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Abstract The solution of three new interesting studies, a rotating anisotropic two-
fluid universe coupled with radiation and a scalar field, are studied here, where the
anisotropic pressure is generated by the presence of two non-interacting perfect fluids
which are in relative motion with respect to each other. In this problem, special discus-
sion is made of the physically interesting class of models in which one fluid is a perfect
comoving radiative fluid which is taken to model the cosmic microwave background
and the second a perfect non-comoving fluid which will model the observed material
content of the universe. Studying the different aspects of these model universes, the
role of the radiation and scalar fields in defining the physical and dynamical proper-
ties of these models is specifically discussed. Analysis of the rotational perturbations
is also made, in the course of which the amount of anisotropy induced in the pressure
distribution by a small deviation from the Friedmann metric is also investigated, and it
is observed that such anisotropies could grow faster than the expansion of the universe.
All the models obtained in this problem are found to be theoretically satisfactory and
thereby substantiate the possibilities of the existence of such astrophysical objects in
this universe.
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1 INTRODUCTION

Rotation plays an important role in the structure and equilibrium configurations of astrophysical ob-
jects. That is why during the last few years there has been considerable effort in introducing rotation
into the general theory of relativity, so that it can be applied to realistic astrophysical situations.
Recent theoretical work on more realistic equations of state of different stellar models reveals that
some of these objects could have anisotropic pressure, at least in some parts. A small difference in
the radial velocities of the neutron and the proton-electron components of the fluid could cause a sig-
nificant amount of anisotropy. Existence of such differences in the four-velocities is probably normal
during the early phases of the formation of neutron stars. However, whether or not this difference
will last long enough to be significant is a subject of further research. Some studies on anisotropy



272 K. M. Singh, K. P. Singh & T. J. Singh

and anisotropic fluid models were made by Herrera & Santosh (1997) and Herrera et al. (2001, 2002,
2004). Anisotropic pressure due to two imperfect fluids, which are weakly interacting, is also an in-
teresting problem in cosmology. Anisotropic fluid models could have a wide range of applications
in nature.

It was discovered by Smoot et al. (1977) that there is an observed motion of our galaxy relative
to the microwave background radiation. Since the isotropy and homogeneity of both the cosmic mi-
crowave background and the observed matter are established with reasonable experimental accuracy,
we have to study models which are spherically symmetric with respect to the rest frame associated
with the motion of the two fluids, but which have anisotropic pressure. The conventional assump-
tion is that the universe initially evolved from a radiation-like state to a matter-like state (“dust”)
at later times. The presently accepted view of the evolution of the universe is that, except for very
early times, the universe is reasonably described by a “Friedmann-Robetson-Walker (FRW) model.”
However, in light of the defects in FRW models, we consider isotropic models. The considered mod-
els have sources of either perfect comoving radiation fluids or perfect comoving matter fluids; each
model is applicable to different eras in the evolution of the universe. As we discuss below, anisotropic
pressure, which can be generated through the use of a two-fluid model, where the energy-momentum
tensor is composed of two non-interacting perfect fluids, is given as (Letelier 1980; Bayin 1982)

Tμν = (P1 + ρ1)UμUν − P1g
μν + (P2 + ρ2)WμW ν − P2g

μν , (1)

where UμUμ = WμWμ = 1.
Some solutions of two-fluid models were obtained by Alpher & Herman (1949), Chernin (1966),

Cohen (1967), McIntosh (1968a,b), Nowotny (1976), Tolman (1934), Maniharsingh (1993) and
Singh (2009). MacCallum (1979) mentioned that there are three main ways of generating anisotropic
stresses in cosmology: the presence of electromagnetic fields, the presence of a viscous term, and
the anisotropic stresses due to the anisotropic expansion of a cloud of collisionless particles. Payne
(1970) used models of this type to investigate the effect of a cosmic microwave background with
temperature greater than 3K. A fluid consisting of two perfect fluid components and having the
energy-momentum tensor given by Equation (1) is expected to reach equilibrium through dissipative
mechanisms. However, in some cases, the two perfect fluid components could be decoupled from
each other, or could at least be weakly interacting.

