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Abstract Flux-limited and volume-limited galaxy samples are constructed from the
Sloan Digital Sky Survey (SDSS) data releases DR4, DR6 and DR7 for statistical
analysis. The two-point correlation functions ξ(s), monopole of three-point correla-
tion functions ζ0, projected two-point correlation function wp and pairwise velocity
dispersion σ12 are measured to test if galaxy samples are fair for these statistics. We
find that with the increment of sky coverage of subsequent data releases in SDSS,
ξ(s) of the flux-limited sample is extremely robust and insensitive to local structures
at low redshift. However, for volume-limited samples fainter than L∗ at large scales
s >∼ 10 h−1 Mpc, the deviation of ξ(s) from different SDSS data releases (DR7, DR6
and DR4) increases with the increment of absolute magnitude. The case of ζ0(s) is
similar to that of ξ(s). In the weakly nonlinear regime, there is no agreement between
ζ0 of different data releases in all luminosity bins. Furthermore, wp of volume-limited
samples of DR7 in luminosity bins fainter than −Mr,0.1 = [18.5, 19.5] are signifi-
cantly larger and σ12 of the two faintest volume-limited samples of DR7 display a
very different scale dependence than results from DR4 and DR6. Our findings call
for caution in understanding clustering analysis results of SDSS faint galaxy samples
and higher order statistics of SDSS volume-limited samples in the weakly nonlinear
regime. The first zero-crossing points of ξ(s) from volume-limited samples are also
investigated and discussed.
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1 INTRODUCTION

Clustering analysis of galaxy samples thrives on the availability of large modern galaxy surveys. The
two largest and most successful galaxy surveys to date are the two-degree field galaxy redshift survey
(2dFGRS, Colless et al. 2003) and the Sloan Digital Sky Survey (SDSS, York et al. 2000). The final
data release of the 2dFGRS offers 3-D mapping of roughly a quarter of a million galaxies, while the
SDSS has achieved spectra of ∼ 0.9 million galaxies (Abazajian et al. 2009). The unprecedented
number of galaxies and the enormous volume surveyed by SDSS defines its unique role in the era
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of precision cosmology (Komatsu et al. 2011), especially considering its power spectra and the two-
point correlation functions (2PCF) at large scales (e.g. Tegmark et al. 2004; Eisenstein et al. 2005;
Percival et al. 2010; Reid et al. 2010).

Another highly appreciated application of clustering analysis of galaxies is to relate galaxy dis-
tribution to dark matter and halos, aiming at inferring processes galaxies experienced during their
formation and evolution. Interpretation of statistics of galaxy samples provided by SDSS prevails
in the category of the ΛCDM+halo model and relevant extensions such as the halo occupation dis-
tribution (HOD, e.g. Berlind & Weinberg 2002; Kravtsov et al. 2004; Zheng et al. 2005) and the
conditional luminosity function (CLF, Yang et al. 2003). For example, works of Zehavi et al. (2002,
2005) and The SDSS Collaboration et al. (2010) systematically explored the luminosity and color de-
pendence of galaxy 2PCFs and extensively quantified HOD parameters of galaxies; Cooray (2006)
derived the occupation numbers of central and satellite galaxies in halos and their corresponding
conditional luminosity functions from a compilation of correlation functions of SDSS, attempting to
draw clues of galaxy evolution with reference to high redshift samples; Li et al. (2007) rather directly
compared projected correlation functions and the pairwise velocity dispersion (PVD) from SDSS
with those of mock galaxy samples populated from N-body simulations by semi-analytic models
(SAM) of Kang et al. (2005) and Croton et al. (2006); they found that SAM can roughly reproduce
observed clustering of SDSS galaxies but have to reduce the faint satellite fraction in massive halos
using the prescription of SAM by ∼ 30 percent to resolve discrepancies in PVD.

Yet there are challenges to the fairness of SDSS galaxy samples, i.e. whether galaxy samples
of SDSS are complete and have enough volume to be a fair representation of the Universe. In fact,
prudence in extracting physics from measured statistics, especially correlation functions, has been
called upon. Nichol et al. (2006) disclosed that exclusion of the Sloan Great Wall (at z ∼ 0.08, Gott
et al. 2005) would change the 2PCF by ∼ 40% and the three-point correlation function (3PCF) by
as much as ∼ 70% for the sample defined by the r-band absolute magnitudes−22 ≤ Mr,0.1 ≤ −19.
The apparent influence of super structures on estimated correlation functions at large scales some-
how counters intuition since one already takes it for granted that the SDSS galaxy sample’s depth
and sky coverage are sufficient to accomplish homogeneity, and spatial averaging would suppress
the variance induced by a particular structure in a small patch of sky. Sylos Labini et al. (2009) no-
ticed that the zero-crossing point of 2PCF in the SDSS main galaxy sample varies with luminosity
and sample depth and anti-correlation is absent in the most recently measured 2PCF of the SDSS lu-
minous red galaxy (LRG) sample (e.g. Martı́nez et al. 2009; Kazin et al. 2010). From implementing
methods of extreme-value statistical analysis, Antal et al. (2009) purport that either the SDSS suf-
fers from severe sample volume dependent intrinsic systematical effects or there is persistent density
fluctuation not fading away over scales beyond the standard ΛCDM model prediction.

