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Abstract We analyze the radio spectral index of blazars from the University of
Michigan Radio Astronomy Observatory database, and find that there exists quasi-
periodic activity in 2251+158. The long-term periodicity analysis is accomplished by
three methods, which are the Jurkevich method (Jurkevich), the discrete correlation
function (DCF), and the Periodogram method (P). The results show that 2251+158
has two strong periodicities, which are P1 = 6.3 ± 1.1 yr and P2 = 3.8 ± 1.2 yr.
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1 INTRODUCTION

Blazars are well-known for their violent optical variation and variable timescales, which can range
from hours to years over wavelengths from radio to X-rays (Fan et al. 2004; Ulrich et al. 1997).
The optical variability timescales mainly consist of two types, short-term variation and long-term
variation. Generally, the short-term variation is non-periodic but the long-term variation in some
cases is claimed to be periodic and can be called quasi-periodic. The long-term optical variation of
blazars has been discussed in many papers (Kunkel 1967; Sillanpaa et al. 2008; Raiteri et al. 2001;
Chertoprud et al. 1973; Liu et al. 1995; Xie et al. 2002; Fan et al. 1998, 2006; Fan & Lin 2000;
Stickel et al. 1993) and references therein.

There are many methods used to calculate the long-term variation. The Periodogram method
came from Deeming (1975), and was improved by Lomb (1976) and Scargle (1982). The Jurkevich
method was first proposed by Jurkevich et al. (1971). The structure function was first proposed
by Simonetti et al. (1985). The Data Compensated Discrete Fourier Transform (DCDFT) was put
forward by Ferraz-Mello (1981), which was improved by Foster (1995). The discrete correlation
function method (DCF) was developed by Edelson & Krolik (1988).

The case 2251+158 (3C454.3, z = 0.859) is among the most intense and variable blazars, and
exhibits correlated behavior at optical and radio wavelengths (Pyatunina et al. 2007). The long-term
optical variation can be up to several years (Djorgovski et al. 2008). Webb et al. (1988) obtained
three periods, 6.4, 3.0 and 0.8 yr, using the B-band lightcurves during the timespan 1971–1985.
Ciaramella et al. (2004) found a period of 6.3 ± 0.2 yr using the radio data from the University of
Michigan Radio Astronomy Observatory (UMRAO) database. Kudryavtseva & Pyatunina (2006)
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show that there exist two periods, P1 = 12.4± 0.6yr and P2 = 6.2± 0.1yr, using the UMRAO and
the Metsähovi Radio Observatory database (MRO). Fan et al. (2007) used the database of UMRAO
and obtained the quasi-periods of P14.5 GHz = 6.3 ± 0.2 and 11.8 ± 1.1 yr, P8 GHz = 4.6 ± 0.1,
6.7 ± 0.1 and 13.6 ± 1.1 yr, and P4.8GHz = 6.2 ± 0.2 and 12.3 ± 1.8 yr. The radio emission can
be explained by the following model: There is a rotating black hole system surrounded by a massive
accretion disk with an intense plasma jet which is closely aligned to the line of sight. The associated
relativistic electrons produce the radio emission through synchrotron emissions (Ciaramella et al.
2004).

The spectral index is a very important parameter, which has wide application. For example,
based on the flat spectrum feature, flat spectrum radio quasars (FSRQs) form a subdivision of blazars;
the multi-band spectral index has a correlation with the accretion rate (Zhang et al. 2008). In this
paper, we use the preliminary radio data from UMRAO to carry out our periodic analysis of the
spectral index. This paper is arranged as follows: in Section 2, we obtain the spectral index from
the database of UMRAO and select 2251+158 to calculate the long term variation; in Section 3,
we introduce the methods to analyze the periodicity of 2251+158; and in Section 4, we discuss the
results and draw the conclusion.

2 SAMPLE

Blazars generally show a flat and inverted radio spectrum. However, it is not easy to obtain a typical
spectral index for a given source since the flux can be variable. Here, we use the University of
Michigan Radio Astronomy Observatory (UMRAO) database to calculate the spectral index α (Fν ∝
να) by using the averaged flux densities at the three frequencies (4.8, 8 and 14.5GHz). The detailed
process is as follows: for sources with densely sampled data, we average the data every week (seven
days). Therefore, we can get N sets of data for each source using the time bins (seven days for the
entire data set); each set has three pairs of flux densities for the corresponding frequencies, so for the
ith set, we fit the three pairs of data using linear regression to get the spectral index,αi, and obtain the
corresponding correlation coefficient. The UMRAO archive contains 141 blazars. We analyze those
sources and find that 2251+158 has a quasi-periodic character. After the calculation, 2251+158 has
162 points. The spectral index (α) is in the range of α = −0.52 ∼ 0.34. We use 〈α〉 =

∑N
i=1 αi/N

to obtain the averaged value, and σα =
√∑

(αi − α)2/N to obtain the standard deviation, which
yields 〈α〉 = −0.17 ± 0.22. Regarding the correlation coefficient (r), among the 162 points, only
nine points have r < 0.5, and the other points show very good correlation. The averaged lightcurves
(8GHz), the variable spectra, and the correlation coefficients are shown in Figure 1.