In the centers of stars where the gravitational field is strong, a scalar field may have some effects
on stellar configurations. Such an effect will become important only when the general relativistic
effect itself becomes important. The zero-mass scalar field has acquired particular importance since
Weinberg (1978) and Wilczek (1978) proposed the existence of a low-mass (≤ 1MeV) scalar bo-
son, the so-called axion. Such particles will explain the absence of charge conjugation and parity
(CP) non-conservation in strong interactions in particle physics, as pointed out by Peccei & Quinn
(1977). Moreover, any light particle has a potential for playing a major role in stellar energy loss;
so there may exist a cosmic background of these particles. It is, therefore, expected that the stellar
configuration will be appreciably affected by its own scalar field in the case of a neutron star, and
more particularly in the case of pulsars. Thus the results of our investigation here will be applicable
in the exploration of the behavior, characteristics and the properties of rotating astrophysical ob-
jects coupled with cosmic axion fields or scalar fields. Maniharsingh (1990, 1991, 1995), Singh &
Bhamra (1987, 1990) and Singh (1987, 1988a,b, 1989a,b, 2010a,b) studied different rotating and
non-rotating one-fluid models coupled with a scalar field and with either a radiation field or an elec-
tromagnetic field. Thus we study rotating two-fluid model universes coupled with a scalar field and
a radiation field in order to be able to understand the hidden properties of such universes, which are
not well-understood in the case of one-fluid model universes.

Application of the two-fluid model to cosmology is particularly motivated by observations
(Fabbri et al. 1982; Lubin et al. 1983) which indicate that the radiation frame and the matter frame
of the universe may not coincide. In the present epoch, considering that matter and radiation are
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decoupled, the energy-momentum tensor may very well be a reasonable representation of the matter
content of the universe. Here in this case, the rotational perturbations of such models are examined in
order to substantiate the possibility that the universe is endowed with some rotation. The nature and
role of the metric rotation as well as that of matter rotation are studied and the effects of radiation
and scalar fields on them are discussed. The periods of physical validity and the restriction on the
radii of the models for real astrophysical situations are also studied.

2 DERIVATION OF FIELD EQUATIONS

The metric considered in this problem is

ds2 = dt2 − exp[h(r) + k(t)]dr2 − exp[k(t)](r2dΘ2 + r2 sin2 ΘdΦ2)

+2r2Ω exp[k(t)] sin2 ΘdΦdt, (2)

where h(r) is an arbitrary function of r, k(t) is an arbitrary function of time t, and Ω(r, t) is the
metric rotation function which is related to the local dragging of inertial frames.

The total energy-momentum tensor T μν is taken here to be the anisotropic fluid energy-
momentum tensor plus the energy-momentum tensor for radially expanding radiation and that of
a zero-mass scalar field, thus

T μν = (ρ1 + P1)UμUν − P1g
μν + (ρ2 + P2)WμW ν − P2g

μν

+σzμzν +
1
φ2

(
φμφν − 1

2gμνφkφk

)
, (3)

where
UμUμ = 1, WμWμ = 1. (4)

Here σ is the source density of the radiation field and zμ are the components of radiation, φ is the
scalar field and P1, ρ1, Uμ, P2, ρ2, and Wμ are respectively the pressure, density and 4-velocities
of the two fluids.

The energy-momentum tensor given by Equation (3) can be put into the standard form by the
transformation (Letelier 1980)

U
μ

= cosαUμ +
[

(ρ2+P2)
(ρ1+P1)

] 1
2 sinαWμ,

W
μ

=
[

(ρ1+P1)
(ρ2+P2)

] 1
2 sinαUμ + cosαWμ.

⎫⎪⎪⎬
⎪⎪⎭ (5)

Now we note that this transformation leaves the quadratic form invariant

(ρ1 + P1)UμUν = (ρ2 + P2)WμW ν . (6)

Thus
T μν(U, W ) = T μν(U, W ). (7)

Now we shall rotate U and W such that one becomes timelike, while the other is spacelike; in
other words we choose α such that

U
μ

Wμ = 0. (8)

From relations (5) and (8) we obtain

tan(2α) =
[(ρ1 + P1)(ρ2 + P2)]

1
2

(ρ1 + P1) − (ρ2 + P2)
2WμUμ. (9)
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Thus Uμ is a timelike vector and Wμ is a spacelike vector. Also we define the following quantities

V μ = U
μ

(U
ν
Uν)

1
2
, Xμ = W

μ

(−W
ν
W ν)

1
2
,

ρ = T μνVμVν = (ρ1 + P1)U
α
Uα − (P1 + P2),

Pr = T μνXμXν = (P1 + P2) − (ρ2 + P2)W
α
Wα,

P⊥ = P1 + P2.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(10)

Then the energy-momentum tensor can be written in the standard form as

T μν = (ρ + P⊥)V μV ν − P⊥gμν + (Pr − P⊥)XμXν

+
1
φ2

(φμφν − 1
2
gμνφkφk) + σzμzν , (11)

where
V μVν = 1 , XμXμ = −1, V μXμ = 0, zμzμ = 0. (12)

It may be noted that

Pr = −1
2

(ρ1 − P1 + ρ2 − P2)

+
1
2

{
[(ρ1 + P1) − (ρ2 + P2)]

2 + 4(UμWμ)2(ρ1 + P1)(ρ2 + P2)
} 1

2
, (13)

and

ρ =
1
2

(ρ1 − P1 + ρ2 − P2) +
1
2

{[(
ρ1 + P1

)
+
(
ρ2 + P2

)] 2

+4(ρ1 + P1)(ρ2 + P2)
[
(UμWμ)2 − 1

]} 1
2

. (14)