It is therefore important for one to check the fairness of galaxy samples used in order to en-
dorse the confidence of relevant analysis. It is understood that fairness means different results for
different statistical method and different samples constructing methods. The SDSS Collaboration
et al. (2010) laboriously evaluated finite volume effects and impacts of super structures, and they
compared 2PCFs of volume-limited galaxy sub-samples in full depth with the same sub-sample but
limited to a smaller volume overlapping with the volume-limited sub-sample defined in the lumi-
nosity bin one dex lower. Their experiment leads to the conclusion that finite volume effects are
insignificant for anisotropic and projected 2PCFs in the nonlinear regime of their sub-samples of
luminosity higher than Mr,0.1 = −19. However, they then found that including faint galaxies causes
weird behavior of the 2PCF, which is similar to the discovery in Zehavi et al. (2005) using an early
release of SDSS, but with a smaller amplitude. We notice that such analyses for galaxies with lumi-
nosity lower than −18 are missed though 2PCF of their faintest sub-sample Mr,0.1 ∈ [−18,−17] is
adopted for estimation of biasing and HOD parameters.

These works mainly concentrate on changes to two-point statistics by altering sample depth.
We prefer to check the fairness by sky coverage enlargement, not only of 2PCFs but also of the
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monopole in 3PCFs in redshift space, projected 2PCFs and PVDs. There are data releases 4, 6 and
7 of SDSS’ main galaxy catalog (DR4, DR6 and DR7 by Adelman-McCarthy et al. 2006, 2008;
Abazajian et al. 2009, respectively), with the increment of sky coverage from DR4 to DR6 being
roughly the same from DR6 to DR7. An advantage of investigating effects of sample volume on
the correlation function with sky angular coverage, excluding the effects of survey depth, is that the
restriction of apparent magnitudes in the survey scope limits the permitted range of depth. This is
especially true for those galaxies which are visible only at low redshift or span a very shallow range
in the sample space. One of our purposes is to see how the correlation function evolves naturally
with the development of a real survey.

Section 2 describes SDSS data and estimation methods of statistics we used. Results are shown
in Section 3. The last section is for summary and discussion.

2 GALAXY SAMPLES AND ESTIMATION OF CORRELATION FUNCTIONS

2.1 Sample Construction

The safe galaxy sample of the New York University Value-Added Galaxy Catalog (NYU-VAGC,
Blanton et al. 2005) 1 is a catalog of low redshift galaxies (mostly below z ∼ 0.3) defined by
apparent magnitudes of 14.5 < mr < 17.6. Three data releases in chronological order are selected,
namely DR4, DR6 and DR7, which spectroscopically surveyed areas of about 4 783, 6 860 and 8 032
square degrees, respectively. Since spectroscopic coverage of SDSS is not uniform,we use only those
regions of spectroscopic completeness greater than 0.9. We did not perform fiber collision correction
to improve completeness, since the correction only becomes significant at scales < 0.2 h−1 Mpc for
SDSS galaxies (Zehavi et al. 2002). To ensure the correct geometry, galaxies in the three catalogs
are also filtered with their own accompanying survey windows, bright star masks and completeness
masks.

Flux-limited samples defined by the r-band apparent magnitude range 14.5 < mr < 17.6
and redshift 0.01 < z < 0.23 are generated. Consequently, we obtain 300 661 galaxies in DR4,
447 407 in DR6, and 535 845 in DR7. In order to explore the influence of local galaxies on cor-
relation functions, we also constructed flux-limited galaxy samples by near-end redshift cuts of
zmin = 0.037, 0.046 and 0.071. Volume-limited sub-samples are also produced in consecutive lu-
minosity bins starting from Mr,0.1 = −17 to −22.5 in steps of 0.5 magnitude and bin widths of
one magnitude. The absolute magnitude in NYU-VAGC is corrected to redshift z = 0.1 and is K
corrected, but e-correction is not taken into account. We noticed that there are some galaxies that
have different apparent magnitudes in DR7 than in earlier data releases, so we constructed a cou-
ple of additional volume-limited samples from DR7 but filtered the samples from DR4 with masks
for comparison. Measurements indicate that such differences have little influence on the statistics
employed.

