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Abstract We consider the instability of the cometary plasma tail which is composed
of a neutral sheet, two lobes of the ion tail and solar wind. The plasma is assumed to
be highly conductive and incompressible. The unstable state yields a magnetic field
which is perpendicular to the tail axis. Our result is consistent with findings about
plasma from the International Cometary Explorer (ICE).
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1 INTRODUCTION

In the 1950s, people started to investigate the interaction between solar wind and comets in order
to understand the cometary magnetic field, plasma motion, structure and stability. Biermann (1951)
predicted the existence of solar wind from studying the direction of cometary plasma tails. Alfvén
(1957) proposed the concept of interplanetary magnetic fields. He considered that the formation
of the cometary ionized layer and plasma tail is due to the solar wind blowing an interplanetary
magnetic field into the cometary atmosphere. Biermann et al. (1967) found that a strong bow shock
wave exists upstream of the cometary nucleus. Wallis (1971) suggested the shock wave could be
weak.

In early research about the structure and stability of comets, the model used usually regarded the
cometary ionized tail as a plasma cylinder (Ershkovich & Mendis 1986) and the related magnetohy-
drodynamic (MHD) effects were considered. The MHD waves are excited by the Kelvin-Helmholtz
(K-H) instability. In the head of the comet, the contact plane of discontinuity (i.e. the ionopause) be-
tween pure cometary plasma and the polluted solar wind plasma is unstable (Ershkovich et al. 1986;
Ershkovich & Flammer 1988; Ershkovich et al. 1989; Ershkovich & Israelevich 1993). Therefore,
the interplanetary magnetic field wrapping around the cometary atmosphere can flow into the con-
tact plane of discontinuity but not form a magnetic cavity (Ip & Axford 1990). After the discovery
(Neubauer et al. 1986) of a magnetic field-free cavity around the nucleus of Comet Halley by the
Giotto mission, Cravens (1986) and Ip & Axford (1987) have shown that such a magnetic field dis-
tribution might result from a balance between the magnetic force J × B and the neutral-ion drag.
Ershkovich et al. (1989) have taken into account the effects of dissociative recombination and mass-
loading arising from photoionization, and reached the conclusions that the Halley ionopause and its
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adjacent ionospheric layer with a thickness of ∼100 km may possibly remain unstable, although the
growth rate is substantially reduced due to recombination. The stability analysis by McKenzie et al.
(1990) is extended to include the effects of finite plasma pressure; the results demonstrate that plasma
pressure reduces the instability growth rate of the cavity. Then the stability analysis of a cometary
ionosphere is extended to include the effects of plasma motion by Ershkovich & Israelevich (1993),
where they arrive at the conclusion that the cometary ionopause cannot be at rest.

Since 1985, many spacecrafts have passed through cometary plasma tails and obtained many
valuable data. The International Cometary Explorer (ICE) spacecraft flew through the plasma tail of
Comet Giacobini-Zinner (G.-Z.) in 1985 and found a neutral region between two tail lobes (Slavin
et al. 1986). In the neutral region, there was a magnetic field of 5 nT perpendicular to the direction
of the tail. Neubauer (1990) proposed this was the interplanetary magnetic field penetrating into the
head of the comet and the magnetic structure of the cometary head can be divided into four parts –
from inner to outer: magnetic cavity region, magnetic pile-up region, magneto-sheath and upstream
wave region, and they are separated by the interface ionopause, pile-up boundary and bow shock,
respectively. If we extend this structure to a plasma tail, which can (at least) be divided into the
middle region (neutral sheet), the magnetic pile-up region (i.e. the magnetic lobes of the tail) and the
region surrounding the solar wind. The cometary plasma tail should be oblate instead of cylindrical,
especially at the tail end (Wegmann 2002). However, the existence of the magnetic cavity region
shows that the ionopause is stable. It is impossible for magnetic lines to penetrate into the head of
the comet. We suggest that the magnetic field perpendicular to the direction of the tail is excited by
plasma instability in the neutral region.

