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Abstract The first order deconfinement phase transitions in rotating hybrid stars are
studied and it is found that if the surface tension is sufficiently large, the transition
from metastable hadron matter to stable mixed hadron-quark matter during the spin-
down history of a hybrid star can cause a glitch.
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1 INTRODUCTION

Glitches are characterized by a sudden increase of pulsar rotation frequency (ν), sometimes followed
by an interval of approximately exponential recovery or relaxation back towards the pre-glitch state.
Of the 1750 known pulsars, about 170 glitches in 54 pulsars have been observed so far (Zou et al.
2008). Detected glitches are generally of magnitude 10−9 < Δν/ν < 10−6, and the largest, with
Δν/ν ≈ 2.05 × 10−5, was observed in PSR B2334+61 (Yuan et al. 2010).

The glitch events and the associated relaxation are usually explained in terms of superfluid
vortex dynamics. The standard model describes a glitch as an event in which a significant number
of vortices are suddenly unpinned from the crust nuclei, and angular momentum is transferred to the
crust (Alpar 1977; Alpar et al. 1989; Ruderman 1991; Andersson et al. 2003). However, Link (2003)
showed that the coexistence of superfluid and a superconductor in a neutron star core would quickly
damp out the precession and is inconsistent with the observations of freely precessing pulsars (Stairs
et al. 2000; Shabanova et al. 2001). Link (2003) and Horvath (2004) suggested that one possible way
out from this problem is that an exotic core is present. Zhou et al. (2004) studied the quakes in quark
stars and found that the general behaviors of a glitch could be reproduced if the cold strange quark
matter is solid.

In this paper, we give an alternative way to understand the glitch phenomenon. We investigate
the first order deconfinement phase transitions in rotating hybrid stars and find that the transition
from metastable hadron matter to stable mixed hadron-quark matter can cause a glitch. This paper is
organized as follows. In Section 2, we review early works about the first order hadron-quark matter
phase transition and describe our models of the equation of state in hybrid stars. In Section 3, we
briefly give our rotating compact star model. In Section 4, we calculate the value of spin up induced
by deconfinement transitions in hybrid stars. In Section 5, we conclude with a discussion.
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2 HADRON-QUARK MATTER PHASE TRANSITION

Quark deconfinement phase transition is expected to occur in neutron matter at densities above the
nuclear saturation density ρB = 0.16 fm−3. Many theoretical calculations have suggested that the
deconfinement transition should be of first order in a low-temperature and high density area (Pisarski
& Wilczek 1984; Gavai et al. 1987). In early studies, the first order deconfinement phase transitions
were described using a Maxwell construction (MC), as in the liquid-vapor phase transition of water
(Baym & Chin 1976).

Glendenning (1992) first realized that for a first order hadron-quark phase transition, charge
neutrality can be achieved by positively charged hadron matter and negatively charged quark matter,
while both of them must have neutral charge in the MC. As a result, one may expect a mixed phase
during the transition. However, he simply considered a mixed phase consisting of two sections of
bulk matter separated by a sharp boundary without any surface tension or Coulomb interaction,
which was named “bulk Gibbs” (Endo et al. 2006).

This “bulk Gibbs” is too simple for studying the mixed phase, since non-uniform structures
should be considered and the mixed phase should have various geometrical structures. Heiselberg
et al. (1993) studied a geometrical structure in the mixed phase by considering the spherical quark
droplets embedded in hadron matter. They treated the surface tension σ as a free parameter and
found that the mixed region became smaller if σ was bigger, but the region of the mixed phase
cannot exist if σ was too large (σ ≥ 90MeV fm−2). Glendenning & Pei (1995) calculated more
geometrical structures, “droplets,” “rods,” “slabs,” “tubes” and “bubbles,” and suggested the mixed
phase had a certain connection with glitch behavior. However, in their treatment, the rearrangement
effect of charged particles in the presence of the Coulomb interaction (the charge screening effect)
was completely disregarded. Voskresensky et al. (2002) and Tatsumi et al. (2003) studied the charge
screening effect using a linear approximation to analytically solve the Poisson equation. Endo et al.
(2006) pointed out that the linear approximation was inapplicable if the Coulomb interaction effect
was large and they numerically studied the charge screening effect on the structured mixed phase in a
self-consistent way. They found that both the surface tension effects and the charge screening effects
would restrict the region of the mixed phase, so the equation of state for the mixed phase became
similar to that given by MC. They came to the conclusion that the MC would again effectively gain
the associated physical meaning in a first order hadron-quark transition.

