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Abstract An operator associated with third-order potential derivatives and a force gra-
dient operator corresponding to second-order potential derivatives are used together
to design a number of new fourth-order explicit symplectic integrators for the natu-
ral splitting of a Hamiltonian into both the kinetic energy with a quadratic form of
momenta and the potential energy as a function of position coordinates. Numerical
simulations show that some new optimal symplectic algorithms are much better than
their non-optimal counterparts in terms of accuracy of energy and position calcula-
tions.
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1 INTRODUCTION

Complicated dynamical behaviors in celestial mechanics bring computational challenges. It is neces-
sary to have good orbit determinations. Geometric integrators such as manifold correction schemes
and symplectic methods are confirmed to yield a substantially improved long-term behavior com-
pared to classical integrators like Runge-Kutta algorithms. The manifold correction schemes mean
the preservation of some invariant manifolds in every integration step of the classical integrators used
(Wu et al. 2007; Ma et al. 2008; Zhong & Wu 2010), and the symplectic methods deal with sym-
plectic structure-preservation algorithms designed specifically for a Hamiltonian dynamical system.
Seen from the perspective of qualitative research, the structure-preservation becomes more impor-
tant than the manifold-preservation. Because of this, the development and application of symplectic
methods are considered here.

There are two kinds of symplectic integration algorithms. One is implicit symplectic integra-
tors for an inseparable Hamiltonian system (Feng 1985, 1986), and the other is explicit symplectic
integrators for a separable Hamiltonian system. As an illustration, there seem to be a third kind of
symplectic method obtained from a combination of the two types (Liao 1997; Preto & Saha 2009;
Lubich et al. 2010; Zhong et al. 2010). In essence, they are mainly regarded as the first type, namely,
implicit splitting integrators. Thanks to an advantage for convenience of application, the explicit
symplectic integrators have become widely popular in a number of references. When a Hamiltonian
system can naturally be split into two integrable parts of kinetic and potential energies, the ex-
plicit second- and third-order symplectic algorithms were built by Ruth (1983). Then, there were the
fourth-order symplectic integrators (Forest & Ruth 1990), and higher-order symplectic schemes by
the composition method of Yoshida (1990). These are attributed to the usual non-gradient symplectic
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algorithms. A notable point is that the third-order force gradient symplectic integrator was present
when the usual third-order symplectic integrator began to appear in the literature. By the included
force gradient operator, fourth-order force gradient symplectic algorithms were developed (Chin
1997, 2007; Omelyan et al. 2002). It was reported that these gradient methods are more accurate
than their corresponding usual non-gradient ones. Recently, it has been shown that the optimal third-
order gradient symplectic methods with the norm of fourth-order truncation errors being minimized
are better than the non-optimal ones in terms of the quality of integration, even typically superior
to the usual fourth-order symplectic integrators of Forest & Ruth (Li & Wu 2010a, b). In addition,
the fourth-order force gradient symplectic integrators are extended to solve a gravitational n-body
Hamiltonian separated into a dominant Keplerian part and a perturbation in Jacobi coordinates (Xu
& Wu 2010). Of course, the most popular usual symplectic integrator for the Hamiltonian decom-
position is the second-order leapfrog symplectic scheme, first introduced by Wisdom & Holman
(1991). Along this idea, the symplectic correctors (Wisdom et al. 1996) and the pseudo-high-order
symplectic integrators (Chambers & Murison 2000), as optimized algorithms, were proposed.

It should be emphasized that the force gradient operator mentioned above depends on the
second-order potential derivatives. Another operator associated with the third-order potential deriva-
tives will be found to be easy in practical computations. Based on Yoshida’s composition method by
the two included operators, a class of new high-order explicit symplectic integrators for the natural
splitting of a Hamiltonian should be constructed from a theoretical point of view. This is our main
motivation in the present paper. Therefore, in Section 2 we provide the new fourth-order explicit
symplectic integrators including optimized algorithms with the least norm of fifth-order truncation
errors. Then, they are evaluated through a series of numerical simulations in Section 3. Finally,
Section 4 gives our conclusions.

