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Abstract With large-scale homogeneity, the universe is locally inhomogeneous, clus-
tering into stars, galaxies and larger structures. Such property is described by the
smoothness parameter α which is defined as the proportion of matter in the form
of intergalactic medium. If we consider the inhomogeneities over a small scale, there
should be modifications of the cosmological distances compared to a homogenous
model. Dyer and Roeder developed a second-order ordinary differential equation (D-
R equation) that describes the angular diameter distance-redshift relation for inho-
mogeneous cosmological models. Furthermore, we may obtain the D-R equation for
observational H(z) data (OHD). The density-parameter ΩM, the state of dark energy
ω, and the smoothness-parameter α are constrained by a set of OHD in a spatially
flat ΛCDM universe as well as a spatially flat XCDM universe. By using a χ2 mini-
mization method, we get α = 0.81+0.19

−0.20 and ΩM = 0.32+0.12
−0.06 at the 1σ confidence

level. If we assume a Gaussian prior of ΩM = 0.26 ± 0.1, we get α = 0.93+0.07
−0.19

and ΩM = 0.31+0.06
−0.05. For the XCDM model, α is constrained to α ≥ 0.80 but ω is

weakly constrained around −1, where ω describes the equation of state of the dark en-
ergy (pX = ωρX). We conclude that OHD constrains the smoothness parameter more
effectively than the data of SNe Ia and compact radio sources.
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1 INTRODUCTION

In the past few decades, we have entered into an era of active cosmological research and have gained
a better understanding of our universe. According to the cosmological principle, our universe is ho-
mogeneous and isotropic on a large scale, but deviations from the homogeneities are also observed.
The corresponding researches are still exciting.

Recently, there have been mounting data from type Ia supernovae, cosmic microwave back-
ground (CMB) and large scale structure studies which suggest that the present universe is spatially
flat and has accelerating expansion. Combined analyses of the above cosmological observations
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support the finding that approximately 26% of the universe is cold dark matter (CDM) while the re-
maining 74% is dominated by an unknown exotic component with negative pressure – the so-called
dark energy – driving the current acceleration (Perlmutter et al. 1998; Perlmutter et al. 1999; Riess
et al. 1998; Riess et al. 2007; Efstathiou et al. 2002; Allen et al. 2004; Astier et al. 2006; Spergel
et al. 2007). The most likely candidate of this component is the cosmological constant (Carroll
et al. 1992). In addition, dynamical models like quintessence (Caldwell et al. 1998), Chaplygin Gas
(Kamenshchik et al. 2000), the “X-matter” model (Turner & White 1997; Chiba et al. 1997; Alcaniz
& Lima 1999; Alcaniz & Lima 2001; Lima & Alcaniz 2000; Lima et al. 2003; Dabrowski 2007),
Braneworld models (Csáki et al. 2000) and the Cardassian models (Freese & Lewis 2002) were pro-
posed to explain the accelerating expansion of the universe. In the case of X-matter, the dark energy
has the following property with an equation of state:

pX = ωρX, (1)

where ω is a constant independent of time or redshift. If ω = −1, it is reduced to the case of the
cosmological constant (the ΛCDM model).

However, these models could not perfectly explain the observations of our universe. Except for
the cosmological constant problem (Weinberg 1989), the deviation from the cosmological principle,
that the universe is homogenous and isotropic over a large scale, needed to be considered. It is
obvious that the matter in the universe is clustered into stars, galaxies and clusters of galaxies, rather
than being completely uniformly distributed everywhere in the space. It is also well known that the
universe is grouped into superclusters, or perhaps filaments, great walls and voids on larger scales.
Only on a scale larger than 1 Gpc does the universe appear smooth. Such problems may have effects
on the distance redshift relation. Therefore, a smoothness-parameter α was introduced to describe
the proportion of the mean density ρ in the form of intergalactic matter (Dyer & Roeder 1973):

α ≡ ρint

ρ
, (2)

where ρint is the mean density of the universe in the form of intergalactic matter, while ρ denotes the
mean density of the whole universe, so α ∈ [0, 1]. In the case of α = 0, it describes a universe where
all the matter is clustered into stars, galaxies and so on, while α = 1 is for a normal homogeneous
universe. Generally, 0 < α < 1 describes the universe as being partially in the form of clustered
matter and partially in the form of intergalactic matter.

