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Abstract The origin of hydrodynamic turbulence in rotating shear flow is a long
standing puzzle. Resolving it is especially important in astrophysics when the flow’s
angular momentum profile is Keplerian which forms an accretion disk having negli-
gible molecular viscosity. Hence, any viscosity in such systems must be due to turbu-
lence, arguably governed by magnetorotational instability, especially when tempera-
ture T >∼105. However, such disks around quiescent cataclysmic variables, protoplan-
etary and star-forming disks, and the outer regions of disks in active galactic nuclei
are practically neutral in charge because of their low temperature, and thus are not
expected to be coupled with magnetic fields enough to generate any transport due to
the magnetorotational instability. This flow is similar to plane Couette flow including
the Coriolis force, at least locally. What drives their turbulence and then transport,
when such flows do not exhibit any unstable mode under linear hydrodynamic per-
turbation? We demonstrate that the three-dimensional secondary disturbance to the
primarily perturbed flow that triggers elliptical instability may generate significant
turbulent viscosity in the range 0.0001 <∼ νt <∼0.1, which can explain transport in ac-
cretion flows.
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1 INTRODUCTION

One of the main problems behind the origin of hydrodynamic turbulence in shear flow is that there is
a significant mismatch between the predictions of linear theory and experimental data. For example,
in the case of plane Couette flow, laboratory experiments and numerical simulations show that the
flow may be turbulent at a Reynolds number as low as Re ∼ 350, but according to linear theory, the
flow should be stable for all Re. Similar mismatch between theoretical results and observations is
found in astrophysical contexts, where the accretion flow of neutral gas with a Keplerian angular mo-
mentum profile, which essentially behaves like rotating shear flow, is a common subject. Examples
of such flow systems are accretion disks around quiescent cataclysmic variables (Gammie & Menou
1998), protoplanetary and star-forming disks (Blaes & Balbus 1994), and the outer regions of disks
in active galactic nuclei (Menou & Quataert 2001).
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A Keplerian accretion disk flow having a very low molecular viscosity must generate turbulence
and successively diffusive viscosity, which supports the transfer of mass inwards and angular mo-
mentum outwards. However, theoretically this flow, in the absence of magnetic fields, never exhibits
any unstable mode which could trigger turbulence in the system. On the other hand, laboratory ex-
periments of Taylor-Couette systems, which are similar to Keplerian disks, seem to indicate that
although the Coriolis force delays the onset of turbulence, the flow is ultimately unstable with re-
spect to turbulence for Reynolds numbers larger than a few thousand (Richard & Zahn 1999), even
for subcritical systems. Indeed, Bech & Andersson (1997) see turbulence persisting in numerical
simulations of subcritical rotating flows for large enough Reynolds numbers.

How does shearing flow that is linearly stable to perturbations switch to a turbulent state? Since
the last decade, many authors, including ourselves, have come forward with a possible explanation
of this fact based on a bypass transition (see Butler & Farrell 1992; Reddy & Henningson 1993;
Trefethen et al. 1993; Chagelishvili et al. 2003; Umurhan & Regev 2004; Mukhopadhyay et al. 2005
and references therein) where the decaying linear modes show an arbitrarily large transient energy
growth at a suitably tuned perturbation. In lieu of linear instabilities, e.g. magnetorotational instabil-
ity, and the transient energy growth, supplemented by a non-linear feedback process to repopulate
the growing disturbance, could plausibly sustain turbulence for large enough Reynolds numbers.