In the above equation, V μ represents the 4-velocity vector of the “mean” fluid, while Xμ is a space-
like vector along the direction of anisotropy. Here, σ is the source density of the radiation field and
zμ are the components of the radiation satisfying the relations

ziz
i = 0, z1 �= 0, z2 = 0, z3 �= 0, z4 �= 0. (15)

Also, φ is the scalar field which satisfies the relation

∂

∂xν

[
φα(−g)

1
2 gαν

]
− φαφν

φ
(−g)

1
2 gαν = 0. (16)

We choose
U4 �= 0, U1 = U2 = 0, U3 = ω exp

(
−γ

2

)
, (17)

where ω = dΦ
dt is the angular velocity of matter.

X4 = X3 = X2 = 0 , X1 �= 0 . (18)

Now we define the null vector zi as dxi

dτ (Vaidya 1966). This gives

z4 = exp
(γ

2

)
, z3 = r2 exp

(
k +

γ

2

)
(Ω − ω) sin2 Θ. (19)

Because of the complexity of the problem, in the following, we take up only the cases where γ = 0.
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Now from Equations (15) and (18) we obtain

z1 = exp
(
− h

2
− k

2

)
, z1 = − exp

(h

2
+

k

2

)
. (20)

Thus Einstein’s field equation

Rμν = 8πG
(
Tμν − 1

2 gμνT
)

gives, if we consider terms up to the first order in Ω (because of slow rotation),

8πGPr = r−2 exp (− h − k) − r−2 exp (− k) − k̈ − 3
4
k̇2

+ 8πG
[
σ(z1)2 exp (− h − k) +

φ′2

φ2
exp (− h − k)

]
. (21)

8πGP⊥ = − h′

2r
exp (− h − k) − k̈ − 3

4
k2, (22)

8πGρ =
(h′

r
− r−2

)
exp(−h − k) + r−2 exp(−k) +

3
4
k̇2 + 8πG

[
σ(z4)2 +

φ̇2

φ2

]
, (23)

σz1z4 +
φ′φ̇
φ2

= 0 , (24)

3
2

k̇Ω′ + Ω̇′ = 0, (25)

and

Ω′′ +
(

4
r
− h′

2

)
Ω′ = 16πG (ρ + P⊥ + σ) (Ω − ω) exp (h + k). (26)

The overhead ‘dot’ and ‘prime’ denote differentiations with respect to t and r, respectively.

3 SOLUTIONS OF THE FIELD EQUATIONS

From Equation (16) we have(
φ̈ +

3
2

k̇φ̇ − φ̇2

φ

)
exp (k) −

(
φ′′ − φ′2

φ
+

2
r
φ′ − h′

2
φ′
)

exp (−h) = 0, (27)

which gives
φ̇

φ
= a exp

(
− 3k

2

)
, (28)

and
φ′

φ
= b r−2 exp

(
h

2

)
, (29)

where a and b are arbitrary constants. Thus making use of the relations (19), (20), (28) and (29) in
Equation (24), we obtain

σ = ab r−2 exp (−2k) . (30)

Now inserting relations (22), (23) and (24) in Equation (26), we get[
Ω′′ +

(
4
r
− h′

2

)
Ω′
]

exp (− h)

= 2(Ω − ω)
[(

h′

2r

)
exp(−h) + r−2 − r−2 exp(−h) − exp(k)k̈ − 8πGa2 exp(−2k)

]
. (31)
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Also from Equation (25), we obtain

Ω(r, t) = M(r) exp
(
− 3k

2

)
+ N(t) , (32)

where M(r) is an arbitrary function of r and N(t) is an arbitrary function of time. Thus relations (31)
and (32) together now give[

M ′′

M
+
(

4
r
− h′

2

)
M ′

M

]
exp(−h)

= 2
[(

h′

2r

)
exp(−h) + r−2 − r−2 exp(−h) − exp(k)k̈ − 8πGa2 exp(−2k)

]

×
[
1 +

N(t) exp
(
3k

2

)
M(r)

− ω exp
(
3k

2

)
M(r)

]
. (33)

Since the left-hand side is only a function of r, the right-hand side must be a function of either only
r or only t. Hence, we see that the form and value of ω will be restricted according to this condition.
Now we take up the following cases.