2 CONSTRUCTION OF NEW SYMPLECTIC ALGORITHMS

Some notations are introduced here. Let p and q be momentum and coordinate vectors, respectively.
Their ith components are pi and qi. For a separable Hamiltonian system

H = T + V, (1)

two Lie derivatives with respect to the kinetic energy T = p2/2 and the potential energy V = V (q)
are specified as

A = { , T } =
∑

i

pi
∂

∂qi
, B = { , V } =

∑
i

Fi
∂

∂pi
, (2)

where force Fi = −∂V/∂qi = −Vi, and the symbol {, } denotes the Poisson bracket. If commutator
[A, B] = AB−BA is given, then it is easy to work out the commutator [B, [A, B]] (Xu & Wu 2010)

C = [B, [A, B]] = { , {V, {T, V }}} = 2
∑

i

∑
j

∑
k

VijVkTjk
∂

∂pi

= 2
∑

i

∑
j

Fj
∂Fi

∂qj

∂

∂pi
= 2

∑
i

∑
j

Fj
∂Fj

∂qi

∂

∂pi
=

∑
i

∇i|F |2 ∂

∂pi
(3)

with Vij = ∂2V/∂qi∂qj and Tjk = ∂2T/∂pj∂pk = δjk . This sufficiently shows that C is simply
the gradient of the square of the force, F · F . In this sense, C is called the force gradient operator
connected with the first- and second-order potential derivatives. Further, we can calculate a more
complicated commutator in the following manner

D = [B, [A, [B, [A, B]]]] = { , {V, {T, {V, {T, V }}}}}
= −2

∑
i

∑
j

∑
k

Vk(2VjkVij + VjVijk)
∂

∂pi
, (4)
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where Vijk = ∂3V/∂qi∂qj∂qk. That is to say, D is an operator associated with the first-, second- and
third-order potential derivatives. It is worth noting that A and anyone of B (C or D) represent two
different types of operators. Clearly, the Lie derivatives of the momenta via A are always identical
to zero. So are the ones with respect to the positions by B, C or D. Equivalently, Api = Bqi =
Cqi = Dqi ≡ 0. In other words, A is a position-type operator which affects the dominant evolution
of the positions, and any combination of B, C or D represents the momentum-type operator which
affects the evolution of the momenta. However, [B, [B, [B, [B, A]]]] = [A, [B, [B, [B, A]]]] ≡ 0 for
any position and momentum.

The common symplectic integrators such as those of Yoshida (1990) are taken from symmetric
compositions of the two operators A and B. When the operator C is added to these compositions,
the so-called force gradient symplectic integrators are obtained (Chin 1997, 2007; Omelyan et al.
2002). Now, we use the four operators A, B, C and D to establish new symplectic integrators from
the two different compositions.

2.1 Position Type Algorithms Containing D at the Midpoint of Compositions

Let us begin with the following symmetric combinatorial products of exponential functions of Lie
operators

(A) exp(W ) = exp(aτA) ⊗ exp(bτB + cτ3C) ⊗ exp(dτA) ⊗ exp(eτB + fτ3C + gτ5D)
⊗ exp(dτA) ⊗ exp(bτB + cτ3C) ⊗ exp(aτA), (5)

where τ stands for a step size, and unknown time coefficients a, b, c, d, e, f and g need to be deter-
mined. Based on the Baker-Campbell-Hausdorff (BCH) formula, W is given by the expansion

W = (α1A + α2B)τ + (β1[B, [A, B]] + β2[A, [A, B]])τ3 + (γ1[A, [A, [B, [A, B]]]]
+γ2[A, [A, [A, [A, B]]]] + γ3[B, [A, [A, [A, B]]]] + γ4D)τ5 + O(τ7). (6)

In the above equation, α1, α2, β1, β2, γ1, γ2, γ3 and γ4 read

α1 = 2(a + d),
α2 = e + 2b,

β1 = 2c + f − 1
6
de2 +

1
3
deb +

1
3
db2 − 1

6
a(e + 2b)2,

β2 =
2
3
d2b − 1

6
d2e − 1

3
da(e + 2b) − 1

6
a2(e + 2b),

γ1 = −1
6
d2f +

1
60

d3e2 +
2
3
d2c +

1
15

d3eb − 8
30

d3b2

−1
3
da

(
2c + f − 1

6
de2 +

1
3
deb +

1
3
db2

)
+

1
6
a(e + 2b)

(2
3
d2b − 1

6
d2e

)

−1
6
a2

(
2c + f − 1

6
de2 +

1
3
deb +

1
3
db2

)
+

( 8
360

d2a − 4
90

da2 +
1
60

a3 +
2
30

da2
)
(e + 2b)2,

γ2 =
7

360
d4e − 16

360
d4b −

(1
3
da +

1
6
a2

)(2
3
d2b − 1

6
d2e

)