The behavior of shear flows, however, in the presence of rotation is enormously different com-
pared to that in the absence of rotation. The Coriolis effect is the main culprit behind this change
in behavior, killing any growth of energy, even of the transient kind, in the presence of rotation.
In the case of shear flow with a varying angular velocity profile, like Keplerian accretion flow, the
above mentioned transient energy growth is insignificant for three-dimensional perturbations. To
overcome this limitation, it is necessary to invoke additional effects. Various kinds of secondary in-
stability, such as the elliptical instability, are widely discussed as a possible route to self-sustained
turbulence in linearly perturbed shear flows (see, e.g. Pierrehumbert 1986; Bayly 1986; Craik &
Criminale 1986; Landman & Saffman 1987; Hellberg & Orszag 1988; Waleffe 1990; Craik 1989;
Le Dizès et al. 1996; Kerswell 2002). These effects, which generate three-dimensional instabilities
of a two-dimensional flow with elliptical streamlines, have been proposed as a generic mechanism
for the breakdown of many two-dimensional high Reynolds number flows whose vortex structures
can be locally characterized as elliptical streamlines. Recently, one of the present authors has studied
the secondary perturbation and corresponding elliptical vortex effects in accretion disks and pointed
out that they can be the seed of three-dimensional hydrodynamic instability (Mukhopadhyay 2006).
Subsequently, by numerical simulation, this has been shown to be one of the possible sources that
can generate turbulence to form large objects from the dusty gas surrounding a young star (Cuzzi
2007; Ormel et al. 2008). Moreover, hydrodynamic turbulence can generate vortex activity in un-
magnetized protoplanetary disks (de Val-Borro et al. 2007), which leads to planet formation and
angular momentum transport in disks. However, whether they lead to non-linear feedback and three-
dimensional turbulence have yet to be explicitly demonstrated.

Here we plan to show in detail that three-dimensional secondary perturbation causing large
growth in the flow time scale may generate significant turbulent viscosity in rotating shear flows;
more precisely, in plane shear flows in the presence of the Coriolis force. The plane shear flow with
the Coriolis force essentially behaves like a local patch of a rotating shear flow. The possibility of
significant turbulent transport in such flows by three-dimensional perturbation opens a new win-
dow to explain the accretion process in flows which are neutral in charge. In particular, we address
the issue of deriving turbulent viscosity and the Shakura-Sunyaev viscosity parameter α (Shakura
& Sunyaev 1973) from a pure hydrodynamical perspective 1. This is important for understanding
accretion flows in a cold charge-neutral medium.

1 A preliminary calculation of such α has appeared in a collected volume of the Gravity Research Foundation
(Mukhopadhyay 2008).
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It is important to note that the transition to turbulence is not a unique process, but it depends on
the initial condition/disturbance and the nature of the flow (Schmid & Henningson 2001; Criminale
et al. 2003). In fact, it is known that even in the presence of secondary instability, linearly unstable
base flows may reach a non-turbulent saturated state. However, turbulence is definitely in the non-
linear regime and it is exhibited only in situations where a large growth of perturbations switches
the system over to the non-linear regime. Since our present goal is to understand the possible ori-
gin of hydrodynamic turbulence, we consider those situations where large energy growth leads to
non-linearity.

The paper is organized as follows. In the next section, we first recall the perturbation established
previously (Mukhopadhyay 2006) due to secondary disturbance in the Keplerian flow and then dis-
cuss the range of corresponding Reynolds number and the associated solutions. Subsequently, we
estimate the corresponding turbulent viscosity of hydrodynamic origin in Section 3. We end in
Section 4 by discussing implications of our results.

2 PERTURBATION AND RANGE OF REYNOLDS NUMBER

Considering a two-dimensional velocity perturbation w = (wx(x, y, z, t), wy(x, y, z, t), 0), and
pressure perturbation pp(x, y, z, t) in a small section of the Keplerian shear flow/disk, the linearized
Navier-Stokes and continuity equations for an incompressible fluid with plane background shear in
the presence of a Coriolis component can be written in dimensionless units as (see Mukhopadhyay
et al. 2005 for a detailed description)

dwx

dt
= 2Ωwy − ∂pp

∂x
+

1
Re

∇2wx, (1)

dwy

dt
= Ω(q − 2)wx − ∂pp

∂y
+

1
Re

∇2wy, (2)

∂wx

∂x
+

∂wy

∂y
= 0. (3)

We consider the standard no-slip boundary condition such that wx = wy = 0 at x = ±1 and
according to the choice of variables in the coordinate system, Ω = 1/q. Here (x, y, z) is a local
Cartesian coordinate system centered at a point (r, φ) in the disk (Mukhopadhyay et al. 2005) such
that dr = x and rdφ = y.