The ESA/NASA Ulysses spacecraft, which is in a polar orbit about the Sun, had unplanned
encounters with the ion or plasma tails of at least three comets: C/1996 B2 (Hyakutake) (Gloeckler et
al. 2000; Jones et al. 2000; Riley et al. 1998), C/1999 T1 (McNaught-Hartley) (Gloeckler et al. 2004),
and C/2006 P1 (McNaught) (Neugebauer et al. 2007). Neugebauer et al. (2007) compared these
cometary tail encounter events and found that the minimum velocity in the tail strongly depended
on the distance of the spacecraft from the nucleus, indicating continued acceleration of the plasma
down to the tail. In Comet Hyakutake, the velocity shear between the flow in the tail and that in the
surrounding solar wind had nearly disappeared.

Recent research works have mostly used numerical methods (e.g. Hansen et al. 2007; Wegmann
2002) to simulate the plasma conditions resulting from the interaction between comets and the so-
lar wind. However, those considering the stability of the cometary ionopause and oblate cometary
plasma tail are very limited. We try to study this phenomenon to gain more insight into this problem.

In the model of Alfvén (1957) about the magnetic lines wrapping around the cometary atmo-
sphere, the outline of the bundle of magnetic lines is like a bundle of parabolic curves whose focus is
on the cometary nucleus. In this paper, we use a special mathematical model to solve this problem.

2 MATHEMATICAL MODEL

When studying the motion and stability of cometary plasma modeled by the MHD method, we use
vector analysis in the differential form with exterior derivatives. This method can be partly found in
books about general differential forms (e.g. Westenholy 1981).

In a rectangular coordinate system, vector A can be expressed as three components

A = Axi + Ayj + Azk, (1)

where i, j and k are three basic vectors of the rectangular coordinate system, respectively. With the
differentiable manifold M being R3, the cotangent space of a point P is T∗p(M). In T∗p(M), regarding
1-form as a vector, we have

A = Axdx + Aydy + Azdz, (2)
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where dx, dy and dz are basic vectors, respectively. Thereupon, elementary operations with differen-
tial forms can substitute for the operations in vector algebra and vector analysis. Here we have

A · B = ∗(A ∧ ∗B) = ∗(∗A ∧ B)
A × B = ∗(A ∧ B)

}
, (3)

where ∗ is Hodge’s star operator and ∧ is an exterior product (or wedge product) operator. In the
rectangular coordinate system,

∗dx = dy ∧ dz, ∗dy = dz ∧ dx, ∗dz = dx ∧ dy,
∗(dy ∧ dz) = dx, ∗(dz ∧ dx) = dy, ∗(dx ∧ dy) = dz,
∗1 = dx ∧ dy ∧ dz, ∗(dx ∧ dy ∧ dz) = 1, ∗∗ = 1.

⎫⎬
⎭ (4)

In the general orthogonal curve coordinate system, the coordinate of a point P is (q1, q2, q3).
The length of an arc is

ds2 = h2
1(dq1)2 + h2

2(dq2)2 + h2
3(dq3)2, (5)

where the natural basis of local coordinates is (dq1, dq2, dq3), the orthogonal basis is
(e1 = h1dq1, e2 = h2dq2, e3 = h3dq3), and h1, h2 and h3 are Lamé coefficients.

In the local orthogonal basis, a vector A can be written in component form as

A = A1e
1 + A2e

2 + A3e
3 = Aie

i, (6)

where the same superscript and subscript i denote the sum from 1 to 3 for i (i.e., the Einstein sum-
mation convention).