Table 1 Numbers of galaxies in flux limited samples defined by the r-band ap-
parent magnitude range 14.5 < mr < 17.6 and redshift range zmin ≤ z ≤ 0.23.

zmin 0.010 0.037 0.046 0.071

DR4 300 661 281 400 268 247 216 373
DR6 447 407 417 426 397 543 321 915
DR7 535 845 498 445 473 980 382 921

Details of these samples are shown in Tables 1 and 2 and Figure 1; comoving distances of
galaxies are calculated in a flat ΛCDM universe with Ωm = 0.3, ΩΛ = 0.7 and h = 0.7.

1 http://sdss.physics.nyu.edu/vagc
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Fig. 1 Left panel shows the definition of SDSS galaxy subsamples in the redshift-absolute magni-
tude plane. The two curves are boundaries of the VAGC catalog resulting from the imposed apparent
magnitude limits. The overlapping rectangles delineate where volume-limited samples are located
and dashed lines label the lower redshift cuts of our flux-limited samples. In the right panel, distri-
butions of galaxies of the volume-limited subsample −Mr,0.1 = [17, 18] on the celestial sphere are
plotted. Green points are galaxies from SDSS DR4, red points indicate extra galaxies in DR6 and
black points are galaxies added in DR7 (color online).

Table 2 Volume limited samples. Distances are in units of h−1 Mpc.

Label Luminosity Redshift Comoving distance Number of galaxies
Mr,0.1 − 5 log10 h zmin zmax dmin dmax DR4 DR6 DR7

VL1 [−18.0,−17.0] 0.011 0.029 33.89 87.31 4 223 6 389 8 219
VL1+ [−18.5,−17.5] 0.014 0.037 42.53 108.95 7 292 11 543 14 343
VL2 [−19.0,−18.0] 0.018 0.046 53.32 135.61 11 639 18 328 22 500
VL2+ [−19.5,−18.5] 0.022 0.057 66.77 168.27 19 209 29 463 35 932
VL3 [−20.0,−19.0] 0.028 0.071 83.51 207.96 31 807 47 565 57 363
VL3+ [−20.5,−19.5] 0.035 0.087 104.24 255.70 50 719 75 162 89 654
VL4 [−21.0,−20.0] 0.044 0.107 129.83 312.96 59 215 87 295 103 924
VL4+ [−21.5,−20.5] 0.054 0.131 161.21 381.91 60 132 89 602 107 207
VL5 [−22.0,−21.0] 0.068 0.160 199.41 462.71 46 264 69 499 82 239
VL5+ [−22.5,−21.5] 0.083 0.194 245.46 555.88 24 002 36 677 43 631

2.2 Estimation of Correlation Functions

2.2.1 Redshift space correlation functions

Isotropic 2PCF ξ(s) of separation s in redshift space is measured with the estimator of Landy &
Szalay (1993),

ξ =
DD − 2DR + RR

RR
, (1)

in which DD, RR and DR are respectively the normalized numbers of weighted galaxy-galaxy,
random-random and galaxy-random pairs at given separations. To proceed with the estimation us-
ing Equation (1), the corresponding random sample is generated following distributions of redshift,
magnitude, geometric constraints, spectroscopic completeness and survey masks of each individual
galaxy sample but with twenty times the number of points. Each galaxy and random point is assigned
a weight according to their redshift and angular position to minimize the variance in estimating ξ
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(Efstathiou 1988; Hamilton 1993),

wi =
1

1 + 4π n(z)Φi J3(s)
, (2)

where Φi is the selection function at the location of the ith galaxy, n(z) is the mean number density
and J3(s) =

∫ s

0
ξ(s)s2ds. The J3(s) is computed using a power-law ξ(s) with correlation length

s0 = 8 h−1 Mpc and γ0 = 1.2 (Zehavi et al. 2002).
The calculation of 3PCFs of all those galaxy samples takes too long, so we measured the

monopole of the 3PCF instead (Pan & Szapudi 2005), which is a degenerate version of 3PCF defined
as

ζ0(s1, s2) = 2π

∫ 1

−1

ζ(s1, s2, θ)d cos θ , (3)

and estimated via

ζ0 =
DDD − 3DDR + 3DRR − RRR

RRR
, (4)

where combined symbols of D and R are normalized numbers of triplets counted within and between
data sets of galaxies and random points, e.g. if the number of galaxies around galaxy i in bin (slo

1 , shi
1 )

is ni(s1), and the number in bin (slo
2 , shi

2 ) is ni(s2), the DDD in Equation (4) reads

DDD =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑Ng
i=1 ni(s1)ni(s2)

Ng(Ng − 1)(Ng − 2)
if s1 �= s2 ,

∑Ng
i=1 ni(s1) (ni(s2) − 1)
Ng(Ng − 1)(Ng − 2)

if s1 = s2 .