When the Reynolds number is very large, the solution of Equations (1), (2) and (3) are given by
(Mukhopadhyay et al. 2005)

wx = ζ
ky

l2
sin(kxx + kyy), wy = −ζ

kx

l2
sin(kxx + kyy), (4)

where ζ is the amplitude of the vorticity perturbation, kx and ky are the components of the primary

perturbation wavevector and l =
√

k2
x + k2

y . Under this primary perturbation, the flow velocity

and pressure are modified to

U = Up + w = (wx,−x + wy, 0) = A · d, P̄ = p̄ + pp, (5)

where Up and p̄ are background velocity and pressure respectively, and A is a tensor of rank 2. Here
kx = kx0 + kyt, which is basically the radial component of the primary perturbation wavevector,
varies from −∞ to a small number, where kx0 is a large negative number: |kx0| ∼ Re1/3 ∼ tmax

(Mukhopadhyay et al. 2005).
Now we concentrate on a further small patch of the primarily perturbed flow such that the spatial

scale is very small compared to the wavelength of the primary perturbation satisfying sin(kxx +
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kyy) ∼ kxx = f <∼1. In fact, f ∼ 1 close to the boundary of the patch when y → 0 and 2π/ky,
and at an intermediate location f � 1. As |kx| varies from a large number to close to unity, the size
of the primary perturbation box in the x-direction is 1/kx <∼1, when ky ∼ 1 is fixed. Hence, this
further small patch must be confined to a region: −a <∼x<∼a, when f/|kx0|<∼a <∼ f . Clearly, in this
patch, U in Equation (5) describes a flow having generalized elliptical streamlines with ε = (kx/l)2,
a parameter related to the measure of eccentricity2, running from 0 to 1 as the perturbation evolves.
It was already shown (Mukhopadhyay 2006) that a secondary perturbation in this background may
grow exponentially, leading to the flow becoming unstable. We use this unstable flow in Section 3,
which was extensively discussed earlier (Mukhopadhyay 2006), to derive νt and α.

Since we focus on the secondary perturbation at a small patch of the primarily perturbed shearing
box, the variation of the primary perturbation appears insignificant in the patch compared to that of
the secondary one. Depending on the primary perturbation wavevector at a particular instant, the size
of the secondary patch is appropriately adjusted. In fact, ε varies very slowly and marginally deviates
from unity in the time interval when kx varies from kx0 (large negative) to, say, −10. Even when kx

tends to −3, ε only changes to ∼ 0.9. Therefore, ε and thus A practically remain constant.

2.1 Range of Reynolds Number

Due to the consecutive choice of small boxes/patches, the Reynolds number in the secondary flow
is restricted to a particular choice of that in the primary flow. Here in the interest of clarity, we work
with the original dimensioned units. The Reynolds number at the primary box is defined as

Rep =
U0L

ν
=

qΩ0L
2

ν
, (6)

where 2L is the box size in the x-direction and 2U0 is the relative velocity of the fluid elements
in the box between two walls along the y-direction. Now we recall the secondary perturbation at
a smaller patch, extending from −Ls to +Ls, such that |Ls| ∼ aL. To meet our requirement of
sin(kxx + kyy) ∼ kxx + kyy, we are reminded that the small patch size needs to be adjusted.
Therefore, the Reynolds number at the secondary box is given by

Res =
qΩ0L

2
s

ν
∼ qΩ0 a2L2

ν
. (7)

Hence,

Rep

Res
∼ 1

a2
∼ k2

x

f2
. (8)

At the beginning of the primary perturbation, kx = kx0 and thus ε = 1. At this stage, the secondary
box size Ls = Lf/kx0 and Rep >∼k2

x0 Res. With time, kx decreases in magnitude but ε deviates
little from unity until kx ∼ −3 when ε = 0.9. Hence A can be considered approximately constant
as described above. At this stage, Rep ≥ 9 Res, which is at least an order of magnitude higher
than Res. If the energy growth due to the primary perturbation is maximized for kx = kx,min = π
(Mukhopadhyay et al. 2005), then the range of Re for the secondary perturbation is given by

Rep f2/k2
x0 <∼Res <∼Rep f2/10.

At kx = π, Res is at least an order of magnitude lower than Rep. When kx,min = 1, Rep ∼ Res for
f ∼ 1. In general

Rep f2/k2
x0 <∼Res <∼Rep f2/k2

x,min.