The properties of angular diameter distance in a locally inhomogeneous universe have been
discussed (Weinberg 1989; Zeldovich 1967; Dashveski & Slysh 1966; Kayser et al. 1997). Later,
Dyer et al. established the Dyer-Roeder (D-R) equation to explain the distance-redshift relation in
a universe with a fractional intergalactic medium (Dyer & Roeder 1973), as well as without an
intergalactic medium (Dyer & Roeder 1972). In the literature (Santos et al. 2008), by using two
different samples of SNe type Ia data, the ΩM and α parameters are constrained by minimized χ2

fitting, which applies the Zeldovich-Kantowski-Dyer-Roeder (ZKDR) luminosity distance redshift
relation for a flat ΛCDM model. A χ2-analysis, by using the 115 SNe Ia data of the Astier et al.
sample (Astier et al. 2006), constrains the density-parameter to be ΩM = 0.26+0.17

−0.07 (2σ) while the
α parameter is free (all the values α ∈ [0, 1] are allowed even at 1σ). The analysis based on the 182
SNe Ia data of Riess et al. (Riess et al. 2007) constrains the pair of parameters to be ΩM = 0.33+0.09

−0.07

and α ≥ 0.42 (2σ), which provides a more stringent constraint because the sample extends to higher
redshifts.

Santos et al. (2008) have proposed constraining α, ΩM and ω by the angular diameter distances
of compact radio sources with the XCDM model. However, only the ω and ΩM parameters are well
constrained, but the α parameter is totally free at the 1σ level.

As can be seen, neither SNe Ia data nor compact radio source data are capable of constraining the
smoothness parameter. We could make use of other astronomical data to constrain the smoothness
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parameter. It is also feasible to constrain the inhomogeneous model by making use of the obser-
vational H(z) data (OHD), which can be obtained by the method to estimate the differential ages
of the oldest galaxies. Yi and Zhang (Zeus Collaboration et al. 2007) present a constraint on a flat
Friedmann-Robertson-Walker (FRW) universe with a matter component and a holographic dark en-
ergy component that uses OHD.

Wan et al. (2007) use OHD to constrain the Dvali-Gabadadze-Porrati (DGP) Universe. Lin et
al. (2009) successfully use OHD together with other observational data to constrain the ΛCDM
cosmology. The wiggling Hubble parameter H(z) is also studied (in Zhang & Zhu 2008).

It can be concluded that OHD is complementary to other cosmological probes and may also
present a better constraint on the smoothness parameter. In this article, the parameters ΩM, α and
ω are constrained by a total of 12 bins of OHD from Simon et al. (2005) and Ruth et al. (2008) in
spatially flat ΛCDM universes as well as in the XCDM model. This paper is organized as follows: In
Section 2, we review the basic origin of the Dyer-Roeder Equation and the relationship between the
Hubble parameter and different cosmological models, which is performed in an inhomogeneous uni-
verse. In Section 3, we constrain the parameters ΩM, ω and α from OHD. Discussions and prospects
are presented in Section 4.

2 DYER-ROEDER EQUATION AND THE RELATIONSHIP BETWEEN ZKDR
DISTANCE AND THE HUBBLE PARAMETER

We consider a stellar object which emits a beam of light propagating throughout space-time de-
scribed by the metric tensor gμν . We can identify a null surface Σ determined by the eikonal equation
gμνΣ,μΣ,ν = 0 along which the beam of light propagates. The direction of this light is the tangent
vector of the null surface, i.e. the null geodesic kμ = −Σ,μ. The beam of light rays can be described
by xμ = (v, yi), where x0 = ν is the affine parameter and yi (i = 1, 2, 3) indicates the three differ-
ent directions of the propagation of the light. The vector field is tangent to the light ray congruence,

kμ =
dxμ

dv
= −Σ,μ, which determines two optical scalars: θ describing the convergence of the light

and the shear parameter σ,

θ ≡ 1
2
kμ

;μ, σ ≡ kμ;νm̃μm̃ν , (3)

where m̃μ =
1√
2
(ξμ − iη) is a complex vector that is orthogonal to kμ (kμm̃μ = 0). Since kμ =

−Σ,μ, the vorticity which is connected with the light beam is zero, therefore the congruence of light
is characterized by these two optical scalars, σ and θ. These two optical scalars satisfy the Sachs
propagation equations (Kristian & Sachs 1966)

