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Abstract It is conventionally thought that the state equation of dense matter softens
and thus cannot result in high maximum mass if pulsars are quark stars and that a
recently discovered 2M� pulsar (PSR J1614–2230) may make pulsars unlikely to be
quark stars. However, this standard point of view would be revisited and updated if
quark clustering could occur in cold quark matter because of the strong coupling be-
tween quarks at realistic baryon densities in compact stars. It can be argued that the
state equation of clustered quark matter stiffens to support compact stars with maxi-
mum mass Mmax > 2M�. In this brief note, it is demonstrated that large parameter
space ranges are allowed for Mmax > 2M� in a Lennard-Jones model of clustered
quark matter and the newly measured highest mass of PSR J1614–2230 would be
meaningful for constraining the number of quarks inside a single quark-cluster to be
Nq <∼103.
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1 INTRODUCTION

Quark stars have been characterized by soft equations of state, since the asymptotic freedom of
quantum chromo-dynamics (QCD) tells us that as the energy scale increases, the interaction between
quarks will become weaker. In fact, the simplest and most widely used model for quark stars, the MIT
bag model, treats the quarks inside a quark star as relativistic, weakly-interacting particles which are
confined inside the star by an additional pressure denoted by the bag constant (e.g., Alcock et al.
1986).

Recently, radio observations of a binary millisecond pulsar PSR J1614–2230, which show a
strong Shapiro delay signature, imply that the pulsar’s mass is 1.97±0.04M� (Demorest et al. 2010).
Although this high mass could rule out conventional quark star models (whose equations of state
are soft), some other models of pulsar-like stars with quark matter could be consistent with the
observation of the high mass pulsar. For example, quark stars made of color-superconducting quark
matter could have maximum mass higher than 2M� if the gap parameter and coupling constant are
large enough (Rüster & Rischke 2004). The maximum mass of hybrid stars could marginally reach
2M�, if the quark matter phase is described by the Nambu-Jona-Lasinio (NJL) model including
diquark condensates (Baldo et al. 2003), the MIT bag model if the interaction between quarks is
strong enough (Alford et al. 2005), and the matter exists in the color-superconducting phase under
some suitable parameters (Alford & Reddy 2003).
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In cold quark matter at realistic baryon densities of compact stars (with an average value of∼ 2−
10ρ0), however, the energy scale is far from the region where the asymptotic freedom approximation
could apply, so the the ground state of realistic quark matter might not be that of a Fermi gas (see a
discussion given by Xu 2009, 2010).

The interaction between quarks inside a quark star could make quarks condense in position
space to form quark clusters (Xu 2003) and at low enough temperature the quark-clusters could even
crystallize to form a solid state of quark stars. Solid quark stars still cannot be ruled out in both
astrophysics and particle physics (e.g., Horvath 2005; Owen 2005; Mannarelli et al. 2007).

It is a really difficult task to obtain a realistic state equation of cold quark matter at a few nuclear
densities, because of (i) the non-perturbative effect of the strong interaction between quarks at low
energy scale and (ii) the many-body problem of vast assemblies of interacting particles. However,
it is still meaningful for us to consider some phenomenological models to explore the properties of
quarks at the low energy scale.

In earlier work, we tried two models; one is the polytropic quark star model (Lai & Xu 2009a)
which establishes a general framework for modeling quark stars and the other one is the Lennard-
Jones quark matter model (Lai & Xu 2009b) which introduces a specific kind of interaction in quark
stars. Both of the models are very different from the conventional ones (e.g., the MIT bag model),
since the quark-clusters are non-relativistic particles.

Consequently, the equations of state in our two phenomenological models could be stiffer than
that in conventional quark star models, which could then lead to larger maximum masses for quark
stars. Under some reasonable parameters, the maximum mass could be higher than 2M�. There
could be some other models for the clustered cold quark matter. Na & Xu (2010) adopted a two-
Gaussian component soft-core potential and also found the parameter space in which the maximum
mass could be higher than 2M�.