2 Note that ε is a parameter related to the measure of eccentricity but not the eccentricity itself.
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2.2 Solution

Following previous work (Mukhopadhyay 2006), the general solution for the evolution of the sec-
ondary perturbation in the flow discussed above can be written in terms of Floquet modes

ui(t) = exp(σ t) fi(φ) exp[i(k1x + k2y + k3z)], (9)

where φ = 
 t, fi(φ) is a periodic function having period T = 2π/
, σ is the Floquet exponent,
and k1, k2, and k3 are the components of the wavevector of the secondary perturbation.Note that σ is
different at different ε values. Clearly, if σ is positive, then the system will be unstable. The detailed
solutions were discussed elsewhere (Mukhopadhyay 2006), so we will not repeat them here.

In principle, kx varies with time and thus so does A. Thus, generalizing Equation (9) for a
(slowly) varying A, we obtain

ui(t) = exp
(∫

σ(t) dt
)
fi(φ) exp[i(k1x + k2y + k3z)], (10)

where φ =
∫


(t) dt. Equations (9) and (10) practically describe the solutions for the entire param-
eter regime exhibiting elliptical vortices, which are very favorable to trigger the elliptical instability.

For the present purpose, the physically interesting quantity is the energy growth of the perturba-
tion, which is given by

G =
|ui(t)|2
|ui(0)|2 = exp [2 Σ(t)]

f2
i (φ)

f2
i (0)

, (11)

where Σ(t) =
∫

σ(t) dt and t = (kx − kx0)/ky . As kx(t) varies from a large negative value, kx0,
to 0, t increases from 0 to tmax = −kx0/ky. Thus, the energy growth is controlled by the quantity
Σ(t), as f2

i (φ)/f2
i (0) simply appears to be a phase factor. Therefore, our aim should be to evaluate

Σ for various possible perturbations.
Let us specifically concentrate on the Keplerian accretion flows. Figure 1(a) shows the variation

of maximum velocity growth rate, σmax, as a function of eccentricity parameter, ε, for the various
choices of amplitude of vorticity, ζ. By “maximum” we refer to the quantity obtained by maximizing

Fig. 1 (a) Variation of maximum velocity growth rate as a function of eccentricity parameter. Solid,
dotted, dashed and long-dashed curves indicate the results for ζ = 0.01, 0.05, 0.1, and 0.2 respec-
tively (Mukhopadhyay 2006). (b) Variation of Σ as a function of time for kx0 = −105, when various
curves are the same as (a). (c) Same as (b) but for kx0 = −104. Other parameters are ky0 = 1,
k10 = 0, |k0| = 1, and q = 3/2.
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over the vertical component of the wavevector,k3. At large ε (as well as large kx), when ζ is large, the
background flow structure, A, is elliptical with high eccentricity. Therefore, a vertical perturbation
triggers the best (maximum) growing mode into the system. However, with the decrease of ζ, A
approaches the structure of the plane shear and thus the growth rate decreases significantly. At this
stage, the corresponding best perturbation is three-dimensional but not the vertical one.

At small ε (and then small kx), when ζ is large, the eccentricity of the background elliptical
flow decreases significantly, and thus the growth rate decreases. In this low eccentric flow, the best
growth rate arises due to the two-dimensional perturbation. On the other hand, when ζ is small, the
background reduces to that of the plane shear flow. Therefore, the growth rate increases according to
the shearing effects, as described by Mukhopadhyay et al. (2005). An interesting fact to note is that,
except for the case of small ε (kx) with a large ζ, growth rate is maximized for the three-dimensional
perturbation. Moreover, at a large ζ and a large ε, the best growth rate arises due to a vertical (or
almost vertical) perturbation.

As the accretion time scale is an important factor, for the present purpose, the physically inter-
esting quantity is Σ rather than σ itself. Figure 1(b) and (c) shows the variation of Σ as a function
of t at various ζ values. As the perturbation evolves with time, the corresponding Σ increases. It
is also clear that Σ and then corresponding growth increases with the increase of |kx0| (and then
Re), i.e. the increase of accretion time scale, in addition to the increase of ζ. In Table 1, we enlist
the approximate values of maximum growth factor, as follows from Equation (11), corresponding to
Σmax =

∫ tmax

0
σ dt, for the cases shown in Figure 1(b) and (c). When kx0 = −104, Rep ∼ 1012

(as Rep ∼ t3max ∼ k3
x0), and from Equation (8), Res(f = 1)>∼104, the maximum growth factor

is significant for a large amplitude of vorticity perturbation, i.e. ζ > 0.1. However, the growth fac-
tor increases with the increase of Rep and when Rep ∼ 1015 and hence Res(f = 1)>∼105, it is
quite significant for an amplitude of vorticity perturbations as small as 0.05. Therefore, it appears
that a suitable three-dimensional secondary perturbation efficiently triggers elliptical instability and
possible turbulence in rotating shear flows, including accretion disks.