+
( 7

360
a4 +

8
360

d3a +
8
90

d2a2 +
7
90

da3
)
(e + 2b),

γ3 =
1
45

d3e2 − 7
90

d3eb +
8
90

d3b2 − 1
3
a(e + 2b)

(2
3
d2b − 1

6
d2e

)

+
( 4

360
d2a +

2
30

da2
)
(e + 2b)2 +

1
45

a3(e + 2b)2,
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γ4 = g − 1
3
def +

1
30

d2e3 +
1
3
dec +

1
3
dbf − 1

20
d2e2b − 1

60
d2eb2

+
2
3
dcb − 1

15
d2b3 − 1

3
a(e + 2b)

(
2c + f − 1

6
de2 − 1

3
deb − 1

3
db2

)

+
4

360
da(e + 2b)3 +

1
30

a2(e + 2b)3. (7)

Obviously, fourth-order conditions must satisfy four relations

α1 = 1, α2 = 1, β1 = β2 = 0. (8)

Besides those, an additional constraint on D (i.e. γ4 = 0) in the O(τ5) terms representing the
truncation errors should be given by

g =
1
3
def − 1

30
d2e3 − 1

3
dec − 1

3
dbf +

1
20

d2e2b +
1
60

d2eb2

−2
3
dcb +

1
15

d2b3 +
1
3
a(e + 2b)

(
2c + f − 1

6
de2 +

1
3
deb +

1
3
db2

)

− 4
360

da(e + 2b)3 − 1
30

a2(e + 2b)3. (9)

In terms of Equations (8) and (9), we have

a =
1
2
− d,

b =
1

24d2
,

e = 1 − 1
12d2

,

f =
1
12

− 1
24d

+
1

576d3
− 2c,

g =
c

12d
+

1
768d2

+
1

480
− cd − 1

288d
− 1

27648d4
,

and the coefficients of the truncation errors

γ1 = cd2 − 1
1152d

+
1

480
,

γ2 =
d2

288
− 1

1920
,

γ3 =
d

144
+

1
1728d

− 1
240

.

Due to the existence of the two free parameters c and d, there are an infinite number of fourth-
order integrators from a theoretical point of view. Of course, the choice of c and d has an effect on
the norm of the fifth-order truncation errors

γ =
√

γ2
1 + γ2

2 + γ2
3 . (10)

In the following, some fourth-order symplectic integrators are listed according to several possible
values of γ.

Case 1: optimization of the norm γ with respect to the two time coefficients c and d. — A
necessary condition for obtaining the minimized norm γmin is

∂γ

∂c
=

∂γ

∂d
= 0. (11)
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Taking into account Equations (8), (9) and (11), we can arrive at the global minimum of the norm
γmin ≈ 1.13 e–5 when the time coefficients are determined by

(A1) a = 0.115859581211902 e+0, b = 0.282363624036460 e+0,

c = 1.195426044501562 e–3, d = 0.384140418788098 e+0,

e = 0.435272751927079 e+0, f = 3.102414949088467 e–3,

g = 7.348945247751502 e–6. (12)

Case 2: optimization of the norm γ with respect to one of the two time coefficients c and d. —
Let us suppose c is a free parameter. At once, d can be solved from the minimum norm γmin. This
means that there is a problem of how to find the minimization of γ versus one time coefficient d. For
example, setting c = 1.353 e–3, we have γmin ≈ 1.66 e–5 if the other time coefficients satisfy

(A2) a = 0.118829530397266 e+0, b = 0.286780926768790 e+0,

d = 0.381170469602734 e+0, e = 0.426438146462420 e+0,

f = 2.663630070575213 e–3, g = 2.542599508647495 e–6. (13)

In addition, for c = 0 we obtain γmin ≈ 2.13 e–4 with

(A3) a = 7.031087134179426 e–2, b = 0.225673220373456 e+0,

d = 0.429689128658206 e+0, e = 0.548653559253087 e+0,

f = 8.247384758086507 e–3, g = −6.164365178933876 e–6. (14)

Of course, d can also be viewed as a free parameter. Thus, c can be given by the minimum norm
γmin. For instance, when d = 0.3769 we should require