(5)

2.2.2 Projected 2PCF and PVD

To minimize the effect of redshift distortion due to a galaxy’s peculiar motion, the separation s (or r
in real space) is divided into two components: the parallel part π and the perpendicular part σ with
respect to line-of-sight. The anisotropic 2PCF is measured on grids of (σ, π). Integration of ξ(σ, π)
over π then yields a distortion-free redshift function, the projected 2PCF,

wp(σ) =
∫ +πmax

−πmax

ξ(σ, π)dπ =
∑

i

ξ(σ, πi)Δπi , (6)

which practically has an integration limit of πmax = 50 h−1 Mpc.
It is well known that the redshift distortion consists of two components which dominate in

different regimes. Coherent infall is responsible for the clustering enhancement at large scales while
the smearing of correlation strength at small scales is attributed to random motions. At large scales,
the boost to the 2PCF by the peculiar velocities takes a particularly simple form (Kaiser 1987;
Hamilton 1992),

ξ′(σ, π) = ξ0(s)P0(μ) + ξ2(s)P2(μ) + ξ4(s)P4(μ) , (7)

where P�(μ) represents Legendre polynomials, and μ is the cosine of the angle between r and π.
Assuming ξ = (r/r0)−γ , there are relations

ξ0(s) = ξ(s) =
(

1 +
2β

3
+

β2

5

)
ξ(r) ,

ξ2(s) =
(

4β

3
+

4β2

7

)(
γ

γ − 3

)
ξ(r) ,

ξ4(s) =
8β2

35

(
γ(2 + γ)

(3 − γ)(5 − γ)

)
ξ(r) ,

(8)
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where β ≈ Ω0.6
0 /b and b is the linear bias parameter; note that the first equation is independent of

the functional form of ξ(r).
To incorporate effects of random motion, the anisotropic 2PCF in redshift space is approximated

by a convolution of ξ′(σ, π) in Equation (7) with the distribution function of the pairwise velocity
f(v12) (c.f. Peebles 1993),

ξ(σ, π) =
∫ +∞

−∞
ξ′(σ, π − v12

H0
)f(v12)dv12 , (9)

and in general f(v12) is assumed to obey an exponential distribution with PVD σ12

f(v12) =
1

σ12

√
2

exp

(
−
√

2v12

σ12

)
. (10)

The parameter β is usually derived from the ratio of ξ(s) to ξ(r) at large scales via the first equa-
tion in Equation (8), then other model parameters can be determined by combining Equations (7) –
(10) to fit the ξ(σ, π) data grids. Note that Jing et al. (1998) assumed a slightly different exponential
distribution function for pairwise velocity which was followed by Li et al. (2007).

2.2.3 Covariance matrix

Covariance matrices of our results are computed with the jackknife technique (Lupton 1993; Zehavi
et al. 2002). Each galaxy sample is divided into twenty separate slices of approximately equal sky
area, then we perform the analysis twenty times, leaving a different slice out each time. Covariance
matrices are generated accordingly with these twenty measurements, for instance, the covariance of
2PCF measured in two bins i and j is simply

Cov(ξi, ξj) =
N − 1

N

N∑
�=1

(ξi,� − ξi)(ξj,� − ξj) , (11)

in which N = 20 is the number of jackknife sub-samples we used.

3 RESULTS

3.1 Flux-limited Samples

Isotropic 2PCFs of flux-limited samples in Table 1 are calculated first. Figure 2 demonstrates that
the redshift space of 2PCFs for flux-limited samples shows little variation between various data
versions of SDSS. ξ(s) of DR4 exhibits some deviation at large scales ∼ 100 h−1 Mpc, but is hardly
significant for the huge cosmic variance at these scales. ξ(s) of flux-limited samples of the same
data release are displayed in the right panel of Figure 2, and there is no visible change to redshift
space 2PCF of SDSS when galaxies with low redshift are excluded, even when the decrease in the
number of galaxies is as much as ∼ 25% (Table 1). Since eliminating local volume and enlarging sky
coverage from DR4 to DR7 have little influence on the clustering strength measured, it is unlikely
that there are any significant sample volume dependent effects. Because we are not interested in a
general discussion of the SDSS main galaxy catalog as a whole, we will stop performing further
analysis with other statistical measures.