Table 1 Maximum Energy Growth Corresponding to
Cases Shown in Fig. 1(b) and (c)

|kx0| ζ Σmax Gmax

105 0.2 6.1 2 × 105

105 0.1 5.2 3.3 × 104

105 0.05 4.43 7 × 103

105 0.01 1.97 52

104 0.2 3.65 1500
104 0.1 3 400
104 0.05 2.9 330
104 0.01 1.27 13

3 TURBULENT VISCOSITY

Here we attempt to quantify the turbulence by parameterizing it in terms of the viscosity. This is
essential to explain any transport, as explained in Section 1, in flows like astrophysical accretion
disks, where molecular viscosity is negligible.

The tangential stress at a point (r, φ) of a rotating flow exhibiting turbulence is

Wrφ = νt r
dΩ
dr

= −νt qΩ, (12)

where νt is the turbulent viscosity and Ω = Ω0(r/r0)−q . Note that q = 3/2 for the Keplerian
angular velocity profile. The perturbation described above is expected to govern the nonlinearity
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after a certain time, say tg. We also assume that the nonlinearity leads to turbulence, attributed to
the fact that at the initiation of turbulence, the eddy velocity is the same as the perturbation velocity.
Therefore, we obtain the averaged tangential stress due to the perturbation at t = tg

Trφ(tg) → Txy(tg) = 〈uxuy〉

=
k2

4πLs

∫ +Ls

−Ls

∫ 2π/k2

0

ux(tg)uy(tg)dxdy, (13)

where we are reminded that the azimuthal flow is considered to be periodic in y = 2π/k2.
Now combining Equations (12) and (13), and after some algebra we obtain

ν̄t = − Txy

qΩ
(

h
r

)
M

, (14)

where Txy =
∫

Wxy dxdy, M = Ωx/cs and ν̄t denotes the averaged νt in the small section, com-
puted here at t = tg.

Without any proper knowledge of turbulence in Keplerian flows which arise in accretion disks,
Shakura & Sunyaev (1973) parameterized it by a constant α considering Wrφ to be proportional to
the sound speed, cs, given by

Wrφ = −αc2
s . (15)

α is called the Shakura-Sunyaev viscosity parameter. They assumed that the small section under
consideration is isotropic, so they scaled the characteristic length lt of turbulence in terms of the
largest macroscopic length scale of the disk, i.e. half-thickness h, and the eddy velocity of turbulence
vt in terms of sound speed cs. Thus, they defined the turbulent viscosity as

νt =
lt vt

3
= αcsh, (16)

where lt = αlh, vt = αvcs, and α = αlαv/3. Obviously αl ≤ 1. If the turbulent velocity becomes
supersonic, then a shock forms and reduces the velocity to be below the sound velocity, which
assures αv ≤ 1. Therefore, α <∼1. From Equations (14) and (16) we write

ᾱ = − Txy

qΩ2
(

h
r

)3
Mr2

, (17)

where ᾱ denotes the averaged α in the small section. Therefore, if we know the structure of the flow,
then we can compute the turbulent viscosity due to various perturbations. Since we consider the size
of the section to be very small, ᾱ and ν̄t are effectively equivalent to α and νt at a particular position
in the disk. Below we compute Txy for the various secondary perturbations and the corresponding
turbulent viscosities, at least to some approximations.

