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Abstract We have considered a hot neutron star with a quark core, a mixed phase of
quark-hadron matter, and a hadronic matter crust and have determined the equation of
state of the hadronic phase and the quark phase. We have then found the equation of
state of the mixed phase under the Gibbs conditions. Finally, we have computed the
structure of a hot neutron star with a quark core and compared our results with those of
the neutron star without a quark core. For the quark matter calculations, we have used
the MIT bag model in which the total energy of the system is considered as the kinetic
energy of the particles plus a bag constant. For the hadronic matter calculations, we
have used the lowest order constrained variational formalism. Our calculations show
that the results for the maximum gravitational mass of a hot neutron star with a quark
core are substantially different from those of a neutron star without the quark core.
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1 INTRODUCTION

A hot neutron star is born following the gravitational collapse of the core of a massive star just af-
ter the supernova explosion. The interior temperature of a neutron star at its birth is on the order
20 − 50 MeV (Burrows & Lattimer 1986). Therefore, the high temperature of these stages cannot
be neglected with respect to the Fermi temperature throughout the calculation of its structure. This
shows that the equation of state of the hot dense matter is very important for investigating the struc-
ture of a newborn neutron star. Depending on the total number of nucleons, a newborn neutron star
evolves to either a black hole or to a stable neutron star (Strobel & Weigel 2001). Hence, calculation
of the maximum mass of a hot neutron star is of special interest in astrophysics.

As we go from the surface to the center of a neutron star, at sufficiently high densities, the matter
is expected to undergo a transition from hadronic matter, where the quarks are confined inside the
hadrons, to a state of deconfined quarks. Finally, there are up, down and strange quarks in the quark
matter. Other quarks have high masses and do not appear in this state. Glendenning has shown
that a proper construction of the hadron-quark phase transition inside the neutron stars implies the
coexistence of nucleonic matter and quark matter over a finite range of the pressure. Therefore, a
mixed hadron-quark phase exists in the neutron star and its energy is lower than that of the quark
matter and nucleonic matter (Glendenning 1992). These show that we can consider a neutron star to
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be composed of a hadronic matter layer, a mixed phase of quarks and hadrons and, in the core, quark
matter. Recent Chandra observations also imply that the objects RX J185635–3754 and 3C 58 could
be neutron stars with a quark core (Prakash et al. 2003).

Burgio et al. have investigated the structure of neutron stars with a quark core at zero (Burgio
et al. 2002) and finite temperatures (Burgio et al. 2007), using the Brueckner-Bethe-Goldstone for-
malism to determine the equation of state of the hadronic matter. We have calculated the structural
properties of the cold neutron star by considering a quark phase at its core (Bordbar et al. 2006)
and compared the results with our previous calculations for the neutron star without the quark core
(Bordbar & Hayati 2006). In these works, we have employed the lowest order constrained variational
(LOCV) method for the hadronic matter calculations. In the present paper, we intend to extend these
calculations to a hot neutron star with a quark core.

2 EQUATION OF STATE

As was mentioned in the previous section, we consider a neutron star composed of hadronic matter
(hadron phase), a mixed phase of quarks and hadrons, and a quark core (quark phase). Therefore, we
should separately calculate the equation of state of these phases as follows.

2.1 Hadron Phase

For this phase of the neutron star matter, we consider the total energy per nucleon as the sum of
contributions from the leptons and nucleons,

E = Elep + Enucl. (1)

The contribution from the energy of leptons (electrons and muons) is

Elep = Ee + Eμ, (2)

where Ee and Eμ are the energies of electrons and muons, respectively,

Ei =
m4

i c
5

π2n�3

∫ ∞

0

√
1 + x2

1 + exp{β[mic2
√

1 + x2 − μi]}
x2dx, (3)

where μi and mi are the chemical potential and mass of particle i, β = 1
kBT (T is the temperature),

n is the total number density of nucleons (n = np + nn), c is the speed of light and x is as follows,

x =
�k

mic
. (4)

In our calculations, the equation of state of hot nucleonic matter is determined using the LOCV
method as follows (Bordbar & Modarres 1997, 1998; Modarres & Bordbar 1998; Bordbar & Bigdeli
2007a,b, 2008a,b; Bigdeli et al. 2009). We adopt a trial wave function as