θ̇ + θ2 + |σ|2 = −1
2
Rμνkμkν , (4)

σ̇ + 2θσ = −1
2
Cμντλm̃μkνm̃τkλ, (5)

where a dot denotes the derivative with respect to v, Rμν and R are the Ricci tensor and Ricci scalar
respectively, and Cμντλ is the Weyl tensor which is zero in a conformally flat FRW space-time. One
can see that if the shear σ is initially zero, the Weyl tensor could always be zero, which automatically
satisfies the condition in FRW space-time (Demianski et al. 2003). Therefore, assuming that the light
beam has no shear, the condition σ = 0, we may describe the convergence and divergence of this
beam of light by the parameter θ (empty beam approximation).

The relative rate of the change of an infinitesimal area A on the cross section of the beam can
be described by the optical scalar θ (and the distortion by σ), the only parameter that characterizes
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the congruence of light, which relates to A by

θ =
1
2

Ȧ

A
. (6)

Substituting Equation (4) into the above expression, one can reduce the optical scalar equation to
(Sachs 1961) √̈

A +
1
2
Rμνkμkν

√
A = 0. (7)

The Einstein field equation is

Rμν − 1
2
gμνR− λgμν = −8πG

c2
Tμν . (8)

Multiply each side by kμkν , then the two gμν terms vanish while leaving the following form:

Rμνkμkν = −8πG

c2
Tμνkμkν . (9)

The universe, though locally inhomogeously distributed, is homogeneous and isotropic on the largest
scale on average, so we choose the Robertson-Walker metric

ds2 = c2dt2 − a2(t)dσ2, (10)

where dσ2 describes the spatial part of the metric and a(t) is the scale factor of the universe. We set
a(t) = 1 at the present time and choose a proper affine parameter v so that (Schrodinger 1956)

dt

dτ
=

a0

H0a
, (11)

where a0 and H0 are the present values of a and the Hubble constant, respectively. Then we have

k0 =
dx0

dτ
=

d(ct)
dτ

=
ca0

H0a
. (12)

We consider a pressureless matter dominant universe in which the energy-momentum tensor only
has a nonzero 0-0 part (with comoving coordinates), i.e. T00 = ρ and Tik = 0. In addition, if
a/a0 = (1 + z)−1 and ρ/ρ0 = (1 + z)3, we get

Tμνkμkν =
(

ca0

H0a

)2

αρ =
c2

H2
0

(1 + z)5αρ0. (13)

Substituting it into Equation (9) and then substituting the resulting equation into Equation (7), we
can finally obtain

√̈
A +

2
3
αΩM(1 + z)5

√
A = 0. (14)

Here, we use the density-parameter ΩM instead of ρ0. Due to a relationship between the angular
diameter distance DA and A, DA =

√
A (Schneider & Weiss 1988a; Schneider & Weiss 1988b;

Bartelmann & Schneider 1991; Watanabe et al. 1992), the Equation (14) becomes the Dyer-Roeder
Equation (Dyer & Roeder 1973)

D̈A +
2
3
αΩM(1 + z)5DA = 0, (15)

where the dots denote the derivatives with respect to the affine parameter v.
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It is necessary to mention that the smoothness parameter must be different at various epochs
of the universe due to the theory of formation of the large scale structure (Santos & Lima 2008;
Efstathiou et al. 2002). For very high redshift, the matter in the universe must be more smoothly
distributed compared to that of the present. From this point of view, we would have to identify
the smoothness parameter α as a function of z, α(z) in Equation (15), especially when discussing
the properties of the angular diameter distance at high redshift. However, because the samples of
compact radio sources, SNe Ia and OHD, are mostly located at low redshift (z < 2 for the Hubble
parameter), we set α to be a constant in the following discussion. We will also not consider the
variations of α with respect to z because the data are neither adequate nor precise enough. The
redshift dependence of α was discussed by Santos & Lima (2008).