It is well known that faint galaxies have a much lower linear bias than luminous ones (e.g.
Tegmark et al. 2004; Zehavi et al. 2005; Li et al. 2007). When we discard many faint galaxies by
imposing a near-end redshift limit, it is expected that ξ(s) should display higher amplitude when
lower redshift cuts increase. It could be that the loss in number of galaxies (after proper weighting)
is too small to raise any serious deviation (Table 1), or in other words ξ(s) of the flux-limited sample
is dominated by galaxies around the redshift distribution peak.
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Fig. 2 Redshift space 2PCFs of flux-limited samples.

3.2 Volume-limited Samples

3.2.1 2PCF and the monopole of 3PCF in redshift space

The 2PCFs ξ(s) and monopoles of 3PCFs ζ0(s1, s2) from volume-limited samples of the three
SDSS data releases are measured to probe possible differences. In this paper, we only present the
ζ0(s1 = s2) whose amplitude is the strongest among configurations of (s1, s2) (Pan & Szapudi
2005). As seen in Figure 3, in the nonlinear regime major discrepancies appear in the VL1 sample of
the lowest luminosity; differences between results of DR4 and DR7 are around 2σ at scales as small
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Fig. 3 2PCFs ξ(s) and monopoles of 3PCF ζ0(s1 = s2) at small scales in redshift space of volume-
limited samples.

as ∼ 3h−1 Mpc, while the consistency of ξ(s) and ζ0 of brighter volume-limited samples of SDSS
is perfect at scales s < 10 h−1 Mpc.

At scales greater than 10 h−1 Mpc, for subsamples of VL3+ – VL5+, ξ(s) values from different
data releases are in good agreement within error bars, but ζ0 values have variations at the level of
∼ 1σ (Fig. 4). For the five faint galaxy samples of VL1 – VL3, disagreement in ξ(s) of DR7 to
DR4 is already apparent in this regime, which is confirmed by their ζ0. We conclude that modulation
of correlation functions in redshift space resulting from enlargement of sky coverage mainly occurs
at scales ranging roughly from ∼ 10 to ∼ 50 h−1 Mpc, which is usually classified as the weakly
nonlinear regime in structure formation theory. Those applications and their associated conclusion
appear rather suspicious based on 3PCFs of volume-limited samples of SDSS at large scales. For
three-point correlation functions in redshift space, fairness of volume-limited samples is guaranteed
only at small scales, i.e. in the strongly nonlinear regime.

3.2.2 The first zero-crossing points of 2PCFs

To investigate the charge of Sylos Labini et al. (2009), the first zero crossing scales of ξ(s) with
respect to median luminosity of volume-limited samples are plotted in Figure 5. Estimated ξ(s) is
effectively averaged over a scale bin [slo, shi] and the quoted scale is set to be s =

√
sloshi. It is

unlikely that we could correctly find all zero points of ξ(s) with our scale binning, so we choose to
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Fig. 4 2PCFs ξ(s) and monopoles of 3PCFs ζ0(s1 = s2) at large scales in redshift space of
volume-limited samples.

show the range of scales within which ξ(s) experiences zero-crossing, which is drawn as error bars
over the geometric mean of the pair of scales. From Figure 5, it is clear that in general the brighter
the characteristic luminosity of the sample is, the larger the first zero crossing scale will be. The five
faint volume-limited samples (VL1 – VL3) have roughly the same first zero crossing scale with mild
variation between ∼ 30 − 50 h−1 Mpc, then the crossing scale ascends abruptly to as large as more
than 100 h−1 Mpc, even higher than the largest scale we measured (∼ 170 h−1 Mpc).