ψ = Fφ, (5)

where φ is the Slater determinant of the single-particle wave function and F is the correlation func-
tion which is taken to be

F = S
∏
i>j

f(ij), (6)

S is a symmetrizing operator. For the energy of nucleonic matter, we consider up to the two-body
term in the cluster expansion,

Enucl = E1 + E2. (7)
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The one body term E1 for the hot asymmetrical nucleonic matter that consists of Z protons and
N neutrons is simply the fermi gas kinetic energy,

E1 =
∑

i=1,2

Ei, (8)

where labels 1 and 2 are used instead of proton and neutron, respectively, and Ei is

Ei =
∑

k

�
2k2

2mi
fi(k, T, ni), (9)

where f(k, T, ni) is the Fermi-Dirac distribution function (Fetter & Walecka 1971),

f(k, T, ni) =
1

eβ[εi(k,T,ni)−μi(T,ni)] + 1
. (10)

In the above equation, ni are the number densities and εi are the single particle energies associated
with the protons and neutrons,

εi(k, T, ni) =
�

2k2

2m∗
i (T, ni)

, (11)

wherem∗
i are the effective masses.

The two-body energy,E2, is

E2 =
1

2A

∑
ij

〈ij|ν(12)|ij − ji〉, (12)

where

ν(12) = − �
2

2m
[f(12), [∇2

12, f(12)]] + f(12)V (12)f(12), (13)

f(12) and V (12) are the two-body correlation and inter-nucleonic potential.
We note that the conditions of charge neutrality and beta stability impose the following con-

straints on the number densities and chemical potentials,

np = ne + nμ, (14)

μn − μp = μe = μμ. (15)

The procedure to calculate the nucleonic matter has been fully discussed in Bordbar & Modarres
(1997, 1998).

2.2 Quark Phase

We use the MIT bag model for the quark matter calculations. In this model, the energy density is the
kinetic energy of quarks plus a bag constant (B) which is interpreted as the difference between the
energy densities of non-interacting quarks and interacting ones (Farhi & Jaffe 1984),

Etot = Eu + Ed + Es + B, (16)

where Ei is the kinetic energy per volume of particle i,

Ei =
g

2π2

∫ ∞

0

(m2
i c

4 + �
2k2c2)1/2f(k, T, ni)k2dk. (17)
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In the above equation, g is the degeneracy number of the system and ni is the number density of
particle i,

ni =
g

2π2

∫ ∞

0

f(k, T, ni)k2dk. (18)

For the quark phase, the Fermi-Dirac distribution function, f(k, T, ni), is given by

f(k, T, ni) =
1

exp{β[(m2
i c

4 + �2k2c2)1/2 − μi]} + 1
. (19)

We assume that the up and down quarks are massless, the strange quark has a mass equal to 150MeV
and B = 90MeV fm−3.

Now, by applying the beta stability and charge neutrality conditions, we get the following rela-
tions for the chemical potentials and number densities,

μd = μu + μl, (20)

μs = μu + μl, (21)

⇒ μd = μs, (22)

2
3
nu − 1

3
nd − 1

3
ns − nl = 0, (23)

nB =
1
3
(nu + nd + ns), (24)

where nl and μl are the leptonic number density and chemical potential, and nB is the baryonic
number density.

The pressure of the system is calculated from free energy using the following equation,

P =
∑

i

ni
∂Fi

∂ni
−Fi, (25)

where the Helmholtz free energy per volume (F ) is given by

F = Etot − TStot. (26)

The entropy of quark matter (Stot) can be written as follows:

Stot = Su + Sd + Ss, (27)

where Si is the entropy of particle i,

Si(ni, T ) = − 3
π2
kB

∫ ∞

0

{f(k, T, ni) ln[f(k, T, ni)]

+[1 − f(k, T, ni)] ln[1 − f(k, T, ni)]}k2dk. (28)
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2.3 Mixed Phase

For the mixed phase, where the fraction of space occupied by quark matter smoothly increases from
zero to unity, we have a mixture of hadrons, quarks and electrons. In the mixed phase, according to
the Gibbs equilibrium conditions, the temperatures, pressures and chemical potentials of the hadron
phase (H) and quark phase (Q) are equal (Glendenning 1992). Here, for each temperature we let the
pressure be an independent variable.