Considering Equation (15) again, we may change the variable by substituting redshift z for the
affine parameter v and obtain,

(dz

dv

)2 d2DA

dz2
+

d2z

dv2

dDA

dz
+

2
3
αΩM(1 + z)5DA = 0. (16)

Note that the universe discussed is spatially flat, i.e. Ωk = 0, so that ΩΛ = 1−ΩM. Finally, after
the substitution of a variable (Demianski et al. 2003), we get a second-order ordinary differential
equation in which the angular diameter distance DA is a function of redshift z, and DA is in the unit
of c/H0

d2DA

dz2
+ P dDA

dz
+ QDA = 0, (17)

where the initial conditions ⎧⎨
⎩

DA(0) = 0,
dDA

dz

∣∣∣∣
z=0

= 1,
(18)

are satisfied.
In addition, the functions P and Q read

P =
7
2ΩM(1 + z)3 + 3ω+7

2 (1 − ΩM)(1 + z)3ω+3

ΩM(1 + z)4 + (1 − ΩM)(1 + z)3ω+4
,

Q =
3
2αΩM + 3ω+3

2 (1 − ΩM)(1 + z)3ω

ΩM(1 + z)2 + (1 − ΩM)(1 + z)3ω+2
.

(19)

The numerical results of DA and dDA/dz (hereafter D′
A(z)) are shown in Figure 1 with iterative cal-

culations by the fourth-order Runge-Kutta scheme (see Sect. 3.1). From the well known Etherington
principle, the relation between the luminosity distance and angular diameter distance (Etherington
1933),

DL = (1 + z)2DA, (20)

we can get the luminosity distance as a function of z.
At present, by the aid of the method based on the differential age of the oldest galaxies, the

Hubble parameter can be determined as a function of redshift. It reads

H(z) = −dz

dt

1
1 + z

, (21)

which can be directly measured by the determination of dz/dt.
Since the comoving radial distance r(z) (in units of c/H0) in flat geometry can be expressed as

r(z) =
∫ z

0

dz

E(z)
, (22)



130 H. R. Yu et al.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

Redshift z

D
A
(z

)
[/

cH
−

1
0

]

 

 

ω = −1
D

A
(Ω

M
=1.0,α=1.0)

D
A

(Ω
M

=0.26,α=1.0)

D
A

(Ω
M

=0.26,α=0.7)

Fig. 1 Angular diameter distance DA(z) as a function of redshift z for a flat ΛCDM model. Several
selected values of ΩM and α are shown. DA(z) is in units of c/H0 (color online).

where E(z) is the expansion rate of the universe, which relates the Hubble parameter to the Hubble
constant H0 in the equation

H(z) = H0E(z) , (23)

the angular diameter distance can be written as,

DA =
r(z)
1 + z

. (24)

Differentiating Equation (22) with respect to redshift z and combining with Equation (24), we can
get the expansion rate of the universe expressed by DA and D′

A(z) at any redshift z

E(z) =
1

(1 + z)D′
A(z) + DA

. (25)

3 SAMPLES AND RESULTS

3.1 Observational Data of H(z)

In order to constrain the smoothness parameter and other cosmological parameters with OHD, we
need to integrate Equation (17) to obtain DA(z) and D′

A(z) as a function of z (Fig. 1), then from
Equation (23) and Equation (25) derive the Hubble parameter as a function of redshift z.

Although it is not possible to obtain the analytical solution of Equation (17) (Kantowski 1998;
Kantowski et al. 2000; Kantowski & Thomas 2001), one can get an approximate expression of the
equation which is accurate enough to use in practice (Demianski et al. 2003). It is convenient for
controlling the precision that we integrate Equation (17), iteratively applying the 4th-order Runge-
Kutta scheme, and then calculate numerical results of DA(z) and D′

A(z). Furthermore, the Hubble
parameter H(ΩM, ω, α, h; z) can be obtained with any cosmological model at an arbitrary z.

Note that OHD, consisting of two parts, is obtained from two different sources. For one part,
from the Simon et al. sample (Simon et al. 2005), we have a sample of nine bins and z ∈ [0, 1.75],
while for the other, from the Ruth et al. sample (Daly et al. 2008), we choose the data separated into
three bins. In Table 1 we listed all the data and errors mentioned above with their sources marked,
and we plotted them in Figures 2 and 3 respectively. We can compare the theoretical curves of H(z)
and the data in different models (see Sects.3.2 and 3.3).
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Table 1 Observational H(z) Data (OHD)

Redshift z H(z) 1σ interval Data

0.05 75.4 ±2.3 •
0.09 69 ±12 �
0.17 83 ±8.3 �
0.27 70 ±14 �
0.40 87 ±17.4 �
0.505 96.9 ±6.9 •
0.88 117 ±23.4 �
0.905 116.9 ±11.5 •
1.30 168 ±13.4 �
1.43 177 ±14.2 �
1.53 140 ±14 �
1.75 202 ±40.4 �

The data marked with stars are from the Simon et al. sample, and
the data marked with • symbols are from the Ruth et al. sample.
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Fig. 2 Hubble parameter H(z) as a function of redshift z for a flat ΛCDM model with selected
values of ΩM and α. The data sets in Table 1 are also shown (color online).