In the present paper, we use the equation of state (EOS) in relativistic mean-field theory (RMF)
for the description of hadronic matter and EOS in the MIT bag model for quark matter. For
hadronic matter, we consider the simple n, p, and e components, and choose one group of pa-
rameters given in Glendenning (1997): the coupling constants gσ/mσ = 9.927 fm2, gω/mω =
4.820 fm2, and gρ/mρ = 4.791 fm2 and the scalar self interaction coefficients b = 0.008659 and
c = −0.002421 (these parameters are obtained by fitting nuclear saturation values ρ0 = 0.153 fm−3,
B/A = 16.3MeV, asym = 32.5, K = 240MeV and m∗ = 0.78mN ). For quark matter, we take
mu = md = 0, ms = 150MeV, Bag constant B1/4 = 175MeV and QCD structure constant
αs = 0.

We show the EOS in Figure 1. There appears to be no region of the mixed phase shown by
calculation with MC, but there is a wide region of the mixed phase shown by the “bulk Gibbs”
calculation. Both the dotted line and the dashed line in Figure 1 are not the exact first order phase
transition curve when the surface tension effects and the charge screening effects are considered and,
as studied by Endo et al. (2006), the exact first phase transition line should be located between them
(see fig. 12 in Endo et al. 2006). The exact transition curve can be very close to the dotted line given
by MC if the surface tension parameter (σ) is large enough (σ is treated as a free parameter since the
hadron quark interface is not clearly understood).

Since our interest lies with the hadron-quark phase transition during the spin down of the hybrid
star and not the surface tension effects and the charge screening effects themselves, we take the
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Fig. 1 Energy density as a function of pressure. The dotted line shows the critical pressure of the
first order phase transition in the MC method. The dashed line corresponds to the mixed phase and
is given by the “bulk Gibbs” method.

following simple process to get the exact phase transition line. We first fit the “bulk Gibbs” curve
linearly, and the resulting expression is ε = 4.403P + 279.363. The intersection point between the
fitted line and the MC phase transition curve is (39.938, 455.213). We assume that the exact phase
transition curve is a straight line passing (39.938, 455.213) with slope k larger than 4.403. Now, we
have the parameter k that describes the location of the exact phase transition curve: a larger k means
the exact phase transition line is closer to the MC one, and corresponds to a larger surface tension
(σ). Of course, this treatment is a rough one, but it is reasonable especially for a large k (or a large σ).

3 ROTATING COMPACT STAR MODEL

Using Hartle’s perturbation theory (Hartle 1967), Chubarian et al. (2000) and Kang & Zheng (2007)
studied the change of the internal structure of the hybrid stars due to rotation. In this paper, we also
apply Hartle’s approach to investigate the structure and the moment of inertia of rotating hybrid stars
following Kang & Zheng (2007) and Benhar et al. (2005).

Hartle’s formalism is based on the treatment of a rotating star as a perturbation on a non-rotating
star, expanding the metric of an axially symmetric rotating star in even powers of the angular velocity
Ω. The metric of a slowly rotating star to second order in the angular velocity Ω can be written as

ds2 = −eν(r)[1 + 2(h0 + h2P2)]dt2 + eλ(r)

[
1 +

2(m0 + m2P2)
(r − 2M(r))

]
dr2

+r2[1 + 2(v2 − h2)P2]{dθ2 + sin2 θ[dφ − w(r, θ)dt]2} + O(Ω3), (1)

where eν(r), eλ(r) and M(r) are functions of r and describe the non-rotating star solution of the
Tolman-Oppenheimer-Volkov (TOV) equations. P2 = P2(θ) is the l = 2 Legendre polynomials.
Here ω is the angular velocity of the local inertial frame and is proportional to the star’s angular
velocity Ω, whereas the perturbation functions h0, h2, m0, m2, and v2 are proportional to Ω2. We
assume that matter in the star is described by a perfect fluid with energy momentum tensor

T μν = (ε + P )uμuν + Pgμν . (2)
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The energy density and pressure of the fluid are affected by the rotation because the rotation deforms
the star. In the interior of the star at given (r, θ), in a reference frame that is momentarily moving
with the fluid, the variations in pressure and energy density are respectively

δP (r, θ) = [ε(r) + P (r)][p∗0 + p∗2P2(θ)], (3)