3.1 Secondary Perturbation Evolves much more Rapidly than the Primary One

From Equation (9) we can write the velocity perturbation components as

ux(x, y) = Ax eσtfx(φ) sin(k1 x + k2 y + k3 z),
uy(x, y) = Ay eσtfy(φ) sin(k1 x + k2 y + k3 z), (18)

where Ax and Ay are the amplitudes of perturbation modes, k1 and k2 are the radial and the az-
imuthal components respectively of the secondary perturbation wavevector and k10 and k20 are
those at t = 0, Ax and Ay can be evaluated by the condition that the velocity components of the
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secondary perturbation reduce to those of the primary perturbation at t = 0 (at the beginning of the
evolution of the secondary perturbation) given by

Ax = ζ
ky

l2(ε)
C

fx(0)
, Ay = −ζ

kx(ε)
l2(ε)

C

fy(0)
,

C =
sin(kx(ε)x + ky y)

sin(k10 x + k20 y + k30 z)
, (19)

where kx(ε) =
√

ε/(1 − ε)ky , and C is of the order of unity (for details see Mukhopadhyay et al.
2005; Mukhopadhyay 2006). Therefore, from Equation (13)

Txy(tg) ∼ −ζ2 kx(ε)ky

2l4(ε)
e2σtg D,

D = C2 fx(φ)fy(φ)
fx(0)fy(0)

. (20)

Now by considering a typical case with ky = 0.71, then νt and α can be computed as functions of ε
(kx), when we know the time of evolution of the secondary perturbation tg.

Figure 2 describes νt and α according to Equations (14), (17) and (20) for various disk pa-
rameters. As the primary perturbation evolves, elliptical vortices form into the shearing flow which
generate the turbulent viscosity under a further perturbation. Figure 2(a) shows that the viscosity
varies with the eccentricity of vortices. At a very early stage when the primary perturbation is effec-
tively a radial wave and ε → 1, the maximum velocity growth rate due to a secondary perturbation,
σmax (shown in Fig. 1(a)), and the corresponding turbulent viscosity are very small, independent of
the value of ζ. With time, the primary perturbation wavefronts are straightened out by the shear until
t = tmax, when the perturbation effectively becomes an azimuthal wave and ε → 0. At this stage,
σmax and the turbulent viscosity due to the secondary perturbation again become zero. This feature
is clearly understood from Equation (20). However, at an intermediate time when kx(ε) is finite, νt

may be ∼ 0.005 even in a moderately slim disk with h(r)/r = 0.05, when the time of evolution of
secondary perturbation tg = 10. This tg is considered to be the time at which turbulence is triggered
in the system. Figure 2(b)–(d) shows the variation of νt and α with the eccentricity of vortices at
various ζ when tg = 10 100. It is interesting to note, particularly for tg = 100, that with the increase
of ζ, first viscosity increases then decreases. This is understood from the underlying energy growth
rate shown in Figure 1(a), when the readers are reminded that σ = σ(ζ, ε). Note that the qualitative
behavior of νt is the same as that of α. If we look at a typical case with ζ = 0.05 where σ = σmax

at ε = 0.86, which corresponds to kx = −1.76, then α and νt computed at t = tg are for the cases
Res <∼Rep ∼ 108.

3.2 Secondary Perturbation Over the Slowly Varying Primary Perturbation

In principle, the primary perturbation may vary with time during the evolution of the secondary per-
turbation. By numerical solutions, simultaneous evolution of the primary and the secondary perturba-
tion along with the corresponding energy growth has already been discussed earlier (Mukhopadhyay
2006). For the convenience of analytical computation of viscosity, here we consider the regime
of slow variation of the primary perturbation compared to the secondary one. Hence we recall
Equation (10) and write the velocity perturbation components

ux → uxΣ(x, y) = Bx eΣ(t)fx(φ) sin(k1 x + k2 y + k3 z),

uy → uyΣ(x, y) = By eΣ(t)fy(φ) sin(k1 x + k2 y + k3 z), (21)

with φ =
∫


(t)dt. The amplitudes of perturbation modes Bx and By can be evaluated by the initial
condition of secondary perturbation. The secondary perturbation could trigger elliptical instability
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Fig. 2 Perturbation described in Sect. 3.1. (a) Variation of νt (dotted curve) and α (solid curve) as
functions of ε for the ζ = 0.05 case described in Fig. 1(a), when h(r)/r = 0.01, 0.05, and 0.1
respectively for the top, middle, and bottom curves of α; r = 30, ky = 0.71, and tg = 10. (b)
Variation of νt as a function of ε for the cases described in Fig. 1(a) with h(r)/r = 0.05, tg =
10, and ky = 0.71, when the solid, dotted, dashed, and long-dashed curves correspond to ζ =
0.01, 0.05, 0.1, and 0.2 respectively with |k0| = 1. (c) Same as in (b) except that α is plotted in the
place of νt. (d) Same as in (c) except that tg = 100.