Although the newly measured mass of PSR J1614–2230 is as high as 2M�, the solid quark
star model still cannot be ruled out, because a solid quark star could reach such high mass without
suffering from gravitational instability. Certainly, besides the equation of state, the highest mass
would also be meaningful for researches about γ-ray bursts (GRBs) and gravitational waves (Özel
et al. 2010) since GRB X-ray flares may originate from massive millisecond pulsars produced by
compact star mergers (Dai et al. 2006).

In this note, to constrain the parameters in solid quark stars by the mass of the newly discovered
pulsar, we take the Lennard-Jones model to describe the state of cold quark matter in quark stars (Lai
& Xu 2009b) and present the parameter space which could be allowed by pulsars with mass higher
than 2M�. We find that if the number of quarks in one quark-cluster Nq satisfies Nq <∼103, then
there is a large enough allowable range in the parameter space for the existence of quark stars with
masses higher than 2M�.

We also find that the results are consistent with the constraint imposed by the non-atomic spec-
trum of pulsars.

2 CONSTRAINT ON THE NUMBER OF QUARKS Nq IN ONE QUARK-CLUSTER

Quark clustering could occur in cold quark matter because of the strong coupling between quarks
at realistic baryon densities of compact stars. The number of quarks in one quark-cluster, Nq, is an
important parameter, because it is closely related to the strong interaction between quarks. Deriving
the properties of cold quark matter from QCD calculations is very difficult; however, the astrophys-
ical observations of pulsar-like compact stars provide us with effective tools to give constraints on
the phenomenological models of cold quark matter. The constraints by the non-atomic spectrum
of X-ray observations of pulsar-like compact stars and by the 2M� PSR J1614–2230 can give us
consistent results in the allowed range of Nq.
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2.1 Constraint by the Non-atomic Spectrum

Strange quark matter is composed of up, down and strange quarks, as well as electrons to maintain
the charge-neutrality. In the MIT bag model, the number of electrons per baryon Ne/A is found
for different values of strange quark mass ms and coupling constant αs (Farhi & Jaffe 1984a). In
their results, when αs = 0.3, Ne/A is less than 10−4; a larger αs means a smaller Ne/A at fixed
ms, because the interaction between quarks will lead to more strange quarks and consequently less
electrons. In our model, we also consider the strong interaction between quarks as well as between
quark-clusters, and consequently the number of electrons per baryon required to guarantee the neu-
trality should also be very small. Although at the present stage we have not derived the exact value
for the number density of electrons, it is reasonable to assume that Ne/A is less than 10−4.

Making an analogy between quark-clusters and nuclei, the non-atomic spectrum of pulsar-like
compact stars can give us some insight about the positive electric charge of a quark-cluster. The Kα

line is the strongest line among all the emission lines of an atom, whose energy is written as

En � −10.2 Z2 eV, (1)

where Z is the number of positive charges in the nucleus. Similarly, taking Z as the number of
positive charges of one quark-cluster, from the above equation we can calculate the energy needed
for quark-clusters to emit the Kα line. When the temperature of a quark star is about 100∼1000eV,
the condition Z <∼10 should be satisfied, otherwise there could be a Kα line which is thermally
produced. Consequently, if Ne/A ∼ 10−4 for each quark-cluster (note that the baryon number of
one quark is 1/3), then Nq < 105 is required.

2.2 Constraint by the 2M� PSR J1614–2230

In the Lennard-Jones quark matter model (Lai & Xu 2009b), the interaction potential u between
two quark-clusters as a function of their distance r is assumed to be described by the Lennard-Jones
potential (Lennard-Jones 1924)

u(r) = 4U0

[(r0

r

)12

−
(r0

r

)6
]

, (2)

where U0 is the depth of the potential and r0 can be considered as the range of interaction. It is
worth noting that the property of short-distance repulsion and long-distance attraction presented by
the Lennard-Jones potential is also a characteristic of the interaction between nuclei. Although the
form of interaction between quark-clusters is difficult for us to derive due to the non-perturbative
effect of QCD, we could adopt the potential in Equation (2) because of its general features. Like the
classical solid, if the inter-cluster potential is deep enough to trap the clusters in the potential wells,
the quark matter would crystallize and form solid quark stars.