δε(r, θ) =
dε

dP
[ε(r) + P (r)][p∗0 + p∗2P2(θ)], (4)

where p∗0 and p∗2 are dimensionless functions of r, proportional to Ω2, which describe the pres-
sure perturbation. The rotational perturbations of the star’s structure are described by the functions
h0, m0, p

∗
0, h2, m2, v2, and p∗2. These functions are calculated from Einstein’s field equations. The

effect of rotation described by the metric on the shape of the star can be divided into two contri-
butions: One is a spherical expansion which changes the radius of the star, which is described by
the functions h0 and m0. The other part is a quadrupole deformation, described by functions h2, v2

and m2.
As a consequence of these contributions, the difference between the gravitational mass of the

rotating star and the non-rotating star with the same central pressure is

δMgrav = m0(R) +
J2

R3
. (5)

The change in the radius of the star is given by

δR = ξ0(R) + ξ2(R)P2(θ). (6)

The expansion of total baryon numbers in powers of Ω is

NB = N0
B + δNB + O(Ω4), (7)

where

N0
B =

∫ R

0

nB(r)[1 − 2M(r)/r]−1/24πr2dr (8)

is the total number of baryons in a non-rotating star and

δNB =
1

mN

∫ R

0

(
1 − 2M(r)

r

)−1/2 {[
1 +

m0(r)
r − 2M(r)

+
1
3
r2

[
Ω − ω(r)

]2

e−ν
]
nB(r)

+
dnB(r)

dP
(ε + P )p∗0(r)

}
4πr2dr, (9)

where nB(r) is baryon number density.
The expansion of the moment of inertia is

I = I0 + δI + O(Ω4) =
J

Ω
+

δJ

Ω
+ O(Ω4), (10)

where J is the angular momentum to the first order of Ω and δJ is the angular momentum to the
third order. Our calculation of J and δJ follows Benhar et al. (2005).
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4 FIRST ORDER DECONFINEMENT TRANSITIONS DURING THE SPIN DOWN OF
HYBRID STARS

As the star spins down under electromagnetic torque, the centrifugal force continuously decreases,
resulting in the continuous increase of its internal density and pressure (Kang & Zheng 2007;
Glendenning et al. 1997). Considering the spin down of a hybrid star, the increase of internal den-
sity means more and more neutron matter converts into strange quark matter through the first order
phase transition. However, the conversion can be more complicated. In a first order phase transition,
the new phase can appear only via nucleation. Therefore, the star first acquires a metastable shell
in the normal phase, in which an exotic phase nucleates (Schaeffer et al. 1983; Zdunik et al. 1987;
Bejger et al. 2005). Since the MC equation of state is a metastable one compared with the EOS of
the exact first order phase transition, including the surface tension effects and the charge screening
effects (Endo et al. 2006), we suppose the phase transition occurs at the critical pressure of the MC
phase transition.

We use Figures 2 and 3 to explicitly depict the first order transition in a spinning-down hybrid
star. Let us consider a hybrid star with rotation frequency ν0, its EOS is the solid line in Figure 2(a)
and the structure of its interior is shown in Figure 3(a). The pressure of matter at the boundary of the
grey area (r = R1

C) in Figure 3(a) is P
(M)
H , which means the grey core of the star consists of pure

strange quark matter and mixed hadron-quark matter, and the rest is filled with pure stable hadron
matter. As the star spins down, the matters in its interior are compressed, and the pressure of pure
hadron matter in the vicinity of r = R1

C increases and becomes metastable hadron matter (hadron

matter with pressure larger than P
(M)
H ). When the star continuously spins down, the shell of the

metastable hadron matter become larger and larger. The deconfinement phase transition occurs at
the inner boundary of this metastable hadron shell once its pressure increases to P0. The occurrence
of a phase transition destroys the hydrostatic equilibrium of the star and quickly results in the whole
metastable hadron matter shell’s transition into the stable hadron-quark mixed phase (Bejger et al.
2005). The transition is accompanied by a core-quake and a sudden spin-up of rotation, which is
one possible reason for the glitch phenomenon. Let us assume the rotation frequency of the star is ν

Fig. 2 Schematic diagram of EOS in rotating hybrid stars. P0 is the critical pressure of the first phase
transition in the MC method. The solid line between P

(M)
H and P

(M)
Q of (a) is the mixed phase line

including the surface tension effects and the charge screening effects.
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Fig. 3 Schematic diagram of structure of the stars. The components of the grey region are pure
strange quark matter and hadron-quark mixed matter, the components of the blank region of the star
are stable hadron matter, and the dashed shell is filled with metastable hadron matter.