From Equation (3), the main formulae for the associated vector analysis are

divA = ∇ · A = ∗(∇ ∧ ∗A)
rotA = ∇× A = ∗(∇ ∧ A)

}
, (7)

where ∇ is the Hamiltonian operator. We find continued operators ∇∧ which is just the exterior
differential operator d. Then we have

divA = ∗d∗A
rotA = ∗dA
gradf = df

⎫⎬
⎭ , (8)

where f is a differentiable function. Therefore we have

div = ∗d∗
rot = ∗d

grad = d

⎫⎬
⎭ . (9)

Using Equation (9) and the calculation rule of exterior differentiation, we can obtain the following
formulae for vector analysis:

grad(fg) = d(fg) = gdf + fdg = ggradf + fgradg,

rot(fA) = ∗d(fA) = ∗[df ∧ A + fdA] = (gradf) × A + f rotA,

div(fA) = ∗d∗(fA) = ∗[df ∧ ∗A + fd∗A] = (gradf) · A + fdivA,

div(A × B) = ∗d∗∗(A ∧ B) = ∗d(A ∧ B) = ∗[(dA) ∧ B − A ∧ dB]
= ∗[∗∗(dA) ∧ B − A ∧ ∗∗dB] = (rotA) · B − A · rotB,
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rot(gradf) = ∗d(df) = ∗ddf = 0,

div(rotA) = ∗d∗∗dA = ∗ddA = 0.

By the calculation rule of the exterior differential

dei = −ωi
j ∧ ej , (10)

where ωi
j are 1-forms of Cartan connection forms, so we have

∇× A = ∇× (Aie
i) = ∗d(Aie

i) = ∗[dAi ∧ ei + Aide
i]

= ∗[dAj ∧ ej + Ai(−ωi
j) ∧ ej ] = ∗[(dAj − Aiω

i
j) ∧ ej ] = ∗[(DAj) ∧ ej ], (11)

where DAj = dAj − Aiω
i
j , namely Liu’s operator, which is a covariant differential of a covariant

vector field Aj . Now we get the Liu’s arithmetic result as follows

rot(Aie
i) = ∇× (Aie

i) = (DAi) × ei

div(Aie
i) = ∇ · (Aie

i) = (DAi) · ei

(Ai · ∇)B = (A · ∇)Bie
i = (A · DBi)ei

Df = df = gradf

⎫⎪⎪⎬
⎪⎪⎭

, (12)

where the formula

2(A · ∇)B = rot(B × A) + grad(A · B) + AdivB

− BdivA − A × rotB − B × rotA, (13)

has been used. The following formulae are also obtained

rot(A × B) = ∇× (AiBje
i × ej) = D(AiBj) × (ei × ej)

= [(DAi)Bj + Ai(DBj)] × (ei × ej) = (DAi) × (ei × B) + (DBj) × (A × ej)

= (B · DAi)ei − B[(DAi) · ei] + A[(DBj) · ej ] − (A · DBj)ej

= (B · ∇)A − BdivA + AdivB − (A · ∇)B,

grad(A · B) = D(AiBje
i · ej) = (DAi)(ei · B) + (DBj)(A · ej)

= B × (DAi × ei) + (B · DAi)ei + A × (DBj × ej) + (A · DBj)ej

= B × rotA + (B · ∇)A + A × rotB + (A · ∇)B.

