pairs wi

wj
= L(gi|data)

L(gj |data) . We will
substantiate the evidence ratios as odds against the given model with respect to the best one.

A very similar criterion was derived by Schwarz (1978) in a Bayesian context. It is the so-called
Bayesian Information Criterion (BIC)

BIC = −2 ln(L(p̂|data)) + K ln(n), (11)

where n is sample size and, like in the previous case, K denotes the number of parameters. BIC is
not an estimator of the K-L divergence; its derivation stems from estimating the marginal likelihood
of the data (marginalized over parameters). BIC does not take full advantage of the ability offered
by Bayesian techniques.

Tables 5 and 6 contain the AIC and BIC differences, weights and the odds of each of the models
against the best one. For the sake of transparency, the odds have been rounded to integer numbers.
One can see that the ΛCDM model is the most supported one in light of the joint analysis of standard
rulers and standard candles. The Akaike criterion implies that the support given by the data to the
quintessential model, even though it is less, is comparable to the concordance model. According to
the BIC criterion, the evidence against quintessence is strong. A variable equation of state model
and Chaplygin gas scenario, according to AIC, receive similar support but with the evidence against
them assessed as moderate. The judgement of BIC is very strongly against these models. Finally, the
brane world scenario (DGP model) should be definitely ruled out according to both criteria.
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Table 5 AIC Model Selection Results

Model AIC Δi wi Odds against

ΛCDM 729.610 0.0 0.609 1.0
Quintessence 731.603 1.993 0.225 3.0
Chevalier-Polarski-Linder 733.584 3.974 0.084 7.0
Chaplygin 733.610 4.00 0.082 7.0
Braneworld 779.676 50.066 8.2 × 10−12 7.0 × 1010

Notes: Values of AIC, Akaike differences, Akaike weights wi (in Bayesian language equiv-
alent to posterior model probabilities) and odds against the model (with respect to the best
fitted one). Results from the joint analysis of standard rulers and standard candles.

Table 6 BIC Model Selection Results

Model BIC BIC Δi BIC wi BIC Odds against

ΛCDM 733.97 0.0 0.957 1.0
Quintessence 740.322 6.353 0.040 24.0
Chevalier-Polarski-Linder 746.663 12.693 0.002 570.0
Chaplygin 746.689 12.719 0.002 578.0
Braneworld 784.036 50.066 1.3 × 10−11 7.0 × 1010

Notes: Analogous values of Bayesian Information Criterion (BIC): results from joint
analysis of standard rulers and standard candles.

5 CONCLUSIONS

In this paper, we performed a joint analysis of five cosmological models invoked to explain the ac-
celerating expansion of the Universe. We used the data from strong gravitational lensing systems, as
well as CMB acoustic peak location and BAO data in combination with supernova Ia data (Union2
compilation). The probes we used came from both standard rulers and standard candles. They invoke
different (although theoretically related) concepts of a distance in cosmology, hence they have differ-
ent parameter degeneracies and different restrictive powers in the parameter spaces of cosmological
models. The results can best be seen in Figures 2 and 3. This difference (in parameter degeneracy)
is responsible for differences in central values of the best fitted cosmological parameters between
standard rulers and standard candles.

The best fits we obtained for the model parameters in the joint analysis turned out to be in
agreement with other joint analyses performed by others on different sets of diagnostic probes. This
illustrates that the power of modern cosmology lies in building up consistency rather than in single,
precise, crucial experiments.

Information theoretic methods used to assess which model is the most supported by data lead
to the conclusion that the concordance model ΛCDM is preferred and the brane world scenario is
practically irrelevant. According to the Akaike criterion, ΛCDM is only slightly preferred over the
quintessence case and both models with a dynamical equation of state w(z) (CPL parametrization)
and the Chaplygin gas scenario get considerably less support from the data. Odds against the brane-
world scenario are so high that it can be considered ruled out by the data. According to the Schwartz
Bayesian Information criterion (BIC), ΛCDM wins, the quintessence model is considerably less
supported by data and the other ones are ruled out.
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