only after a significant vortex forms in the flow due to the evolution of the primary one. At the
beginning of the evolution of the primary perturbation kx0 → −∞ (we choose the cases kx0 = −105

and −104) which corresponds to ε → 1 and thus effectively forms a plane shear background when ζ
is small (see Mukhopadhyay2006). In the absence of a vortex, this cannot trigger elliptical instability
under a secondary perturbation. As kx0 decreases in magnitude, ε deviates from unity giving rise to
a background consisting of elliptical vortices. Above a certain ε = εc, the secondary perturbation
does not have any effect on the primarily perturbed flow and uxΣ and uyΣ reduce to the primary
perturbation. We hypothesize that εc = 0.9999. Hence, Bx and By are computed in a similar fashion
as in Section 3.1 given by

Bx = ζ
ky

l2(εc)
C

fx(0)
, By = −ζ

kx(εc)
l2(εc)

C

fy(0)
,

C =
sin(kx(εc)x + ky y)

sin(k10 x + k20 y + k30 z)
. (22)

Hence, from Equation (13), the stress tensor

Txy(tmax) ∼ −ζ2 kx(εc)ky

2l4(εc)
e2Σmax D,
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Fig. 3 Perturbation described in Sect. 3.2. Variations of νt (dotted curve) and α (solid curve) as
functions of h(r)/r for cases shown in Fig. 1(b) and (c), when the curves from top to bottom corre-
spond to ζ = 0.2, 0.1, 0.05, and 0.01 with r = 30 for (a) kx0 = −105, and (b) kx0 = −104. Other
parameters are ky = 1, and εc = 0.9999.

D = C2 fx(φ)fy(φ)
fx(0)fy(0)

(23)

where kx reduces to zero at t = tmax, which corresponds to the beginning of turbulence when
Σ = Σmax.

It is found from Figure 3 that in a thin disk with h(r)/r = 0.01, α at r = 30 may be as high as
>∼0.1 for kx0 = −105 when ζ is very large. Although the viscosity decreases with the decrease of ζ,
α still may be ∼ 0.001 when ζ = 0.05. The turbulent viscosity decreases in a considerably thicker
disk, but still α ∼ 0.003 at h(r)/r = 0.1 when ζ = 0.2. For ζ ≥ 0.1, νt >∼0.001 when kx0 = −105.
The values of νt and α both decrease when |kx0| decreases to 104, which is expected from Table 1
as well. In this case, a significant turbulent viscosity is only generated at a large ζ = 0.2.

4 IMPLICATIONS AND DISCUSSION

The above results verify that in a range of ε, the three-dimensional growth rate due to a secondary
perturbation in rotating shear flow of the Keplerian kind is always real and positive and the corre-
sponding growth may be exponential and significant enough, at least for a suitable choice of ζ and/or
Re, to trigger non-linearity and subsequent plausible turbulence in the flow time scale. With the in-
crease of kx0 (∼ Rep

1/3), the effect due to elliptical instability increases, and thus corresponding
growth increase too.

Since this growth is the result of a three-dimensional perturbation, the underlying perturbation
effect should survive even in the presence of viscosity. There are many important natural phenomena
where the Reynolds number is very large. In astrophysical accretion disks, which have potential
applications described in the present paper, Re could always be >∼1010 because of their very low
molecular viscosity. Therefore, the present mechanism is certainly applicable to such disk flows to
resolve the puzzel of their turbulence when it is especially cold and neutral in charge and thus not
a very plausible candidate for magnetorotational instability. On the other hand, we suggest that the
subcritical transition to turbulence in Couette flow may be the result of secondary perturbation which
triggers elliptical instability modes in the system.

We have tried to estimate the corresponding hydrodynamic turbulent viscosity. We have aimed
to quantify the amount of turbulence in this model by using the perturbations as the source of turbu-
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lence. We report here an observable range of viscosity obtained for the typical thin accretion disks
and with reasonable values of flow vorticity. In place of r = 30, if we choose to place the shear-
ing box at a large distance from the central object, say at r = 500, then the computed α naturally
decreases three orders of magnitude [see Eq. (17)]. We show, by an extensive analysis, how the vis-
cosity depends on the aspect ratio (h/r) of the flow. The values of νt and α increase quite rapidly as
the disk becomes thinner. From Equations (14) and (17), and with the results given in Figures 2 and
3, we find that it still might be as large as 10−4 for a thin disk even at a large distance, say, r = 500.