In the general orthogonal curve coordinate system, we have

divA = ∗d∗(Aie
i) =

1
h1h2h3

(∂A1h2h3

∂q1
+

∂A2h3h1

∂q2
+

∂A3h1h2

∂q3

)
,

rotA = ∗d(Aie
i) =

⎡
⎢⎢⎢⎢⎣

e1

h2h3

e2

h3h1

e3

h1h2

∂

∂q1

∂

∂q2

∂

∂q3

h1A1 h2A2 h3A3

⎤
⎥⎥⎥⎥⎦ ,

(A · ∇)B = (A · ∇))Bie
i = (A · DBi)ei

=
[A1

h1

(∂B1

∂q1
+

B2

h2

∂h1

∂q2
+

B3

h3

∂h1

∂q3

)
+

A2

h2

(∂B1

∂q2
− B2

h1

∂h2

∂q1

)
+

A3

h3

(∂B1

∂q3
− B3

h1

∂h3

∂q1

)]
e1

+
[A2

h2

(∂B2

∂q2
+

B1

h1

∂h2

∂q1
+

B3

h3

∂h2

∂q3

)
+

A1

h1

(∂B2

∂q1
− B1

h2

∂h1

∂q2

)
+

A3

h3

(∂B2

∂q3
− B3

h2

∂h3

∂q2

)]
e2

+
[A3

h3

(∂B3

∂q3
+

B1

h1

∂h3

∂q1
+

B2

h2

∂h3

∂q2

)
+

A1

h1

(∂B3

∂q1
− B1

h3

∂h1

∂q3

)
+

A2

h2

(∂B3

∂q2
− B2

h3

∂h2

∂q3

)]
e3.
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3 EQUATIONS AND SOLUTION

We suppose the plasma in the neutral sheet is highly conductive and incompressible. Considering
the momentum coupling between the neutral molecules and the ions, the equation of motion is

ρ
[∂V

∂t
+ (V · ∇)V

]
= −∇Φ +

1
4π

(B · ∇)B + ρvin(V n − V ), (14)

∂B

∂t
= rot(V × B) = (B · ∇)V − (V · ∇)B, (15)

∇ · V = ∇ · B = 0, (16)

where ρ, V and B denote the mass density, the bulk velocity and the magnetic field of plasma
respectively; Φ = P + B2/8π is the total pressure, vin is collision frequency between the ions and
the neutral molecules, and V n is the velocity of the neutral gas. In the neutral sheet, B0 is equal to 0.
We adopt the parabolic cylindrical coordinate system (Fig. 1). The coordinate curves are parabolas
whose foci are located at the cometary nucleus (Liu 1999). We have

x = c(α2 − β2)/2,
y = cαβ,
z = z,

⎫⎬
⎭ (17)

with the origin of the Cartesian coordinate system located at the nucleus, the ox axis directed to-
ward the Sun and the oxy plane in the ecliptic plane. Here (α, β, z) are the parameters of parabolic
cylindrical coordinates, and c is the factor of length.

Fig. 1 Sketch of parabolic cylindrical coordinates with c = 1000 km.

The small perturbation equation is

ρ
[∂v

∂t
+ (v · ∇)V 0

]
= −∇ϕ +

1
4π

(B0 · ∇)b − ρvinv, (18)

∂b

∂t
= (b0 · ∇)v − (b · ∇)V 0 − (v · ∇)B0 − (V 0 · ∇)b, (19)
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∇ · v = ∇ · b = 0, (20)

where the subscript “0” denotes the steady state, and the lower cases denote the disturbance proper-
ties. In the neutral sheet, B0 = 0, and the small disturbance in Equations (18) and (19) are

ρ
[∂v

∂t
+ (v · ∇)V 0 + (V 0 · ∇)v

]
= −∇ϕ − ρvinv, (21)

∂b

∂t
= (b · ∇)V 0 − (V 0 · ∇)b. (22)

Assuming the plasma in the ion tail flows along the tail and adopting a narrow parabolic approxima-
tion (α � β) in the parabolic cylindrical coordinate, we have

V 0 = V0(α, β, z)τdβ = (0, V0(α, β, z), 0), (23)

where τ = c(α2 + β2)1/2 and e1 = τdα, e2 = τdβ and e3 = dz are the local upper base in the
parabolic cylindrical coordinate system. Because ∇ · V 0 = 0, Equation (23) can be written as

V 0 = Ψ(α, z)dβ, (24)

where Ψ(α, z) = τV0(α, β, z). We assume that there is an equal wavelength perturbation along the
tail, namely the perturbation with a form

b, v∝ exp[i(kβ2 − ωt)]. (25)

Equations (21), (22) and (20) in parabolic cylindrical coordinates can be written as

ρ
[∂v

∂t
+ (v · DV 0i)ei + (V 0 · Dvi)ei

]
= −∇ϕ − ρvinv, (26)

∂b

∂t
= (b · DV 0i)ei − (V 0 · Dvi)ei, (27)

v1
c2α

τ
+ v2

c2β

τ
[1 + 2ik(α2 + β2)] = 0, (28)

b1
c2α

τ
+ b2

c2β

τ
[1 + 2ik(α2 + β2)] = 0, (29)

where Dvi = dvi−ωj
i vj and Dbi = dbi−ωj

i bj , DV0i = dV0i−ωj
i V0j and ωj

i are 1-forms of Cartan
connection forms (as mentioned above). When a lower case Latin index such as i, j appears twice in
a term, summation over that index from 1 to 3 is implied.