(A4) a = 0.1231 e+0, b = 0.293316492742892 e+0,

c = 1.547389121085482 e–3, e = 0.413367014514215 e+0,

f = 2.113996492826425 e–3, g = 3.424612994889793 e–6 (15)

so as to get γmin ≈ 3.09 e–5.
Case 3: non-optimization. — If f = 0 and c = 0, we have γ ≈ 1.12 e–2 and

(A5) a = +0.675603595979829 e+0, b = +1.35120719195966 e+0,

d = −0.175603595979829 e+0, e = −1.70241438391932 e+0,

g = +2.604494332549321 e–2. (16)

When c = 0.3 and d = 0.1, it is easy to get a = 0.4, and the other coefficients become

(A6) b = +4.16666666666667 e+0, e = −7.333333333333333 e+0,

f = +8.02777777777777 e–1, g = −4.412037037037036 e–2, (17)

and the norm γ ≈ 4.31 e–3.
As a special case, when c = f = g = 0 Equation (5) is just the usual fourth-order non-gradient

symplectic algorithm (Forest & Ruth 1990) with

(FR) a =
1
2
b, b =

1
2 − 3

√
2
,

d =
1
2
(1 − b), e = 1 − 2b. (18)
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In addition, at e = f = g = 0 Equation (5) becomes the force gradient fourth-order symplectic
scheme (Chin 1997) with

(Ch) a =
1
2
(1 − 1√

3
), b =

1
2
,

c =
1
48

(2 −
√

3), d =
1

2
√

3
. (19)

2.2 Momentum Type Algorithms with D at the Ends of Compositions

By exchanging the position type operator A with the momentum type operators B, C or D, another
kind of composition is written as

(B) exp(W ) = exp(aτB + bτ3C + gτ5D) ⊗ exp(cτA) ⊗ exp(dτB + eτ3C) ⊗ exp(fτA)
⊗ exp(dτB + eτ3C) ⊗ exp(cτA) ⊗ exp(aτB + bτ3C + gτ5D). (20)

In the same way as mentioned above, we obtain

W = (α1A + α2B)τ + (β1[B, [A, B]] + β2[A, [A, B]])τ3 + (γ1[A, [A, [B, [A, B]]]]
+γ2[A, [A, [A, [A, B]]]] + γ3[B, [A, [A, [A, B]]]] + γ4D)τ5 + O(τ7), (21)

where

α1 = 2c + f,

α2 = 2(a + d),

β1 = 2b + 2e +
1
6
d2f − 2

3
cd2 +

1
3
ad(2c + f) +

1
6
a2(2c + f),

β2 =
1
6
df2 − 1

3
cdf − 1

3
c2d +

1
6
a(2c + f)2,

γ1 =
1
6
ef2 − 1

30
d2f3 − 1

3
cef − 1

3
c2e +

4
60

c3d2 +
1
20

cd2f3 +
1
60

c2d2f +
1
6
b(2c + f)2

−1
3
a(2c + f)

(1
6
df2 − 1

3
cdf − 1

3
c2d

)
−

( 4
360

ad +
1
30

a2
)
(2c + f)3,

γ2 =
14
360

c4d − 1
360

df4 − 8
360

cdf3 +
1
60

c2df2 +
7
90

c3df − 1
360

a(2c + f)4,

γ3 =
1
90

d2f3 − 1
10

cd2f2 +
4
45

c3d2 +
4
30

c2d2f +
1
6
a(2c + f)

(1
6
df2 − 1

3
cdf − 1

3
c2d

)

+
( 1

90
a2 − 2

360
ad

)
(2c + f)3,

γ4 = 2g +
1
3
def − 1

60
d3f2 − 4

3
cde − 1

15
cd3f +

8
30

c2d3 +
1
3
bd(2c + f)

+
1
6
a(2c + f)(2e +

1
6
d2f − 2

3
cd2) −

(1
3
ad +

1
6
a2

)(1
6
df2 − 1

3
cdf − 1

3
c2d

)

+
1
3
ab(2c + f) + (2c + f)2

( 4
90

a2d − 8
360

ad2 − 1
60

a3 − 2
30

a2d
)
. (22)

Noting the fourth-order conditions and ruling out D in the truncation errors, one can arrive at

a =
1
2
− 1

3(1 − f2)
,

b =
1

36(1 − f)(1 + f)2
− 1

48
− e,
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c =
1
2
(1 − f),

d =
1

3(1 − f2)
,

g =
e

6(1 + f)
− 60(f − 1)2 − 27(1 − f2)3

25920(1− f2)3
,

with the coefficients of the truncation errors

γ1 =
1
4
e(f2 − 1) − f

144(1 + f)2
+

1
480

,

γ2 =
1 − 5f2

2880
,

γ3 =
1 + 2f − 9f2

2160(1 + f)2
.