3.1 Case I

In this case we assume that

Ω − ω = a0 exp
(
− 3

2
k
) [

1 − Ṅ(t)
]
, (34)

where a0 is an arbitrary constant and N(t) is an arbitrary function of time. Then from Equation (31)
we get

exp (− h)M ′′ + exp (− h)
(

4
r
− h′

2

)
M ′ = a0

[
1 − Ṅ(t)

]

×
[

h′

2r
exp(− h) + r−2 − r−2 exp(− h) − exp(k)k̈ − 8πGa2 exp(− 2k)

]
. (35)

Since the left-hand side of this equation is only a function of r, the right-hand side must be a function
of either only r or only t. Here we assume that

h′

2r
exp (−h) + r−2 − r−2 exp(− h) = − 2m,

where m is an arbitrary constant. This gives

h = − log (1 + mr2). (36)

If we make use of relation (36) in Equation (35) we get

(
1 + mr2

)
M ′′ +

(
4
r

+ 5mr

)
M ′

= a0

[
1 − Ṅ(t)

] [
− 2m − exp(k) k̈ − 8πGa2 exp(− 2k)

]
,

where we see that the left-hand side is only a function of r whereas the right-hand side is only a
function of t. Therefore, we can separate this equation into the relations

(
1 + mr2

)
M ′′ +

(
4
2

+ 5mr

)
M ′ = b0, (37)
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and [
− 2m − exp(k) k̈ − 8πGa2 exp (− 2k)

]
=

b0

a0

[
1 − Ṅ(t)

]−1

, (38)

where b0 is a separation constant. Here we see that a solution of Equation (38) is

N(t) =
(
1 + b0

2ma0

)
t + m0,

k = 2
3 log

[
(12πG)

1
2 at + m1

]
,

⎫⎬
⎭ (39)

where m0 and m1 are arbitrary constants. In this case we have

σ = abr2
[
(12G)

1
2 at + m1

] 4
3

, (40)

Pr =
{
(12πG

1
2 at + m1

}− 2
3

×
[ m

8πG
+ b2r−4 +

a2

2

{
(12πG)

1
2 at + m1

}− 4
3 − abr−2

{
(12πG)

1
2 at + m1

}− 2
3
]
,(41)

P⊥ =
m

8πG

{
(12πG)

1
2 at + m1

}− 2
3

+
a2

2

{
(12πG)

1
2 at + m1

}−2

, (42)

ρ = a2

{
(12πG)

1
2 at + m1

}−2
[

1
2

+

(
1 + abr−2

{
(12πG)

1
2 at + m1

} 2
3
)]

− 3m

8πG

{
(12πG)

1
2 at + m1

} 2
3

, (43)

and

φ =

(√
1 + r2 − 1

r

)b
√

m {
(12πG)

1
2 at + m1

} 1

(12πG)
1
2 . (44)

Now taking m = 1, m = 0, and m = −1, which respectively correspond to open, flat and closed
models, from Equation (37), we obtain three general solutions for M(r) and the corresponding
solutions for Ω(r, t) and ω(r, t) as: when m = 1, we get

M(r) =
b0

16
(
2r2 + 1

) − 1
3

(
3
8

b0 sinh−1 r + a1

) (
r−3 − 2r−1

) (
1 + r2

) 1
2 + a2,

where a1 and a2 are arbitrary constants. Thus

Ω(r, t) =
{

b0
16

(
2r2 + 1

)− 1
3

(
3
8b0 sinh−1 r + a1

) (
r−3 − 2r−1

) (
1 + r2

) 1
2 + a2

}
×
{
(12πG)

1
2 at + m1

}−1

+
{(

1 + b0
2a0

)
t + m0

}
,

ω(r, t) =
{
(12πG)

1
2 at + m1

}−1

×
[

b0
2 +

{
b0
16

(
2r−2 + 1

)− 1
3

(
3
8b0 sinh−1 r + a1

) (
r−3 − 2r−1

) (
1 + r2

) 1
2 + a2

}]
+
{(

1 + b0
2a0

)
t + m0

}
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(45)
For m = 0, we get

M(r) =
b0

10
r2 − a3r

−3 + a4,
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where a3 and a4 are arbitrary constants. Therefore here

Ω(r, t) =
{

b0
10r2 − a3r

−3 + a4

} {
(12πG)

1
2 at + m1

}−1

+ (t + m0),

ω(r, t) =
{
(12πG)

1
2 at + m1

}−1 [{
b0
10r2 − a3r

−3 + a4

} − b0

]
+ (t + m0).