3.2 Constraining α and ΩM for the ΛCDM Model

Firstly, we can find the relationship between H(z) and α, ΩM. In Figure 2, we plot the theoretical
H(z) at redshift z ∈ [0, 2] according to Section 2 for some typically selected α and ΩM, where a flat
ΛCDM model is assumed. The figure includes the mean values of OHD in redshift bins and their
error bars. One can see from Figure 2 that the curve of H(z) strongly depends on ΩM, i.e., the larger
the value of ΩM, the faster the growth of H(z). In contrast, the smoothness-parameter α mainly has
effects on the properties of the Hubble parameter at high redshift. For a certain ΩM, theoretical H(z)
terms with different α values seem to appear similar at lower redshift, but they start to differ at high
redshift.
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values of ω and α. The data sets in Table 1 are also shown (color online).

a)

ΩM

α

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

1σ

90.0%

2σ

3σ

b)

α

P
ro

ba
bi

lit
y

de
ns

it
y

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

1σ

90.0%
2σ

3σ

c)

ΩM

P
ro

ba
bi

lit
y

de
ns

it
y

Fig. 4 (a) Confidence regions at 68.3%, 90.0%, 95.4%, and 99.7% levels from inner to outer re-
spectively on the (ΩM, α) plane for a flat ΛCDM model (without considering the prior on ΩM).
The “×” in the center of the confidence regions indicates the best-fit values (0.28, 0.97). (b) The
one-dimensional probability distribution function (PDF) for the α parameter. (c) PDF for the ΩM

parameter (color online).
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Fig. 5 (a) Confidence regions at 68.3%, 90.0%, 95.4%, and 99.7% levels from inner to outer respec-
tively on the (ΩM, α) plane for a flat ΛCDM model (with a prior on ΩM considered). The “×” in the
center of the confidence regions indicates the best fit values (0.27, 1.0). (b) PDF for the α parameter.
(c) PDF for the ΩM parameter (color online).

In order to constrain α and ΩM, we use χ2 minimization

χ2(H0, α, ΩM) =
12∑

i=1

[
H(H0, α, ΩM; zi) − Hobs(zi)

σ(zi)

]2

, (26)

where H(H0, α, ΩM; zi) is the theoretical expectation of the Hubble parameter which is determined
by Equations (17), (25) and (23), and Hobs(zi) is the observational value of the Hubble parameter
with errors σ(zi) in the sample.

In the analysis, we marginalize the Hubble constant H0 by integrating over it, and assume
a Gaussian prior according to the best fitting value obtained from Bonamente et al. (2006), i.e.,
H0 = 76.9+3.9

−3.4 km s−1 Mpc−1. On the basis of the cosmic concordance from observations, we can
optionally choose to add a Gaussian prior on ΩM, ΩM = 0.26 ± 0.1. We investigate the minimiza-
tion both considering this prior (Fig. 5(a)) and without considering it (Fig. 4(a)). In Figures 4(a) and
5(a), we plot the regions of confidence on the ΩM-α plane. The contours of the confidence levels of
68.3%, 90.0%, 95.4% and 99.7% are determined by two-parameter levels 2.30, 4.61, 6.17 and 11.8,
respectively.

We also plot the one-dimensional probability distribution function (PDF) of parameters ΩM

and α. In Figure 4(b) and (c), PDFs were plotted without considering the Gaussian prior, while
in Figure 5(b) and (c) we considered this prior. One can see that in the 90% confidence region,
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Fig. 6 (a) Confidence regions at 68.3%, 90.0%, 95.4%, and 99.7% levels from inner to outer respec-
tively on the (ω, α) plane for a flat XCDM model. The “×” in the center of the confidence regions
indicates the best fit values (–1.08, 0.99). (b) PDF for the α parameter. (c) PDF for the ω parameter
(color online).