Several types of algorithms are provided as follows:
Case 1: optimization of the norm γ with respect to the two time coefficients e and f . — The

coefficients for the total minimization of γ vs. the two time coefficients e and f are

(B1) a = 8.021956831035854 e–2, b = 2.453837714743311 e–4,

c = 2.731001965480090 e–1, d = 4.197804316896410 e–1,

e = 2.983541871380019 e–3, f = 4.537996069039810 e–1,

g = 4.432055863874196 e–6. (23)

In this case, the least norm γmin ≈ 1.57 e–5.
Case 2: optimization of the norm γ with respect to one time coefficient. — For f = 0.469, the

minimization of γ with respect to the coefficient e, γmin ≈ 3.58 e–5, is presented when

(B2) a = 7.267093910261757 e–2, b = 4.643903722145720 e–4,

c = 0.2655 e+0, d = 4.273290608973820 e–1,

e = 2.943770559109599 e–3, g = 4.848453347909131 e–7. (24)

If e = 0.00295, these coefficients of the form

(B3) a = 7.983881940379656 e–2, b = 2.876347576330359 e–4,

c = 2.727041225755580 e–1, d = 4.201611805962030 e–1,

f = 4.545917548488850 e–1, g = 6.547567159073805 e–7 (25)

lead to the minimization of γ with respect to one parameter f , namely, γmin ≈ 1.70 e–5. On the
other hand, at e = 0 the least norm is γmin ≈ 5.37 e–4 when

(B4) a = 2.983406822767010 e–2, b = +4.617265851398423 e–3,

c = 2.302638136341820 e–1, d = +4.701659317723300 e–1,

f = 5.394723727316360 e–1, g = −3.360022691071039 e–4. (26)

Case 3: non-optimization. — At b = 0 and e = 0, we have γ ≈ 3.76 e–2 and

(B5) a = +6.756035959798290 e–1, c = +1.35120719195966 e+0,

d = −1.756035959798290 e–1, f = −1.70241438391932 e+0,

g = +3.513300435645027 e–3. (27)
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If e = 0.2 and f = 0.3, we obtain c = 0.35, γ ≈ 4.47 e–2 and

(B6) a = 1.33699633699634 e–1, b = −1.973525406217710 e–1,

d = 3.66300366300366 e–1, g = +2.517751328772039 e–2. (28)

As stated above, the two types of new symplectic algorithms have been constructed by the
operator D associated with the third-order potential derivatives added to various compositions. It
is expected that the norm γ for each optimal method is much smaller than that of any algorithm
without optimization. What about the numerical performance of these newly proposed methods in
practical computations? Saying this in another way, it is strongly desired to know whether the sym-
plectic integrators computed by the optimization of the norm are indeed better than those without
the optimization. Numerical simulations will answer this question.

3 NUMERICAL EXPERIMENTS

Physical models we adopt are the Hénon-Heiles system and the Newtonian core-shell system with
a quadrupole (Vieira & Letelier 1999). The newly proposed algorithms are independently applied
to numerically solve the two problems. For comparison, the existing methods, the usual Forest-
Ruth fourth-order non-gradient symplectic algorithm (18) and the Chin force gradient fourth-order
symplectic scheme (19), are taken as reference integrators. Additionally, it is worth noting whether
regular or chaotic orbits in the considered systems influence the effectiveness of these new algo-
rithms.

3.1 Hénon-Heiles System

As a simplified galactic model, the Hénon-Heiles system is a Hamiltonian function given by

H =
1
2
(p2

x + p2
y + x2 + y2) + x2y − 1

3
y3. (29)

In this system, the kinetic energy
T = (p2

x + p2
y)/2,

and the potential energy
V = (x2 + y2)/2 + x2y − y3/3.