Under such potential, we can obtain the equation of state, including the contribution of the lattice
vibration inside solid quark stars and then derive the mass-radius curves by numerically integrating
from the center to the surface of the star (Lai & Xu 2009b). In addition, because of the strong
interaction, the surface density ρs should be non-zero. The maximum mass of quark stars depends
on parameters U0, r0, ρs and the number of quarks inside one quark-cluster Nq.

Given the density of quark matter ρ and the mass of each individual quark, from
Heisenberg’s uncertainty relation we can approximate the kinetic energy of one cluster as Ek ∼
1 MeV

(
ρ
ρ0

) 2
3

(
Nq

10

)− 5
3
, where ρ0 is the nuclear matter density. To get the quark-clusters trapped in

the potential wells to form a lattice structure, U0 should be larger than the kinetic energy of quarks.
Because of the strong interaction between quarks, we adopt U0 to be in the range between 10 and
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Fig. 1 Dependence of maximum mass Mmax on U0 (depth of potential well), for some different
values of Nq (number of quarks inside one quark-cluster), in the Lennard-Jones cold quark matter
model. The surface density ρs is chosen to be two times ρ0 (the nuclear matter density). If Nq � 103,
there is a large enough allowable range in parameter space for the existence of quark stars with mass
larger than 2M�.

200MeV for the calculations. The surface density r0 should be between 1 to 3 ρ0, to ensure quark-
deconfinement without exceeding the average density for a typical pulsar. We choose ρs = 2ρ0 in
the calculations. A minor change in ρs would not qualitatively change the results.

In addition, we note that for a given ρs, we can get r0 at the surface where the pressure is zero,
so there are only three independent parameters, U0, ρs and Nq, which determine the maximum mass
of quark stars.

We show the relation between the maximum mass of quark stars (Mmax) and the depth of po-
tential (U0) when ρs = 2ρ0, for some different values of Nq, in Figure 1.

We can see that if Nq <∼103, there is a large enough allowable range in parameter space for the
existence of quark stars with mass larger than 2M�. A high maximum mass for pulsar-like compact
stars might be helpful for us to understand the mass gap between the most massive neutron stars
(well below 3M�) and the least massive black holes (Bailyn et al. 1998; Farr & Sravan 2010), since
a quark star with a high mass (e.g.∼ 5M�) could still be gravitationally stable in our present model.
The case Nq > 104 should be ruled out by the discovery of PSR J1614–2230. This constraint of Nq

by the maximum mass of pulsars is consistent with that given by the non-atomic spectrum of pulsars
(Nq < 105).

Figure 1 also shows that Mmax is insensitive to U0. This is understandable, because the repulsive
core of the inter-cluster potential reacts in the most inner part of a quark star, and U0 only reacts near
the star’s surface where the density is low enough for one cluster to feel the depth of the potential
well of a nearby cluster.

Furthermore, it could imply that the constraint of Mmax on Nq is insensitive to the form of
inter-cluster potential, as long as the potential has a strong repulsive core at a short distance.
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3 CONCLUSIONS AND DISCUSSIONS

The newly discovered high mass pulsar PSR J1614–2230 with mass ∼ 2M� still cannot rule out the
existence of quark stars, because quarks could be clustered in realistic cold quark matter at supra-
nuclear density and stiff equations of state are possible. We take the Lennard-Jones quark matter
model to calculate the maximum masses of quark stars, finding that if Nq <∼103, there is a large
enough range in parameter space for the existence of quark stars with masses higher than 2M�.
Moreover, this constraint on Nq could generally be true for clustered quark matter, insensitive to the
form of inter-cluster potential.

We still do not exactly know how strong the interaction between quarks could be when the
density is a few times the nuclear matter density. Actually, the particles inside pulsar-like compact
stars should be very different from free particles. If the interaction between quarks is so strong that it
could make quarks form groups of clusters, then the equation of state could be even stiffer than that
of nuclear matter. From this point of view, the newly discovered high mass pulsar could give support
to the existence of quark-clustering in cold matter.
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