The Gibbs conditions imply that
μQ

n = μH
n , (29)

μQ
p = μH

p , (30)

where μH
n and μQ

n (μH
p and μQ

p ) are the neutron (proton) chemical potentials in the hadron phase and
the quark phase, respectively,

μn =
∂E
∂nn

, (31)

μp =
∂E
∂np

. (32)

In the above equations, E is the energy density of the system,

E = n(E +mc2). (33)

To obtain μH
p and μH

n for the hadronic matter in the mixed phase, we use the semiempirical mass
formula (Kutschera & Niemiec 2000; Lagaris & Pandharipande 1981; Wiringa et al. 1988),

E = T (n, x) + V0(n) + (1 − 2x)2V2(n), (34)

where x = np
n is the proton fraction. T (n, x) is the kinetic energy contribution and the functions

V0 and V2 represent the interaction energy contributions which are determined from the energies
of the symmetric nuclear matter (x = 1

2 ) and pure neutron matter (x = 0). We calculate V0 and
V2 using our results for the LOCV calculation of nucleonic matter with the UV14+ TNI nuclear
potential which is discussed in Section 2.1. Now, we can obtain the chemical potentials of neutrons
and protons from Equations (31)–(34) as follows:

μH
p = T (n, x) + n

∂T (n, x)
∂n

+
∂T (n, x)
∂x

+ V0(n) + nV0
′(n)

+(−3 + 8x− 4x2)V2(n) + (1 − 2x)2nV2
′(n) +mc2, (35)

μH
n = T (n, x) + n

∂T (n, x)
∂n

− ∂T (n, x)
∂x

+ V0(n) + nV0
′(n)

+(1 − 4x2)V2(n) + (1 − 2x)2nV2
′(n) +mc2. (36)

For the quark matter in the mixed phase, we have

μQ
p = 2μu + μd, (37)

μQ
n = μu + 2μd. (38)

At a certain pressure, we calculate μu for different μd under the condition that the densities yield
this certain pressure. By calculating μu and μd, we obtain μQ

p and μQ
n .

Now, we plotμp versusμn for both hadron and quark phases, where the crossing point of the two
curves satisfies the Gibbs conditions. In the mixed phase, since the chemical potentials determine
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the densities, the volume fraction occupied by quark matter, χ, can be obtained by the requirement
of global charge neutrality,

χ

(
2
3
nu − 1

3
nd − 1

3
ns

)
+ (1 − χ)np − ne = 0. (39)

Finally, we can calculate the baryonic density of the mixed phase (M),

nB = χnQ + (1 − χ)nH, (40)

and then the total energy density of the mixed phase is found,

EM = χEQ + (1 − χ)EH. (41)

2.4 Results

We have shown our results for the energy densities of the hadron phase, quark phase and mixed
phase in Figures 1 and 2 at two different temperatures.
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Fig. 1 Energy density versus the baryonic density at T = 10 MeV for the hadron phase (solid line),
quark phase (dotted line) and mixed phase (dashed line).

Figures 1 and 2 show that at low densities the energy density of the hadronic matter is lower
than those of other phases. However, as the density increases, at first the energy of the mixed phase
and finally the energy of the quark phase is lower than those of other phases. We also see that there is
a mixed phase for a range of densities. Below (beyond) this range, we have the pure hadron (quark)
phase. By comparing Figures 1 and 2, we see that for a given value of the density, the energies of all
phases increase by increasing the temperature.

Using the above calculated energy density, we can determine the equation of state and finally
the structure of the hot neutron star with the quark core, which is discussed in the next section.

3 STRUCTURE OF THE HOT NEUTRON STAR WITH THE QUARK CORE

The structure of the neutron star is determined by numerically integrating the Tolman-Oppenheimer-
Volkoff equation (TOV) (Shapiro & Teukolsky 1983; Glendenning 2000; Weber 1999; Adler et al.
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Fig. 2 Same as Fig. 1 but at T = 20 MeV.

1965),

dP

dr
= −G[E(r) + P (r)

c2 ][m(r) + 4πr3P (r)
c2 ]

r2[1 − 2Gm(r)
rc2 ]

, (42)

dm

dr
= 4πr2E(r), (43)

where P is the pressure and E is the total energy density. For a given equation of state in the form
P (E), the TOV equation yields the mass and radius of the star as a function of the central mass
density.