The related partial derivatives with respect to the potential are listed as follows:

B1(x, y) = Vx = x(1 + 2y), B2(x, y) = Vy = x2 + y − y2;
Vxx = 1 + 2y, Vxy = Vyx = 2x, Vyy = 1 − 2y;

Vxxy = Vxyx = Vyxx = 2, Vyyy = −2,

and Vijk ≡ 0 for other cases, where indexes i, j and k range from 1 and 2, corresponding to x and
y components respectively. The two components of the operator C representing the momenta are
expressed as

C1(x, y) = Cpx = 2
2∑

j=1

VjVxj = 2x[(1 + 2y)2 + 2(x2 + y − y2)],

C2(x, y) = Cpy = 2
2∑

j=1

VjVyj = 2[2x2(1 + 2y) + (x2 + y − y2)(1 − 2y)].
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Moreover, the two components of the operator D representing the momenta are

D1(x, y) = Dpx = −2
2∑

j=1

2∑
k=1

Vk(2VjkVxj + VjVxjk)

= −4x(1 + 2y)[(1 + 2y)2 + 5x2 + y − y2]
−4x(x2 + y − y2)(5 + 2y),

D2(x, y) = Dpy = −2
2∑

j=1

2∑
k=1

Vk(2VjkVyj + VjVyjk)

= −4x2(1 + 2y)(5 + 2y) − 4(x2 + y − y2)
·[3x2 + (1 − 2y)2 − y + y2].

Hence, the difference schemes of the A type algorithms (5) from the (n − 1)th step to the nth step

read as

(A)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′ = x(n−1) + aτpx(n−1),

y′ = y(n−1) + aτpy(n−1);
p′x = px(n−1) − bτB1(x′, y′) + cτ3C1(x′, y′),
p′y = py(n−1) − bτB2(x′, y′) + cτ3C2(x′, y′);
x′′ = x′ + dτp′x,

y′′ = y′ + dτp′y;
p′′x = p′x − eτB1(x′′, y′′) + fτ3C1(x′′, y′′) + gτ5D1(x′′, y′′),
p′′y = p′y − eτB2(x′′, y′′) + fτ3C2(x′′, y′′) + gτ5D2(x′′, y′′);
x′′′ = x′′ + dτp′′x,

y′′′ = y′′ + dτp′′y ;
pxn = p′′x − bτB1(x′′′, y′′′) + cτ3C1(x′′′, y′′′),
pyn = p′′y − bτB2(x′′′, y′′′) + cτ3C2(x′′′, y′′′);
xn = x′′′ + aτpxn,

yn = y′′′ + aτpyn.

(30)

In a similar way, the difference schemes of the B type algorithms (20) can also be given.
With the increase of energy E as the perturbation of the system, the nonlinearity of the system

becomes stronger and stronger. For energy E = 1/7, the main part of the phase space is chaotic,
as described in the Poincaré section of Figure 1. This plot is drawn by the use of method A1 with a
fixed step size of 0.1. The other methods give almost the same plot. In order to gain detailed insight
into the effectiveness of the A type algorithms, Figure 2 draws relative energy errors ΔE/E for
these schemes applied to an ordered orbit with initial conditions x = 0.1, y = 0.2 and px = 0.25. It
can be seen clearly that the optimal methods A1–A4 are always better than the non-optimal methods
A5 and A6 in terms of the numerical accuracy, and explicitly superior to the force gradient method
Ch and the usual non-gradient symplectic algorithm FR. These conclusions are also applicable to
the B type algorithms used to integrate a chaotic orbit with initial conditions x = 0.1, y = 0.2 and
px = 0.3. See Table 1 for details.

Besides the energy accuracy, of course the position or momentum error can also be used as a
criterion for evaluating the quality of each symplectic integrator. As shown in Figure 3, for some
time any of the optimal methods A1, A2, A4 or B1–B3 has given much better results than the non-
optimal methods A5, A6, B5, B6 or FR in terms of the accuracy of the position error |Δr| either
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Fig. 1 Poincaré section of the plane y = 0 and py > 0 for the Hénon-Heiles system.

Table 1 Energy accuracy measured by max |ΔE/E| during the integration time of 100 000 and
the computational cost of each B type algorithm when solving a chaotic orbit of the Hénon-Heiles
system, and using a fixed time step of τ = 0.1.