⎫⎪⎬
⎪⎭ (46)

Also when m = −1 we have

M(r) =
b0

16
(
2r−2 + 1

) − 1
3

(
3
8
b0 sin−1 r + a5

) (
2r−1 + r−3

) (
1 − r2

) 1
2 + a6,

where a5 and a6 are arbitrary constants. Thus

Ω(r, t) =
{

b0
16 (2r−2 + 1) − 1

3

(
3
8b0 sin−1 r + a5

) (
2r−1 + r−3

) (
1 − r2

) 1
2 + a6

}
×
{
(12πG)

1
2 at + m1

}−1 {(
1 − b0

2a0

)
t + m0

}
,

ω(r, t) =
{
(12πG)

1
2 at + m1

}−1

×
[{

b0
16

(
2r−2 + 1

)− 1
3

(
3
8b0 sin−1 r + a5

) (
2r−1 + r−3

) (
1 − r2

) 1
2 + a6

}
− b0

2

]
+
{(

1 − b0
2a0

)
t + m0

}
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(47)

3.2 Case II

Here we assume that
ω = N(t), (48)

where N(t) is an arbitrary function of time. Then Equation (33) becomes

1
2

[
M ′′

M
+
(

4
2
− h′

2

)
M ′

M

]
exp(−h)

=
[(

h′

2r

)
exp (−h) + r−2 − r−2 exp(− h) − exp(k) k̈ − 8πGa2 exp(−2k)

]
. (49)

Now since the left-hand side of Equation (49) is a function of only r, the right-hand side must be a
function of either only r or only t. Thus we assume that

r−2 exp (−h) − r−2 − 1
2
r−1 exp (− h)h′ = n0,

where n0 is an arbitrary constant. This gives

h = − log
(

1 +
n0r

2

2

)
. (50)

Now making use of relation (50) in Equation (49) we have[
M ′′

M
+
(

4
r
− h′

2

)
M ′

M

] (
1 +

n0r
2

2

)
= 2

[
−n0 − exp (k)k̈ − 8πGa2 exp(− 2k)

]
,

which can be separated into(
1 +

n0r
2

2

)
M ′′

M
+
(

4
r

+
5n0

2
r

)
M ′

M
= −S0, (51)



Radiating Two-fluid Universes 279

and

n0 + exp (k)k̈ + 8πGa2 exp (− 2k) =
S0

2
, (52)

where S0 is a separation constant. If we solve Equation (52), we only obtain an approximate series
solution for k. Therefore, to find an exact solution we assume some relation between the constants,
say

n0 =
S0

2
.

Then in this case we get from Equation (52)

k̇2 =
16πGa2

3
exp (− 3k) + S1 ,

where S1 is a positive arbitrary constant, and further we get

k =
2
3

log [ k1 sinh (k2t + k3) ] , (53)

where k1 = 4a
(

πG
3S1

) 1
2

, k2 = 3
2 S

1
2
1 and k3 is an arbitrary constant. If we use the substitution

y = −n0r2

2 in Equation (51), we obtain

y (1 − y)Myy +
(5

2
− 3y

)
My − z

2n0
M = 0 , (54)

where Myy and My respectively mean differentiation of M with respect to y twice and once. We see
that Equation (54) is similar to the hypergeometric equation

y (1 − y)Fyy + [γ − (1 + α + β)y] Fy − αβF = 0,

for which the general solution is given by

F = B0F (α, β; γ; y) + B1y
1−γF (1 − γ + α, 1 − γ + β; 2 − γ; y), (55)

where B0 and B1 are arbitrary constants and

F (α, β; γ; y) =
∞∑

n=0

(α)n (β)n

n!γn
yn.

Therefore, we derive the general solution of Equation (54) to be

M(r) = B0

α∑
n=0

(α)n (β)n

n!
(

5
2

)
n

yn + B1y
3
2

∞∑
n=0

(
α − 3

2

)
n

(
β − 3

2

)
n

n!
(− 1

2

)
n

yn. (56)

Here since the second term is not regular at y = 0, we take B1 = 0. Then we obtain

M(r) = B0

∞∑
n=0

(α)n (β)n

n!
(

5
2

)
n

yn,

or

M(r) = B0(1 − y)
5
2 −α−β

∞∑
n=0

(
5
2 − α

)
n

(
5
2 − β

)
n

n!
(

5
2

)
n

yn. (57)

Thus, according to the different values of α and β, we find different values of M(r) and thereby
different values of Ω. For example,
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(i) If α = −1, β = 3, then

F

(
−1, 3 ;

5
2

; y
)

= B0 (1 − y)
1
2

(
1 − 6

5
y

)
.

In this case we obtain

Ω(r, t) = B0

(
1 +

1
2

n0r
2

) 1
2
(

1 +
3
5

n0r
2

)
{k1 sinh(k2t + k3)}−1 + N(t) .

(ii) For α = 4, β = −2, we have

F

(
4, −2 ;

5
2

; y

)
= B0 (1 − y)

1
2

(
1 − 16

5
y +

16
7

y2

)
.

Thus here we find

Ω(r, t) = B0

(
1 +

1
2

n0r
2

) 1
2
(

1 +
8
5

n0r
2 − 4

7
n2

0r
4

)
{k1 sinh(k2t + k3)}−1 + N(t).