0.59 ≤ α ≤ 1.0 and 0.23 ≤ ΩM ≤ 0.41 if we consider the prior, but without any prior, a 90%
confidence lies in the region of 0.42 ≤ α ≤ 1.0 and 0.23 ≤ ΩM ≤ 0.54. The symbols “×” indicate
the model with the best fitting values that occur at α = 1, ΩM = 0.27 and α = 0.97 , ΩM = 0.28,
respectively. It is clear that whether or not we consider the Gaussian prior, the best fitting models
are nearly the same with α slightly lower than one, corresponding to a universe with a uniform
distribution of cold dark matter, and the value of ΩM favors other observations.

3.3 Constraining α and ω for the XCDM Model

We constrain α and ω for the XCDM model. In this case, we set the density-parameter ΩM to be 0.28
from the best fitting results in Section 3.2. In Figure 3, we plot theoretical H(z) with some typically
selected α and ω values, from which one can see how these two parameters modify the theoretical
curve. Unfortunately, we find that the curves do not strongly depend on the parameters as much as
in Section 3.2. We constrain these two parameters by χ2 minimization

χ2(H0, α, ω) =
12∑

i=1

[
H(H0, α, ω; zi) − Hobs(zi)

σ(zi)

]2

, (27)
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where H(H0, α, ω; zi) is the theoretical value of the Hubble parameter; Hobs(zi) and σ(zi) are their
observational values and errors, respectively. Again, marginalizing the parameter H0, we get the re-
gions of confidence on the ω - α plane. Then integrating over ω and α in the two-dimensional prob-
ability function p(α, ω), we obtain PDFs of α and ω. The numerical results are plotted in Figure 6.

From Figure 6(a), we find that α is only mildly constrained. The best fitting point occurs at
α = 0.99 and ω = −1.08, which indicates that the state of equation of XCDM is approximately
that of the cosmological constant. All the allowable values of α in [0, 1] are permitted at the 3σ
confidence level.

4 CONCLUSIONS AND DISCUSSION

In this article, we study how the inhomogeneous distribution of cold dark matter affects the Hubble
parameter at different redshift. By using OHD from Simon et al., together with Ruth et al. in a
flat ΛCDM model, the smoothness-parameter and density-parameter are constrained at different
confidence intervals. By marginalizing the Hubble constant H0, we found that the best fitting values
are α = 0.97 and ΩM = 0.28 for the ΛCDM model. However, if we assume a Gaussian prior
of ΩM = 0.26 ± 0.1, we find that the best fitting values are α = 1 and ΩM = 0.27. With the
XCDM model, setting ΩM = 0.28, we get the best fitting values of α = 0.99 and ω = −1.08.
Comparing the constraints on the smoothness-parameter with samples of compact radio sources,
where all the values of α from 0 to 1 are allowed at the 68.3% statistical confidence level (Santos
& Lima 2008), the constraint on luminosity distance from SNe Ia gave slightly better results, which
are 0.42 ≤ α ≤ 1.0 and 0.25 ≤ ΩM ≤ 0.44 at the 90% confidence level (Santos et al. 2008). In
our work, from Figures 4 and 5, the empty beam (α = 0) case is even excluded at the 3σ confidence
level. This result is better than the two previous works (Santos et al. 2008; Santos & Lima 2008)
which constrain the α parameter. We can see that OHD constrains the smoothness parameter more
effectively than both the SNe Ia data and the data about angular diameters of compact radio sources.

At the same time, as one can see from Figures 2 and 3, the errors of the data are too large to
constrain α into a relatively small interval, especially at high redshift, or to give α a moderately
accurate value. The statistical effects may not be neglected in this analysis. In the near future, we
expect better constraints on α from more accurate data and/or more data at high redshift. In addition,
OHD, as well as angular diameter distances of compact radio sources and luminosity distances of
SNe Ia, may also enable us to study α(z) as a function of z.

Throughout our work, we discuss how the smoothness-parameter is independent of space-time,
i.e., ρint +ρclus is constant everywhere, and α only describes their ratio. In a real universe, the struc-
tures of walls and voids could not be described by such model, therefore these complex structures,
which might be characterized by more parameters and/or more complicated models, may need ever
more precise data. Hunt and Sarkar have discussed the case where we are located in a 200–300 Mpc
void with especially low density, which is expanding at a rate 20%–30% higher than the average rate
(Hunt & Sarkar 2010). In future work, we should consider more complex models that better describe
our universe, together with better physical theories, in order to find a more accurate answer.
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