Algorithm B1 B2 B3 B4 B5 B6 FR Ch

Accuracy 4.5 e–9 4.0 e–9 9.0 e–9 3.0 e–7 1.2 e–5 3.5 e–5 3.3 e–5 1.0 e–6

CPU time (s) 2 2 2 2 2 2 1 1

for the regular orbit or for the chaotic orbit. Methods A3 and Ch or B4 and Ch have almost the
same accuracy, which is inferior to that of A1 but superior to that of FR. In short, the numerical
performances in the position errors are basically in agreement with those of the energy accuracies.
Here are two points to illustrate. One is the reference orbits which are obtained from a 12th-order
Cowell integration scheme. The other is the evolution of the position errors with time, which would
be unlike that of the energy errors. It is reasonable that the position errors of a symplectic integrator
should grow exponentially with time for a chaotic orbit, but there is no drift in energy. It should
be noted that this exponential growth cannot be permanent. In fact, there is no longer an increase
of the position errors after the time when |Δr| is equal to one. This is due to the saturation of
orbits in a bounded region. This similar case also occurs when the two-nearby-trajectories method is
used to calculate Lyapunov exponents (Wu et al. 2006). Fortunately, renormalization can avoid the
appearance of this problem in the computation of the Lyapunov exponents.

3.2 Newtonian Core-shell System with a Quadrupole

In the cylindrical coordinates (ρ, φ, z), the Newtonian core-shell model with a quadrupole (Vieira &
Letelier 1999) is written as

H =
1
2
(p2

ρ + p2
z) +

1
2

L2

ρ2
− 1

R
+

1
2
Q(2z2 − ρ2), (31)

where R =
√

ρ2 + z2, L is the constant magnitude of the angular momentum and Q stands for the
quadrupole parameter.
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Fig. 2 Relative energy error ΔE/E for each of the A type algorithms solving an ordered orbit with
initial conditions x = 0.1, y = 0.2 and px = 0.25 in Fig. 1.

The quadrupolar shell plays an important role in providing a perturbative force. The larger the
quadrupolar parameter becomes, the stronger the chaos is if energy E and the angular momentum
L satisfy a certain condition in which chaos occurs. For example, a strong chaotic belt appears in
Figure 4 when E = −2.12 × 10−2, L = 3.8 and Q = −1.2047× 10−5. Now, we employ a chaotic
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Fig. 3 Evolution of the position error log10 |Δr| with log10 t. Panel (a) relates to the A type algo-
rithms solving the ordered orbit of Fig. 2, and Panel (b) to the B type algorithms solving the chaotic
orbit of Table 1.

Fig. 4 Poincaré section on the plane z = 0 and pz > 0 for the Newtonian core-shell system.

orbit of initial conditions ρ = 15, z = 5 and pρ = 0.1 to check the numerical accuracy of the related
methods with a step size of τ = 0.5. As in Figure 2, the results in Figure 5 show that any of the
optimal methods A1–A4 is still better than the other methods A5, A6, FR or Ch. If the chaotic orbit
is replaced with an ordered orbit with initial conditions ρ = 13, z = 5 and pρ = 0.1 and the A type
algorithms are replaced by the B type algorithms, Table 2 tells us similar results, that the optimal
methods B1–B4 are superior to the non-optimal methods B5, B6, FR and Ch in terms of accuracy of
energy calculations. On the other hand, Figure 6 also shows that the position errors of the optimal
methods A1, A2, A4 and B1–B3 are the smallest, and that of the FR method is the largest. As a
notable point, unlike Figure 3, Figure 6 shows no saturation of orbits during the considered time. In
other words, the position errors for the core-shell problem grow much more slowly than ones for the
Hénon-Heiles system. Therefore, the chaos in the core-shell system should become rather weak.

Generally speaking, both the A type optimal methods and the B type optimal methods are dras-
tically improved in terms of accuracy compared with the non-optimal methods, as shown in the
above numerical simulations. This benefits from the least norm of the truncation errors. In addition,
the optimal method A1 (or B1) with respect to two time coefficients is very close to the optimized
method A2 (or B2) with respect to one time coefficient, because there is not an explicit difference
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Fig. 5 Relative energy error ΔE/E for each of the A type algorithms when solving a chaotic orbit
with initial conditions ρ = 15, z = 5 and pρ = 0.1 in Fig. 4.

between the norm of the former and the one of the latter. In spite of these facts, we should emphasize
that the least norm is merely a necessary but not sufficient condition for the minimum truncation
errors. Obviously, the truncation errors depend on not only the three coefficients γ1, γ2 and γ3 as-
sociated with the least norm, but also the commutators [A, [A, [B, [A, B]]]], [A, [A, [A, [A, B]]]] and
[B, [A, [A, [A, B]]]].
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Fig. 6 Evolution of the position error log10 |Δr| with log10 t. The left panel relates to the A type
algorithms solving the chaotic orbit of Fig. 5, and the right panel to the B type algorithms solving
the regular orbit of Table 2. Note that the symbol B3*0.1 means the plotted error |Δr| decreased by
10 times for the B3 method.