For faint galaxy samples, their depths are typically small and so are their effective volumes, so
the systematical effect of integral constraint cannot be ignored (Landy & Szalay 1993; Bernstein
1994). In the weak correlation limit, the cosmic bias resulting from the integral constraint can be
approximated by

bξ =
ξ̂

ξ
− 1 ≈ − ξ̄(R)

ξ
, if |ξ|, |ξ̄(R)| 	 1 , (12)

in which ξ̂ is the estimated 2PCF, R is the smallest size of the sample and ξ̄(R) is the average
of the 2PCF over the sample volume, i.e. density variance at the sample volume (Landy & Szalay
1993). There is no a priori correction method to this bias unless we assume something to model
the shape of the 2PCF. Since ξ̄ is positive, naturally ξ̂ ≈ ξ − ξ̄(R) will have a smaller first zero-
crossing scale than ξ. If as usual we assume that galaxy bias b is linear and scale independent,
ξ̂ = b2(ξ− ξ̄(R)), the correction to the first zero-crossing scale only depends on the sample volume.
As ξ̄ slowly decreases with scale, it is expected that the first zero-crossing scales of faint galaxy
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Fig. 5 Luminosity dependence of the first zero crossing scales of ξ(s) of volume-limited samples.
Lower caps of error bars are scales where ξ > 0 and higher caps of error bars are the adjacent
scales where ξ immediately becomes negative. Those points shown with only lower caps denote
that the first zero crossing point is actually larger than the scale probed in this work, larger than
∼ 170 h−1 Mpc.

samples will gradually become larger when the sample volume increases, which is true for VL2 –
VL3. However, surprisingly, this is not the case for VL1 and VL1+. The two faintest subsamples
have the smallest sample volume, but the first-zero crossing scale of VL1 does not change from
DR4 to DR7, but for VL+, the scale of DR7 becomes smaller than that of DR4. Furthermore, the
difference between depths of VL3 and VL3+ is not very large (Table 2), but the first zero-crossing
scales of their ξ differ greatly. The integral constraint alone could not explain these findings.

The increase in sky coverage from DR4 to DR6 is approximately the same as the gain from
DR6 to DR7. The first zero crossing scales of DR7 differ only slightly from DR6 in two luminosity
bins, but DR4 significantly disagrees with other data releases, which makes it difficult to believe
another simple geometric explanation, such as assuming a fractal galaxy distribution. Ergodicity bias
could not be used as an explanation. For low luminosity samples with low characteristic redshift, the
correction Δξ is positive (Pan & Zhang 2010) and would push the zero point to larger scales, which
obviously contradicts observation. Redshift distortion could also not be used, since on large scales
redshift distortion acts on galaxy 2PCF as a multiplication factor.

The sudden change of the first zero-crossing scale from faint galaxies to bright galaxies prob-
ably implies that the composition of faint galaxy samples is very different compared with bright
galaxy samples, which may be attributed to shifting the leading role from satellite galaxies to central
galaxies in samples brighter than −Mr,0.1 > 20 (Li et al. 2007). Whatever the physical mechanism
is, mathematically the effect on 2PCF is encapsulated into a simple function: the galaxy bias. The
linear biasing model assumes that on large scales the galaxy 2PCF with ξg = bξm in which b �= 0
is a deterministic, scale independent bias parameter and ξm is the 2PCF of dark matter; obviously if
the model holds, the zero point of ξg will not change no matter what b could be, e.g. scale dependent.
If we presume that the problem of zero crossing is in biasing, then either stochastic or nonlinear bias
has to be invoked. Simple calculation indicates that if we adopt the parametrization to bias the re-
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Fig. 6 Projected 2PCFs of the volume-limited samples.

sults of (Fry & Gaztanaga 1993) and include the second-order bias parameter in 2PCF, to the leading
order the effect is again multiplicative and it cannot shift the first zero point of 2PCF. It appears that
stochastic biasing has to be considered. Details of the calculation are, however, beyond the scope of
this paper and will be presented elsewhere.

Another interesting aspect is that the first zero-crossing scale 2PCFs of samples VL4 and VL4+
of DR4 are larger than the largest scale of our measurements, but not of DR6 and DR7. The lack
of anti-correlation in the two luminosity bins of DR4 is probably evidence of the modulation due to
the Sloan Great Wall as revealed by Zehavi et al. (2005) and Nichol et al. (2006). The increased sky
coverage of DR6 and DR7 just weakens the influence of the super structure (The SDSS Collaboration
et al. 2010).

3.2.3 Projected 2PCF and PVD

ξ(s) is a mixture of real space 2PCF and PVD. The entanglement can be sorted with the projected
2PCF wp. Measurements of wp are shown in Figure 6. In fact, we cross checked our wp of DR7
with available results from The SDSS Collaboration et al. (2010), and the agreement is excellent,
except for the sample VL2 for which our wp differs at scales σ >∼4 h−1 Mpc. As seen in Figure 6, it
is obvious that wp from DR4 and DR6 are in good agreement at the scale range probed in the most
luminous bins; wp values from DR6 are slightly larger at large scales around σ ∼ 10 h−1 Mpc in
several faint samples but have low significance because of the size of error bars. For VL1 and VL2,
their wp values from DR7 are boosted by more than 70% in amplitude relative to DR4, but the shape
does not change. For subsamples in other luminosity bins, their wp values are stable against data
version, though for VL1+ and VL2+ there are some minor changes within error bars.