(iii) F
(

9
2 ,− 5

2 ; 5
2 ; y

)
= B0(1 − y)

1
2
(
1 − 9

2 y + 57
35 y2

)
, where α = 9

2 , β = − 5
2 and here

Ω(r, t) = B0

(
1 +

1
2
n0r

2

) 1
2
(

1 +
9
4

n0r
2 − 57

140
n2

0r
4

)
{k1 sinh(k2t + k3)}−1 + N(t).

(iv) If α = − 1
2 , β = 5

2 then

F

(
− 1

2
,

5
2

;
5
2

; y

)
= B0 (1 − y)

1
2

(
1 − 1

2
y − 1

8
y2

)
.

In this case

Ω(r, t) = B0

(
1 +

1
2

n0r
2

) 1
2
(

1 +
1
4

n0r
2 +

1
32

n2
0r

4

)
{k1 sinh(k2t + k3)}−1 + N(t) .

Also relations (30) and (53) give

σ = abr−2 [k1 sinh(k2t + k3)]
− 4

3 . (58)

In this case, we obtain

Pr = {k1 sinh(k2t + k3)}−
2
3

[ n0

16πG
+ b2r−4 − abr−2 {k1 sinh(k2t + k3)}−2

]
+

k2
2

12πG

[
cosech2(k2t + k3) − 1

2
coth2(k2t + k3)

]
, (59)

P⊥ =
1

8πG

[n0

2
{k1 sinh (k2t + k3)}−

2
3 +

2
3
k2
2cosech2 (k2t + k3) − k2

2

3
coth2 (k2t + k3)

]
, (60)

ρ = a2 {k1 sinh (k2t + k3)}−2
[
1 + a−1br−2 {k1 sinh (k2t + k3)}

2
3

]
+

k2
2

24πG
coth2 (k2t + k3) − 3n0

16πB
{k1 sinh (k2t + k3)}−

2
3 , (61)

and
φ = tanh (k2t + k3)

a
k1 exp

[
− br−1(1 +

n0

2
r2)

1
2

]
, (62)

where cosech means cosecant hyperbolic.
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3.3 Case III

Here we assume that

ω = Ω + (N(t) − Ω)
Q(t)
M(r)

, (63)

where N(t) and Q(t) are arbitrary functions of time and M(r) is an arbitrary function of r. Then
Equation (33) becomes[

M ′′ +
(

4
r
− h′

2

)
M ′
]

exp (− h)

= 2
[

1
2r

exp(−h)h′ + r−2 − r−2 exp(−h) − exp(k)k̈ − 8πGa2 exp(−2k)
]

Q(t) . (64)

Now, since the left-hand side of Equation (64) is a function of only r, the right-hand side must be a
function of either only r or only t. Thus we assume here that

1
2r

exp (−h)h′ + r−2 − r−2 exp (−h) = − d ,

where d is an arbitrary constant. This gives

h = − log
(

1 +
dr2

2

)
. (65)

Now using relation (65) in Equation (64) we obtain(
1 +

dr2

2

)
M ′′ +

(
5
2

dr +
4
r

)
M ′

= 2
[
− d − exp(k)k̈ − 8πGa2 exp(− 2k)

]
Q(t) . (66)

We see that the left-hand side is a function of only r whereas the right-hand side is a function of only
t, therefore, we can equate both of them to a constant. Thus(

1 +
dr2

2

)
M ′′ +

(
5
2

dr +
4
r

)
M ′ = z0, (67)

and
2
[
− d − exp(k)k̈ − 8πGa2 exp(− 2k)

]
Q(t) = z0, (68)

where z0 is a separation constant. Here we see that a solution of Equation (68) is

Q(t) = z0
2

[
πGa2

{(
27
2 πG

) 1
2 at +

√
3
4 d0

}
− d
]−1

,

k = 2
3 log

[(
27
2 πG

) 1
2 at +

√
3
4 d0

]
,

⎫⎬
⎭ (69)

where d0 is an arbitrary constant. By taking d = 2, d = 0 and d = −2, which correspond to open,
flat and closed models respectively, from Equation (67), we obtain three general solutions of M(r)
and the corresponding solutions of Ω(r, t) and ω(r, t) as: when d = 2,

M(r) =
z0

16
(
1 + 2r−2

) − 1
3

(
3
8

z0 sinh−1 r + d1

) (
r−3 − 2r−1

) (
1 + r2

) 1
2 + d2 ,
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where d1 and d2 are arbitrary constants. Thus

Ω(r, t) =
[

z0
16

(
1 + 2r−2

)− 1
3

(
3
8z0 sinh−1 r + d1

) (
r3 − 2r−1

) (
1 + r2

) 1
2 + d2

]
×
{(

27
2 πG

) 1
2 at +

√
3
4d0

}−1

+ N(t),

ω(r, t) =
[{

z0
16

(
1 + 2r−2

)− 1
3

(
3
8z0 sinh−1 r + d1

) (
r−3 − 2r−1

) (
1 + r2

) 1
2 + d2

}
− z0

2

{
πGa2

[(
27
2 πG

) 1
2 at +

√
3
4d0

]
− 2
}−1
]{(

27
2 πG

) 1
2 at +

√
3
4d0

}−1

+ N(t).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(70)
For d = 0 we have