Equations (27) and (28) may be written as

[ c2

τ3
V0β − i

(
V0

1
τ

2kβ − ω
)]

b1 = 0

1
τ

(∂V0

∂α
− c2

τ2
V0α

)
b1 +

1
τ

[∂V0

∂β
− i

(V0

τ
2kβ − ω

)]
b2 +

∂V0

∂z
b3 = 0(

V0
1
τ

2kβ − ω
)
b3 = 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (30)

[(
vin − iω

)
+ β c2

τ3 V0 + V0
1
τ

2ikβ
]
v1 − 2

c2

τ3
αv2 = 0

1
τ2

∂Ψ
∂α

v1 +
(
vin − iω − c2

τ3
βV0 + V0

1
τ2

2ikβ
)
v2 +

1
τ

∂Ψ
∂z

v3 +
1
τρ

2ikβφ = 0(
vin − iω +

1
τ

V02ikβ
)
v3 = 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (31)
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From Equation (30) and α � β, hence we have the dispersion equations

ω1 = V0
β

τ

(
2k + i

c2

τ2

)
≈ 2k

V0

c
+ i

V0

cβ2

ω2 =
V0

τ
2kβ +

i
τ

∂V0

∂β
≈ 2k

V0

c
− i

V0

cβ2

ω3 =
1
τ
2kβV0 ≈ 1

c
2kV0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (32)

For ω2 and ω3, the motion of the plasma in the neutral sheet is steady, but not steady for ω1. At this

time, b3 = 0, b1 	= 0 and b2
b1

= −∂V0/∂α−(c2/τ2)V0α
∂V0/∂β−(c2/τ2)V0β can be obtained from Equation (30).

In the neutral region composed of the cometary magnetic cavity and the neutral sheet (Liu 1999),
the motion of cometary plasma cannot be influenced by solar wind and interplanetary magnetic
fields. The ions move at ∼ 1 km s−1, the same velocity as those from the neutral molecules going
through sublimation from the nucleus. Therefore, in the neutral sheet of the ion tail, cometary ions
move toward the tail direction with a low uniform speed (Baker et al. 1986; Richardson et al. 1986).
Hence, ∂V0

∂α = 0 and b2 � b1.
The instability of the plasma with b1 	= 0 shows that there exists an enlarged disturbance per-

pendicular to the tail direction. This argument has been demonstrated by the observation of Comet
G.-Z, when the ICE spacecraft was flying through its the tail.

4 DISCUSSION

From Equation (28), it is not difficult to see that the growth rate of instability is V0/cβ2. From
Equation (17), we find that as the distance to the nucleus becomes longer (the larger β2 is), the
growth rate becomes smaller. Therefore, the growth rate is very large near the head of the comet
in the neutral sheet. Once the small disturbance occurs, the magnetic field of the disturbance is
quickly amplified. If the amplified magnetic field can penetrate the magnetic pile-up region outside
the neutral sheet, a magnetic field nearly perpendicular to the tail axis can be added to the steady
magnetic field which is nearly parallel to the tail axis and makes the local magnetic field structure of
the tail near the cometary head of the comet change. This may be one of the reasons that explains the
formation mechanism of the tail rays. Ershkovich et al. (1986) considered the effects of the coupling
between the plasma and neutral particles on the stability of the ion tail and folding comet rays, and
found that the cometary rays were subject to both stabilizing and destabilizing effects because of
the drag from neutral ions. Regarding why there are time intervals in the ray generation, further
discussions are needed.