3 METHODS

3.1 Periodogram Method

The most common tool for periodicity analysis of both evenly and unevenly sampled signals is the
Periodogram method, which is an estimator of the signal energy in the frequency domain (Deeming
1975). Lomb (1976) introduced a modified form of this method, which can be described as follows.
Consider a series x(n) with N points, and let f be the frequency and τ be a variable timescale. Their
mean and variance are given by: x = 1

N

∑N
n=1 x(n) and σ2 = 1

N

∑N
n=1(x(n)−x)2. The normalized

Lomb’s PL, i.e. the power spectrum as a function of the angular frequency ω ≡ 2πf > 0, is
defined as

PL
N (ω) =

1
2σ2

⎧⎪⎨
⎪⎩

[∑N−1
n=0 (x(n) − x) cosω(tn − τ)

]2

∑N−1
n=0 cos2 ω(tn − τ)

⎫⎪⎬
⎪⎭
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+
1

2σ2

{
[
∑N−1

n=0 (x(n) − x) sinω(tn − τ)]2∑N−1
n=0 sin2 ω(tn − τ)

}
(1)

and τ is defined by the equation:

tan(2ωτ) =
∑N−1

n=0 sin 2ωtn∑N−1
n=0 cos 2ωtn

. (2)

We use ‘P ’ to represent the periodicity, so when τ is equal to the periodicity, P = τ . Using
Lomb’s Periodogram method to derive the period and using the half width at half maximum
(HWHM) to calculate the corresponding error, we can get the following results. For 2251+158,
there are two quasi-periodicities, f1 = 0.0027± 0.00045 (P1 = 6.3± 1.1 yr) with significance level
p < 0.001% and f2 = 0.0045 ± 0.00035 (P2 = 3.8 ± 1.2 yr) with significance level p < 0.001%.
The other periodicity f = 0.0013 (P = 12.9 yr) should be two times the quasi-period P = 6.29 yr.
The results are shown in Figure 2. The white noise and the red noise (Schulz & Mudelsee 2002),
both with probability 95%, are shown in Figure 2.

Fig. 1 Upper Panel represents the averaged lightcurves. In the Middle Panel, filled circles represent
the variance of the spectral index, and open circles represent the Gaussian white noise. The Lower
Panel shows the calculated spectral correlation coefficient.

3.2 DCF Method

The DCF method (Edelson & Krolik 1988; Hufnagel & Bregman 1992) can analyze the correlation
between two-variable temporal data sets with a given time lag. If we only input one set, we can
calculate the period of the set. In order to implement this method, firstly, we calculate the unbinned
discrete correlation function (UDCF) between the two data streams a and b, i.e.

UDCFij =
(ai − 〈a〉) × (bj − 〈b〉)√

σ2
a × σ2

b

, (3)

where ai and bj are two data streams, 〈a〉 and 〈b〉 are the average values of the data sets, and σa and
σb are the corresponding standard deviations. Secondly, we average the points by defining the same
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time lag through binning the UDCFij into suitably sized time-bins in order to get the DCF for each
time lag τ ,

DCF(τ) =
1
M

∑
UDCFij(τ), (4)

where M is the total number of pairs. The standard error of each bin is

σ(τ) =
1
M

{∑
[UDCFij − DCF(τ)]2

}0.5

. (5)

Using the DCF method and the Gaussian fitting, we can obtain that the periodicity of 2251+158
is 6.1 ± 0.084 yr, which is shown in Figure 3.

Fig. 2 Calculated result of the method of Lomb’s Periodogram for 2251+158. The frequency is in
units of 2π × day−1. The dotted line denotes the white noise with probability 95% and the dash-
dotted line denotes the red noise with probability 95%.

Fig. 3 Calculated result from using the method of DCF for 2251+158. The solid line stands for the
result of the Gaussian fitting. Am stands for the amplitude of the result of DCF. N(6.1, 1.82) stands
for the expected value being 6.1 and standard deviation being 1.8 for the Gaussian fitting.