M(r) =
[ z0

10
r2 − r−3d3 + d4

]
,

where d3 and d4 are arbitrary constants. Then

Ω(r, t) =
[

z0
10 r2 − r−3d3 + d4

] {(
27
2 πG

) 1
2 at +

√
3
4d0

}−1

+ N(t),

ω(r, t) =
[(

z0
10 r2 − r−3d3 + d4

) − z0
2

{
πGa2

[(
27
2 πG

) 1
2 at +

√
3
4d0

]
− 2
}−1
]

×
{(

27
2 πG

) 1
2 at +

√
3
4d0

}−1

+ N(t).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(71)

When d = −2, we have

M(r) =
z0

16
(
1 + 2r−2

) − 1
3

(
3
8

z0 sin−1 r + d3

) (
2r−1 + r3

) (
1 − r2

) 1
2 + d6 ,

where d5 and d6 are arbitrary constants. Thus

Ω(r, t) =
[

z0
16

(
1 + 2r−2

)− 1
3

(
3
8z0 sin−1 r + d5

) (
2r−1 + r−3

) (
1 − r2

) 1
2 + d6

]
×
{(

27
2 πG

) 1
2 at +

√
3
4d0

}−1

+ N(t),

ω(r, t) =
[{

z0
16

(
1 + 2r−2

)− 1
3

(
3
8z0 sin−1 r + d5

) (
2r−1 + r−3

) (
1 − r2

) 1
2 + d6

}
− z0

2

{
πGa2

[(
27
2 πG

) 1
2 at +

√
3
4d0

]
− 2
}−1 {(

27
2 πG

) 1
2 at +

√
3
4d0

}−1

+ N(t).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(72)
In this case, we obtain

Pr = {(27
2 πG)

1
2 at +

√
3
4d0}− 2

3

×
[

9
16a2{(27

2 πG)
1
2 at +

√
3
4d0}− 4

3 + d
16πG + b2

r4 − ab
r2 {(27

2 πG)
1
2 at +

√
3
4d0} 2

3

]
,

P⊥ = 1
16{(27

2 πG)
1
2 at +

√
3
4d0}− 2

3

[
d

πG + 9a2{(27
2 πG)

1
2 at +

√
3
4d0}− 4

3

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(73)

ρ =

⎡
⎣ 9

16
+

⎧⎨
⎩1 +

b

ar2

[(
27
2

πG

) 1
2

at +

√
3
4
d0

] 2
3
⎫⎬
⎭
⎤
⎦

× a2

{(
27
2

πG

) 1
2

at +

√
3
4

d0

}−2

− 3d

16πG

{(
27
2

πG

) 1
2

at +

√
3
4
d0

}− 2
3

. (74)
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Therefore from the relations (28), (29), (65) and (69) we have

φ =

{(
27
2

πG

) 1
2

at +
(

3
4

) 1
2

d0

}( 27
2 πG)−

1
2

exp

[
−br−1

(
1 +

d

2
r2

) 1
2
]

. (75)

4 DISCUSSION OF THE RESULTS AND CONCLUSIONS

In all the cases we have studied in this problem, analyzing the perturbations in the form of differential
rotations of spherically symmetric cosmologies, some physical restrictions are imposed on the metric
rotation function. Studies are made to reveal the intrinsic nature of rotation and to elucidate the role
of Ω; here it may be noted that Ω plays a role in the dragging of local inertial frames. It is observed
that the field equations split into two parts, namely, the field equations for radiating fluid spheres with
a scalar field and two equations that determine the metric rotation function Ω(r, t) and the matter
rotation function ω(r, t). Here we also see that the pressure and the density are unperturbed to first
order.

In the models obtained in Case I, we see that as we approach the center, both the radial pressure
and the density begin to increase beyond bounds, however the tangential pressure is independent of
position. For large distances from the origin, the second term in the density distribution becomes
negligible and gives us an approximately homogeneous density. For these models, the anisotropy as
a function of position and time is given by

F (r, t) =
Pr

P⊥

=
[

m

8πG
+ b2r−4 +

a2

2

{
(12πG)

1
2 at + m1

}− 4
3 − abr−2

{
(12πG)

1
2 at + m1

}− 2
3
]

×
[

m

8πG
+

a2

2

{
(12πG)

1
2 at + m1

}− 4
3
]−1

.