Here we briefly remark about the Liu’s operator. Using the exterior differential operator d = ∇∧
connected to vector algebra and vector analysis, it gives grad, div and rot. Liu’s operator and its asso-
ciated method have solved the operation (A·∇)B in exterior differentiation and derived the possible
formulas of vector analysis. Only the exterior differential operator d cannot solve these problems.
Using the operator D, we simplify the vector analysis method and obtain results which cannot be de-
rived in vector analysis, i.e. the expression of (A · ∇)B in an orthogonal curved coordinate system.
This expression is very important for the study of stability in hydrodynamics and magnetohydrody-
namics. It may be used to study the stability of cometary plasma and local structures on the solar
surface (e.g. nearby a sunspot), as long as the collection of magnetic lines can be approximated as a
particular curved coordinate system.

Acknowledgements We would like to acknowledge the support of the National Natural Science
Foundation of China (NSFC, Grant Nos. 10573037, 10778637, 10933004 and 11003048), the Minor
Planet Foundation of Purple Mountain Observatory and the exchange program between the Finnish
Academy (FA) and NSFC.



624 L. Z. Liu, Y. H. Ma & J. C. Shi

References

Alfvén, H. 1957, Tellus, 9, 92
Baker, D. N., Feldman, W. C., Gary, S. P., et al. 1986, Geophys. Res. Lett., 13, 271
Biermann, L. 1951, Zeitschrift für Astrophysik, 29, 274
Biermann, L., Brosowski, B., & Schmidt, H. U. 1967, Sol. Phys., 1, 254
Cravens, T. E. 1986, in Proc. 20th ESLAB Symp. on the Exploration of Halley’s Comet, Vol. I, ed. B. Battrick

(ESA SP-250) (ESA: Noordwijk), 241
Ershkovich, A. I., & Flammer, K. R. 1988, ApJ, 328, 967
Ershkovich, A. I., Flammer, K. R., & Mendis, D. A. 1986, ApJ, 311, 1031
Ershkovich, A. I., & Israelevich, P. L. 1993, ApJ, 411, 891
Ershkovich, A. I., McKenzie, J. F., & Axford, W. I. 1989, ApJ, 344, 932
Ershkovich, A. I., & Mendis, D. A. 1986, Earth Moon and Planets, 36, 127
Gloeckler, G., Allegrini, F., Elliott, H. A., et al. 2004, ApJ, 604, L121
Gloeckler, G., et al. 2000, Nature, 404, 576
Hansen, K. C., et al. 2007, Space Sci. Rev., 128, 133
Ip, W.-H., & Axford, W. I. 1987, Nature, 325, 418
Ip, W.-H., & Axford, W. I. 1990, in Physics and Chemistry of Comets, ed. F. Huebner (Berlin: Springer), 177
Jones, G. H., Balogh, A., & Horbury, T. S. 2000, Nature, 404, 574
Liu, L.-Z. 1999, ApJ, 520, 399
McKenzie, J. F., Axford, W. I., & Ershkovich, A. I. 1990, ApJ, 360, 275
Neubauer, F. M., et al. 1986, Nature, 321, 352
Neubauer, F. M. 1990, in Comet Halley: Investigations, Results, Interpretations, 1, 79
Neugebauer, M., et al. 2007, ApJ, 667, 1262
Richardson, I. G., Cowley, S. W. H., Hynds, R. J., et al. 1986, Geophys. Res. Lett., 13, 415
Riley, P., Gosling, J. T., McComas, D. J., & Forsyth, R. J. 1998, J. Geophys. Res., 103, 1933
Slavin, J. A., Smith, E. J., Tsurutani, B. T., et al. 1986, Geophys. Res. Lett., 13, 283
Wallis, M. 1971, Nature, 233, 23
Wegmann, R. 2002, A&A, 389, 1039
Westenholy, C. Von, 1981, Differential Forms in Mathematical Physics, revised edition (Amsterdam: North-

Holland)