(ν < ν0) when the phase transition occurs, the EOS is the solid curve in Figure 2(b) and the structure
is as shown in Figure 3(b). Immediately after the phase transition, the EOS returns to the solid curve
in Figure 2(a), the structure becomes Figure 3(c), and the spin frequency can be regarded as ν (since
we aim to explain glitches, the value of this spin-up causing the star-quake is very small relative
to ν).

We numerically study the evolution of the 1.4 M� (non-rotating gravitational mass) star to show
whether the phase transition mentioned above can induce a glitch. First, the TOV equations are
solved using the EOS of the solid line in Figure 2(b) at fixed k (each phase-curve is given using the
model in Section 2), and we can get the total baryon number of the 1.4M� star for each k. Then, for
an assigned value of spin frequency ν, the equations of the rotating star are solved in order to get the
moment of inertia I of hybrid star configurations as shown in Figure 3(b) and Figure 3(c). Of course,
in doing so, we select the proper pressure for the star’s center to make sure the star configurations
have the same total baryon number as the 1.4 M� non-rotating star. The moment of inertia of these
two configurations at fixed k and fixed ν has a difference and this difference is caused by the sudden
transition of the metastable hadron shell into a hadron-quark mixed phase and the shrinking of the
whole star. We show the difference in moment of inertia ΔI in Table 1. Due to the conservation of

Table 1 ΔI (in units of 1045 g cm2) for different k and different rotation
frequency ν. The non-rotating star mass is taken as 1. 4M�.

k ν = 100 Hz ν = 10 Hz ν = 1 Hz ν = 0.1 Hz

5 × 102 −1.3 × 10−3 −1.4 × 10−3 −1.4 × 10−3 −1.4 × 10−3

5 × 103 −1.3 × 10−4 −1.4 × 10−4 −1.5 × 10−4 −1.5 × 10−4

5 × 104 −6.1 × 10−6 −1.3 × 10−5 −1.6 × 10−5 −1.7 × 10−5

Table 2 ΔΩ
Ω

for different k and different rotation frequency ν.
The non-rotating star mass is taken as 1.4 M�.

k ν = 100 Hz ν = 10 Hz ν = 1Hz ν = 0.1Hz

5 × 102 1.4 × 10−3 1.5 × 10−3 1.5 × 10−3 1.5 × 10−3

5 × 103 1.4 × 10−4 1.5 × 10−4 1.7 × 10−4 1.7 × 10−4

5 × 104 6.7 × 10−6 1.4 × 10−5 1.8 × 10−5 1.9 × 10−5
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stellar angular momentum, the sudden decrease in moment of inertia results in the increase of spin
frequency,

ΔΩ
Ω

= −ΔI

I
. (11)

Table 2 shows our results of ΔΩ
Ω .

5 CONCLUSIONS AND DISCUSSION

As shown in Table 2, if k is as large as 5×104 (which means the surface tension σ must be sufficiently
large), the star quake caused by the sudden transition of the metastable hadron shell into the hadron-
quark mixed phase can generate an increase of spin frequency on the order of 10−5, which is in
agreement with the largest glitch observed in PSR B2334+61.

We summarize our discussion in the following:
First, the essential idea that spinning-down neutron stars may undergo a hadron-quark phase

transition was provided by Ma & Xie more than ten years ago (Ma & Xie 1996; Ma 1998). However,
we propose a totally different scheme of the deconfinement transition from metastable hadron mat-
ter to hadron-quark mixed matter. Moreover, only exceptionally large glitches can be generated by
mechanisms described in those early works. In addition, considering the recently studied surface
tension effects and charge screening effects of hadron-quark mixed matter, we found that the largest
observed glitch can be explained if the surface tension is sufficiently large.

Secondly, our star quake mechanism for pulsar glitches can also work in a hybrid star accreting
matter in a close binary system, where the internal pressure increases due to the gravity of accumu-
lated layers of accreted matter.

Thirdly, if the surface tension is not sufficiently large as we supposed in this paper, the mixed
phase region will be larger. The larger mixed phase region in the EOS will result in a large mixed
phase area in the 1.4 M� hybrid star under our hadron and quark matter model. Since the mixed
phase contains geometrical structures and has a large shear modulus, a normal star quake without a
deconfinement phase transition can occur. This star quake can be the reason for glitches as shown by
Zhou et al. (2004).
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