Figure 7 demonstrates the scale dependence of PVDs σ12 for different luminosity samples while
Figure 8 has the luminosity dependence of PVDs measured at scales of σ = 0.27, 0.87, 2.7, and
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Fig. 7 Scale dependence of pairwise velocity dispersions in the volume-limited samples.

8.7 h−1 Mpc, respectively. Also, σ12 of subsamples VL1, VL2 and VL2+ from DR7 are significantly
different compared to measurements of DR4. For VL2+, PVD from DR7 agrees with earlier data
at small scales but then turns out to be higher at scales σ > 1h−1 Mpc, which makes the scale
dependence very weak; for VL2, σ12 of DR7 roughly keeps the shape of DR4 but has a much larger
amplitude. Also, σ12 of VL1 from DR7 has a steeper scale dependence and stronger amplitude at
small scales than results using DR4 and DR6. In addition, σ12 of VL1 subsamples from DR4 and
DR6 are rather flat and do not follow the general trend that PVDs of galaxy samples with lower
luminosities should rise faster at smaller scales (also see PVDs of SAMs in fig. 5 of Li et al. 2007),
but now the VL1 result from DR7 reverts to this general trend that PVDs of galaxy samples with
lower luminosities should rise faster at smaller scales. Comparing distributions in the celestial sphere
of galaxies for the lowest luminosity bin of the three SDSS data releases reveals the variation is just
induced by a large structure located roughly in an area of RA 166◦ − 188◦ and DEC of 16◦ − 26◦
(Fig. 1). This represents another example of the impact of super structure on clustering analysis of
Large Scale Structure in addition to the Sloan Great Wall.

Li et al. (2007) realized that wp and PVDs of faint volume-limited samples of DR4 are too
low to match the prediction of SAMs. Guided by the experiment of Slosar et al. (2006), Li et al.
(2007) reduced the fraction of satellite galaxies in massive halos in SAMs, in an ad hoc manner, by
around 30% and approximately reproduced the actual measurements, which then became a serious
challenge for researchers to reconcile disparities between models and observation. An eyeball check
of our results with the SAMs prediction in Li et al. (2006) demonstrates that the amplitude boost
in wp and PVDs of DR7’s faint volume-limited samples roughly compensate for the space between
DR4 and SAMs, or at least ameliorate difficulties in theoretical modeling, although we do not have
data on SAMs to quantify the improvement. So unlike the Sloan Great Wall, the existence of a large
structure in the Universe is actually positive for our working models, which somehow casts doubts
on the proclaimed practice of cutting off super structures from original data to better fit a unified
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Fig. 8 Luminosity dependence of pairwise velocity dispersions at fixed scales.

picture. After all, it is still too early to say which is closer to the true clustering property of those
faint galaxies, and we might need a deeper and wider survey than the present SDSS DR7 to reach
reasonable fairness and reduce huge uncertainties.

4 SUMMARY AND DISCUSSION

By extensive comparison of different data releases of the SDSS main galaxy catalog with 2PCFs in
redshift space for flux-limited samples, 2PCFs/monopoles of 3PCFs in redshift space for volume-
limited samples, and projected 2PCFs and PVDs for volume-limited samples, we have the following
findings about galaxy clustering properties with respect to the expansion of sky coverage of SDSS.

(1) 2PCFs ξ(s) in redshift space of the flux-limited sample is extremely robust against sample vol-
ume change, which subsequently enables relevant application; ξ(s) is also insensitive to local
structures at low redshift.

(2) 2PCFs ξ(s) in redshift space of volume-limited samples of SDSS DR7 in luminosity bins
brighter than −Mr,0.1 = [17, 18] are in good agreement with earlier data releases at scales
s <∼10 h−1 Mpc. As scales become larger, the consistency is broken for volume-limited sam-
ples fainter than −Mr,0.1 = [19.5, 20.5] and in general the deviation of DR7 compared to DR6
and DR4 grows with larger absolute magnitude. Zero crossing points of DR7’s ξ(s) do not differ
much compared to DR6’s values, but apparently shift away from DR4’s ones.