3.3 Jurkevich Method

The Jurkevich method (Jurkevich et al. 1971) is based on the expected mean square deviation. It tests
a run of trial periods around which the data are folded. All data are assigned to m groups according
to their phases around each bin, and the entire V 2

m for each bin is computed. If the trial period equals
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Fig. 4 Calculated result of the Jurkevich method for 2251+158.

the true one, then V 2
m reaches its minimum. A ‘good’ period will give a much reduced variance

relative to those given by ‘false’ trial periods and with almost constant values. Kidger et al. (1992)
introduced a fraction of the variance of η = (1−V 2

m)/V 2
m, where V 2

m is the normalized value. In the
normalized plot, a value of V 2

m = 1 implies η = 0, and there is no periodicity. The best periods can
be identified from the value of η ≥ 0.5, which implies that there is a very strong periodicity, and a
value of η < 0.25 implies that the periodicity, if genuine, is weak. A further test is the relationship
between the depth of the minimum and the noise in the ‘flat’ section of the V 2

m curve close to the
adopted period. If the absolute value of the relative change of the minimum in the ‘flat’ section is
larger than ten times the standard error of this ‘flat’ section, the periodicity in the data can also be
considered to be significant, and the minimum can be regarded as highly reliable. The error in the
period is estimated by calculating the HWHM of the minimum in the V 2

m.
We obtain the result by using m = 20, which is shown in Figure 4. There are two obvious

minimum values of V 2
m, which indicate that there might be two quasi-periodicities in this sources.

When V 2
m = 0.66, i.e. f = 0.52, there is a strong periodicity, P1 = 3.6 ± 0.1 yr. When V 2

m = 0.43,
i.e. f = 1.32, there is another strong periodicity, P2 = 6.2 ± 0.8 yr.

4 DISCUSSION AND CONCLUSIONS

4.1 Discussion

Multi-wavelength observations of blazars suggest the presence of various emission components. For
this reason, variable timescales, time delays and quantified spectral variability provide important in-
formation about the locations of different components (Trevese & Vagnetti 2002; Vagnetti & Trevese
2003).

From Figure 1, we can find that the lightcurve and the spectral variation have the same profile, so
we use the DCF to analyze the time correlation between them. The result is shown in Figure 5 and the
time delay is 329.4 ± 15.4 d (based on the Gaussian fitting). The existence of a time delay between
the lightcurves and the spectral variance is a very special phenomenon. Many authors (Biermann &
Strittmatter 1987; Kirk & Schneider 1987; Brindle 1996; Fritz 1989) have used the idea of a moving
shock in a relativistic jet with a helical magnetic field to explain the variance of flux. In addition, they
consider that the strong shocks are very important in blazar emission and suggest that the spectral
variance is due to the superposition of a variable polarized cut-off component and an unpolarized
component embedded in a steeper spectrum. The variance of the flux density is not necessarily
synchronized with the spectral variance, so the lightcurves can have a delay in the spectral variance.

Because of the lack of papers referring to the periodicity analysis of the spectral index, we use
the periodicity of the radio lightcurves to analyze our results. For 2251+158, our result shows that
there are two strong quasi-periodicities, P1 = 6.3 ± 1.1 yr and P2 = 3.8 ± 1.2 yr; the former is
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Fig. 5 Correlation analysis between the lightcurves and the spectral variation of 2251+158. The time
delay is 329.4 d from the Gaussian fitting.

consistent with Fan et al. (2007), Kudryavtseva & Pyatunina (2006), and Ciaramella et al. (2004),
and the later is consistent with Fan et al. (2007).

For blazars, the variability mechanism is not well understood. There are some models which
have been proposed to explain the quasi-periodicity, for example, the binary black-hole model, the
thermal instability model and the perturbation model (Fan et al. 2007). For 2251+158, the spectral
variation shows quasi-periodicity, and this periodicity is consistent with the lightcurve. Furthermore,
there is a time delay between the spectral variation and the lightcurves. Considering the discussion
about the time delay, we can see that the periodicity of spectral variation can be explained by the
perturbation model.

Fan et al. (2009) introduced a method to calculate the short term timescales, which can be
summarized as follows: For a certain source, there are n sets of data (ti, Si, i = 1, 2, ..., n). We
calculate the time difference (Δtjk), the variability (ΔFjk), and the standard deviation (σjk) between
the jth set and the kth set of data

Δtjk = |tj − tk|, ΔFjk = |Fj − Fk|, σjk =
√

σ2
j + σ2

k, (6)

where j, k = 1, 2, ..., n, so we have n(n−1)/2 sets of Δtjk , ΔFjk and σjk values. Then, if ΔFjk >
5σjk , we select the shortest Δtjk to be the short term timescale for this source, namely tobs =
min(Δtjk). After our calculation, we can get tobs = 4.96 d. In our former paper, Fan et al. (2009)
used the lightcurves to derive that the timescale is 0.77 d. The difference between the two timescales
might come from the different spacing between the spectral variation and the lightcurves. Not only
in the radio band, but also in the other bands, a variation of time scales over a few days has been
found. Giommi et al. (2006) found that the optical and ultraviolet flux doubled within only 1.7 d and
Ogle et al. (2010) found that the soft X-ray flux slightly varied during the same time.

4.2 Conclusions

In this paper, we use three methods, the Periodogram method, the Jurkevich method and the DCF
method, to analyze the quasi-periodicity of 2251+158. The results show that 2251+158 has two
strong periodicities, which are P1 = 6.3 ± 1.1 yr and P2 = 3.8 ± 1.2 yr.
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