Finally, let us compare the computational cost among these methods. Each A type algorithm in
Figure 2 needs about 2 s of CPU time, and in Figure 5 it uses about 4 s of CPU time. As to CPU time
of the B type algorithms, we list them in Tables 1 and 2. It is shown obviously that the computational
efficiency of the A type algorithms is faster than that of the B type algorithms. In addition, use of the
operator D leads to the A and B type algorithms having a little but not much additional computational
cost, as compared with the usual non-gradient symplectic algorithm (18) of Forest & Ruth and the
force gradient symplectic scheme (19) of Chin. In particular, an interesting result which can be seen
from Tables 3 and 4 is that any A type algorithm is faster in the computations than the FR and Ch
methods when they use smaller time steps to obtain nearly the same levels of energy accuracies
given by algorithms like A1. It is more interesting to apply the same time steps to compare our
methods with a 6th-order symplectic integrator S6 and an 8th-order symplectic integrator S8 of
Yoshida (1990). In terms of accuracy, our optimal algorithms A1 and A2 are superior to S6, and
even almost equivalent to S8. On the other hand, they are close to S6 in terms of computational cost.

Table 2 Energy accuracy measured by max|ΔE/E| during the integration time of 100 000 and the
computational cost of each B type algorithm when solving an ordered orbit of the core-shell system,
and using a fixed time step of τ = 0.5.

Algorithm B1 B2 B3 B4 B5 B6 FR Ch

Accuracy 8.0 e–12 9.0 e–12 1.2 e–11 3.5 e–10 6.0 e–9 3.0 e–8 4.0 e–8 7.0 e–10

CPU time (s) 7 7 7 7 7 7 2 2

4 SUMMARY

With the help of both the operator D associated with the third-order potential derivatives and the
force gradient operator C corresponding to the included second-order potential derivatives, we
present new fourth-order explicit symplectic integrators for the natural splitting of a Hamiltonian
into the kinetic and potential energies. Considering that the norm of the truncation errors is required
to be minimized, we also give many optimal algorithms. It is argued through various numerical tests
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Table 3 Comparisons between the computational cost of the FR and Ch methods and that of the
newly proposed methods when these algorithms use different time steps in solving the chaotic orbit
of Table 1, and obtain the same levels of the energy accuracy. For an in-depth comparison, a 6th-
order symplectic integrator S6 and an 8th-order symplectic integrator S8 of Yoshida with the same
time step as the new schemes are also included, respectively.

Algorithm A1 A2 B1 FR Ch S6 S8

Accuracy 3.0 e–9 1.5 e–9 4.5 e–9 3.0 e–9 4.0 e–9 6.0 e–7 7 e–9

Time step 0.1 0.1 0.1 0.01 0.02 0.1 0.1

CPU time (s) 2 2 2 11 4 2 4

Table 4 Same as Table 3 but the Ordered Orbit of Table 2 is Used

Algorithm A1 A2 B1 FR Ch S6 S8

Accuracy 5.0 e–12 6.0 e–12 8.0 e–12 3.0 e–12 1.0 e–12 3.5 e–11 2.8 e–13

Time step 0.5 0.5 0.5 0.05 0.1 0.5 0.5

CPU time (s) 4 4 7 17 6 4 9

that the optimal algorithms A1–A4 and B1–B4 have very good demonstrations of the accuracy of
energy calculations. It can be concluded from the energy accuracy, the position accuracy and the
computational efficiency that any of the optimized methods A1, A2 or A4 can be regarded as the
best.

The new methods proposed are suitable for studying cosmological Hamiltonian evolution prob-
lems (Ma et al. 2009; Wu 2010) and gravitational few-body problems such as restricted three-
body problems. In addition, higher-order symplectic algorithms can be given similarly in prin-
ciple. It is worth emphasizing that an advantage of designing the symplectic schemes like the
present treatment compared with the usual way lies in using fewer sub-steps or products of ex-
ponential functions on Lie operators. Of course, operators with higher-order potential deriva-
tives, such as [B, [A, [B, [A, [B, [A, B]]]]] associated with fourth-order potential derivatives and
[B, [A, [B, [A, [B, [A, [B, [A, B]]]]]]] corresponding to fifth-order potential derivatives, can also be
added to these symmetric composition methods.
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