(3) Volume-limited samples of SDSS display convergence in ζ0 at scales s <∼10 h−1 Mpc, except
the one in the faintest luminosity bin, but in the weakly nonlinear regime, there is no agreement
between ζ0 from different data releases in all luminosity bins.
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(4) Projected 2PCFs’ wp of volume-limited samples in luminosity bins brighter than −Mr,0.1 =
[18.5, 19.5] are robust with respect to data version, but for samples in fainter bins, wp of DR7
are significantly higher than those of earlier data. A similar phenomenon is also seen in PVDs.
PVDs of the two faintest volume-limited samples also appear much steeper along the scale in
DR7 and then become flatter at higher luminosity, which actually turns out to be closer to what
SAMs predict, as shown in Li et al. (2007).

(5) The faintest volume-limited sample of −Mr,0.1 = [17, 18] is very peculiar. It suffers from the
biggest variance due to enlargement of sky coverage. The ξ(s) and ζ0(s) from DR7 agree well
with the results from early data at large scales, but at scales as small as ∼ 3 h−1 Mpc the
agreement stops; wp of the sample is enhanced around ∼ 70%. PVDs are rather distinguished
in amplitude and scale dependence from measurements of earlier data.

Fairness of a galaxy sample is assessed by statistical functions, and one cannot claim a general
fair sample exists without specifying the used statistical method. It is possible that a galaxy sample
is fair for one statistical function but not for another function. With our measurements, we conclude
that the current SDSS is not able to provide reliable 2PCFs (both for redshift space and projections),
PVDs of samples with characteristic luminosity fainter than L∗, or third-order statistics in the weakly
nonlinear regime for nearly all volume-limited samples.

For faint volume-limited subsamples, probably due to their very shallow depths, measurements
suffer from greater finite volume effects, such that enlarging sky coverage has a larger influence on
measurements of statistics than for bright subsamples. The inconsistency observed is a manifestation
of cosmic variance due to insufficient sample volume. The variances are comparable to the 1σ jack-
knife error bars, which are usually regarded as good and robust approximations to the true error bars
(Zehavi et al. 2002). Now it seems that the technique underestimates the true variance, with the cor-
responding results about the habitation of faint galaxies in halos withdrawn from clustering analysis,
e.g. Li et al. (2007) and The SDSS Collaboration et al. (2010) were not very concrete. Conclusions
about faint galaxies utilizing a galaxy group catalog constructed from SDSS DR4 (Yang et al. 2007,
2008) might also be problematic, so we conjecture that a new group catalog from DR7 may provide
a very different paradigm.

In our analysis, PVDs are derived under a general assumption that galaxy pairwise velocities
closely follow an exponential distribution. The assumption might not be exact for satellite galaxies,
for which the pairwise velocity distribution can be better described by a Gaussian (Tinker 2007).
For galaxies with low luminosity, they are most likely satellites; the obtained σ12 based on an ex-
ponential distribution is biased and so is the relation of PVDs with galaxy luminosity presented in
Figure 8. Nevertheless, our PVDs with different versions of VL1 are biased in the same way, and the
systematical bias will not affect our basic conclusion that PVD of VL1 from DR7 is very different
from that of DR4.

Recently, there have been several works applying 3PCF of SDSS (e.g. Sefusatti et al. 2006;
Kulkarni et al. 2007; Marı́n et al. 2008; Marin 2010; McBride et al. 2010), either to help determining
cosmological parameters and galaxy biasing or to diagnose models of galaxy formation. Some results
use measurements of volume-limited subsamples of the main SDSS galaxy catalogs in the weakly
nonlinear regime. Our analysis however points out that one needs to be very cautious in accepting
the relevant conclusions.

Another problem worthy of more discussion is the first zero-crossing point of 2PCF. Of course,
part of the problem arises from the finite volume of samples, or at least the problem that the integral
constraint is a serious systematic shortcoming for low luminosity galaxy subsamples. However, for
subsamples with a large volume of bright galaxies, the absence of anti-correlation at large scales is
still puzzling. Instead of criticizing the validity of ΛCDM models, it is probably better to scrutinize
the stochastic bias in models of galaxy 2PCF. The halo model alone cannot solve this problem since,
at large scales, 2PCF in the halo model boils down to simple multiplication of the bias parameter with
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linear 2PCF of dark matter. In the set of parameters used in cosmological application, galaxy 2PCF
at large scales by default is fully described by linear bias parameter and 2PCF of dark matter, and the
single bias parameter is largely degenerate with some other parameters, such as the normalization
of density fluctuation σ8 and the matter density parameter Ωm. It is unclear if the present estimation
of cosmological parameters is significantly biased by the ignorance of possible exotic bias (e.g. the
proposal of Coles & Erdogdu 2007).
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