In our calculations for the structure of the hot neutron star with the quark core, we use the
following equations of state: (i) Below the density of 0.05 fm3, we use the equation of state calculated
by Baym (Baym et al. 1971). (ii) From the density of 0.05 fm3 up to the density where the mixed
phase starts, we use the equation of state of the pure hadron phase calculated in Section 2.1. (iii) In
the range of densities in which there is the mixed phase, we use the equation of state calculated in
Section 2.3. (iv) Beyond the density of the end point of the mixed phase, we use the equation of state
of the pure quark phase calculated in Section 2.2. All calculations are done for B = 90MeV fm−3

at two different temperatures: T = 10 and 20MeV. Our results are as follows.
The gravitational mass as a function of the central mass density for the hot neutron star with the

quark core at two different temperatures has been presented in Figures 3 and 4. It is seen that for
both relevant temperatures, the gravitational mass increases by increasing the central mass density
and finally reaches a limiting value (maximum mass). In Figures 3 and 4, our results for the case
of the neutron star without the quark core have also been given for comparison. We see that by
including the quark core for the neutron star, our results for the gravitational mass are substantially
affected. For the neutron star with the quark core, our results for the gravitational mass at three
different temperatures (T = 0, 10 and 20MeV) have been compared in Figure 5. It is seen that the
gravitational mass increases by increasing the temperature.

Figures 6 and 7 show the gravitational mass versus the radius for both cases of the neutron star
with and without the quark core at two different temperatures. At each temperature, it is seen that
there is a reasonable difference between the mass-radius relations for these two cases of the neutron
star. However, for both cases, we see that the radius decreases as the mass increases. By comparing
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Fig. 3 Gravitational mass versus the central mass density for the neutron star with (dotted line) and
without (solid line) the quark core at T = 10 MeV.
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Fig. 4 Same as Fig. 3 but at T = 20 MeV.

Figures 6 and 7, we can see that the rate of decrease of the radius versus the mass is substantially
different for different temperatures.

Our results for the maximum gravitational mass of the hot neutron star with the quark core and
the corresponding values of radius and central mass density have been given in Tables 1 and 2 for
two different temperatures. Our results for the case of a hot neutron star without a quark core have
also been presented for comparison. For different temperatures, it is seen that the inclusion of the
quark core considerably reduces the maximum mass of the hot neutron star. This is due to the fact
that by including the quark core in the neutron star, the equation of state becomes softer than that
without the quark core. However, we do not see any substantial changes in the radius and central
mass density of these two cases for the hot neutron star.
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Table 1 Maximum gravitational mass (Mmax), and the corresponding
radius (R) and central mass density (εc) of the hot neutron star without
(NS) and with (NS+Q ) the quark core at T = 10 MeV.

Mmax (M�) R (km) εc (1014 g cm−3)

NS 2.07 10.22 26.94
NS+Q 1.76 10.45 27.38
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Fig. 5 Gravitational mass versus the central mass density for the neutron star with the quark core at
T = 0 (dot-dashed line), 10 (solid line) and 20 MeV (dotted line).

Fig. 6 Mass-radius relation for the neutron star with (dotted line) and without (solid line) the quark
core at T = 10 MeV.
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Table 2 Same as Table 1 but at T = 20 MeV.

Mmax (M�) R (km) εc (1014g cm−3)

NS 2.09 10.64 27.01
NS+Q 1.78 11 27.37

Fig. 7 Same as Fig. 6 but at T = 20 MeV.

4 SUMMARY AND CONCLUSIONS

For the hot neutron star, from the surface toward the center, we have considered a pure hadronic
matter layer, a mixed phase of quarks and hadrons in a range of densities which are determined
by employing the Gibbs conditions, and pure quark matter in the core, to calculate its equation of
state at a finite temperature. For calculating the equation of state of the hot hadronic matter, we have
applied the LOCV method at a finite temperature. The equation of state of the hot quark matter
has been computed using the MIT bag model with the bag constant B = 90MeV fm−3. Using
this equation of state, we have solved the TOV equation by a numerical method to determine the
structural properties of the hot neutron star with the quark core at T = 10 and 20 MeV. Then, we
have compared the results of these calculations with those for the hot neutron star without the quark
core. It is found that our results for the maximum gravitational mass of the neutron star with a quark
core are less than those of the neutron star without the quark core.
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