Here we observe that the anisotropy gradually decays along with the distance from the center of
the model and vanishes at very large distance from the center. Also the anisotropy is found to be a
decreasing function of time. In a perturbative analysis, we can show that anisotropies in the pressure
distribution could grow faster than the expansion of the universe, and hence could be important in
processes with time scales shorter than the age of universe. Taking up the models obtained in this
case, we see that the rotational velocities (thereby, also the rotational perturbations) decay with both
time and position if N(t) is a decreasing function of time, except for the case of the flat universe
in which the rotational velocities are found to increase with the increase of the radial distance from
the center. For a closed universe, the solutions are found to be realistic only when the radial distance
r lies within the limit −1 ≤ r ≤ 1. In all the three models obtained in this case, the rotational
velocities are not defined at the point r = 0. For all the models, the expansion factor θ (of the fluid
lines) is obtained as

θ = a(12πG)
1
2

[
(12πG)

1
2 at + m1

]−1

.

Here it is seen that these model universes are expanding, though their rate of expansion decreases
with time. The scalar field as well as the radiation field are both found to be decreasing functions of
time and distance.

In Case II, the metric rotation Ω(r, t) as well as the matter rotation ω(r, t) are found to decay
with time if N(t) happens to be a decreasing function of time. Here we see that the larger the value
of ‘a’ is (that is, the stronger the scalar field), the smaller the values of Ω(r, t) and ω(r, t) are, which
shows that the scalar field slows down the rotational velocity. On the other hand, as the value of ‘a’
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becomes smaller, the radiation field increases and the values of Ω(r, t) and ω(r, t) become larger,
which shows that the radiation field tends to increase the rotation. For the models obtained here,
the fluid pressure is seen to be a decreasing function of both time and radial distance and has a
singularity at the center of the universe. Here the expansion factor is found to be

θ = k2 coth (k2t + k3) ,

which shows that the model universes in this case are expanding as well as rotating and thereby may
be taken as models representing real astrophysical objects. In this case, the anisotropy (as a function
of position and time) is given by

F (r, t) =
8πG{k1 sinh(k2t + k3)}− 2

3 [ n0
16πG + ab2r−4 − abr−2{k1 sinh(k2t + k3)}−2]

[n0
2 {k1 sinh (k2t + k3)}− 2

3 + 2
3k2

2cosech2 (k2t + k3) − k2
2
3 coth2 + (k2t + k3)]

+
2k2

2
3

[
cosech2 (k2t + k3)

]− 1
2 coth2(k2t + k3)[

n0
2 {k1 sinh (k2t + k3)}−

2
3 + 2

3k2
2cosech2 (k2t + k3) − k2

2
3 coth2(k2t + k3)

] .
For all the models obtained in Case III, the rotational velocities (and also the rotational pertur-

bations) decay with the increase of time if N(t) is a decreasing function and k(t) is an increasing
function of time. In these models, the rotational velocities are arbitrary at the centers of the models
since a singularity exists at such points. In the case when d = −2, the solution is realistic only for
−1 ≤ r ≤ +1. In the course of evolution of these model universes, the matter rotation ω(r, t) as
well as the rotational velocity Ω(r, t) will be affected by the radiation and the scalar fields during
their life spans and within the regions where the solutions are valid. Here the fluid pressure and the
fluid density of these models are found to be decreasing functions of both r and t. The radiation field
decays with time in these models.

Also, we see that the smaller the value of ‘a’ is (that is, the stronger the radiation field), the
smaller the values of Ω(r, t) and ω(r, t) are, which shows that the radiation field slows down the
rotational velocities in this case. On the other hand, the stronger the scalar field is (the larger the
value of ‘a’), the larger the values of Ω(r, t) are, which means that the scalar field tends to increase
the rotational velocity (thereby, also the rotational perturbations). In this case, the expansion factor
of the fluid lines is found to be

θ =
(

27
2

πG

) 1
2

a

[(
27
2

πG

) 1
2

at +

√
3
4
d0

]−1

.

Thus if ‘a’ is positive, the models here are found to be expanding as well as rotating, which may be
taken as realistic astrophysical representations. For this case, the anisotropy (as a function of position
and time) is given by

F (r, t) = 16

⎡
⎣ d

16πG
+ b2r−4 − abr−2

{(
27
2

πG

) 1
2

at +

√
3
4
d0

}−2
3

+
9
16

a2

{(
27
2

πG

) 1
2

at +

√
3
4
d0

}−4
3
⎤
⎦

×
⎡
⎣ d

πG
+ 9a2

{(
27
2

πG

) 1
2

+

√
3
4
d0

}−4
3
⎤
⎦
−1

.
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Here, the fluid pressure comes out to be a decreasing function both of time and distance.
However, the pressure is infinitely large at the center of the model. In this universe, the scalar field
is found to be an increasing function of both time and distance, whereas the radiation field is seen
to be decreasing with both time and distance. The scalar field has a tendency to increase the rotation
while the radiation field has a damping effect on the rotational velocities.
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