While some earlier laboratory experiments (e.g. Richard & Zahn 1999) predicted a sub-critical
transition to turbulence and then transport in hydrodynamical shear flows like accretion disks, ex-
periments by Ji et al. (2006) have argued against this prediction. Non-detection of turbulence and
then any angular momentum transport of a purely hydrodynamic origin could be due to the follow-
ing factors. The maximum Reynolds number in this experiment is 2 × 106 whereas the cold disks,
such as the protoplanetary disks, have Reynolds number ∼ 1012. However, the critical Reynolds
number for these systems could be ∼ 106 − 107 or more. It can be easily understood with a very
simple example that when Re increases, the amplitude of vortices increases, which is indeed clear
from figures 7 and 8 given by Mukhopadhyay et al. (2005). Let us consider a 2D perturbation in an
inviscid incompressible flow where the vorticity ∇× v is exactly conserved, when v = îvx + ĵvy .
Therefore, at t = tmax = tg , when the perturbation growth is maximum at t = tmax, the ampli-
tude of vorticity ζ ∼ |lv| ∼ Re1/3. Since νt and α are directly proportional to ζ2, they scale as
Re2/3 at t = tmax = tg. Therefore, if Re decreases three orders of magnitude, then νt decreases by
two orders. Moreover, the perturbation stabilizes at a thicker disk. Indeed, we find that the viscos-
ity decreases as h(r)/r increases. The dimension of confined liquid in the experiments by Ji et al.
(2006) may not be typical of astrophysical disks or rings, when they may have a large aspect ratio
∼ 2, whereas the astrophysical disks and ring systems are normally thin (with aspect ratio ≤ 1).
Obviously, a huge gap exists between experimental set ups and real observations.

By numerical simulations, the formation and evolution of vortices in a hydrodynamic shearing-
sheet have already been studied by Johnson & Gammie (2005) and they suggested it to be a possible
mechanism for angular momentum transport in low-ionization disks at high resolution. It has been
argued that there must be a mechanism to inject vorticities into the disk, and the vortices must not
decay rapidly due to three-dimensional instabilities, in order to sustain the transport. We show that
the vortices may be sustained in three-dimensions, at least on the time scale of interest, where this is
applicable for accretion disks. Indeed, Cuzzi and his collaborators (Cuzzi 2007; Ormel et al. 2008)
have argued, by numerical simulations, that the elliptical instability may lead to turbulence to form
the dusty gas surrounding a young star. Also, the vortex generation and then the angular momentum
transport have been shown to occur in unmagnetized protoplanetary disks (de Val-Borro et al. 2007)
by hydrodynamic turbulence. However, other simulations (Shen et al. 2006) do not find significant
transport. The non-occurrence of significant transport in simulations, in our view, is due to lack of
resolution needed to capture the turbulence. Indeed, the later authors have mentioned that for their
calculations, it is difficult to define an effective Reynolds number, since the numerical dissipation
is a steep function of resolution. With a particular non-linear solution, Balbus & Hawley (Balbus
& Hawley 2006) have shown that perturbation decays asymptotically. They have also argued that
as the nonlinear term in the equation for the incompressible flow itself explicitly vanishes, the so-
lution cannot lead to nonlinearity and subsequent turbulence. However, this does not guarantee that
every solution follows this model. Balbus & Hawley themselves have also mentioned that secondary
instabilities may still spoil their conclusion. Indeed, the coupling between the secondary and pri-
mary modes as shown earlier does not to allow the nonlinear term to vanish, resulting in a possible
nonlinear transition to turbulence (Mukhopadhyay 2006).

It is interesting to note that the modal instability via the bypass mechanism (and with a subse-
quent secondary perturbation superimposed) arises in these systems from a subtle interplay of the
non-normality of the perturbation modes and the non-linearity of the Navier-Stokes equation; this
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in turn gives rise to the turbulence in the system. As the turbulence and corresponding transport
are inevitable in these systems, the corresponding α may not simply be inversely proportional to
the critical Reynolds number (as predicted earlier (Lesur & Longaretti 2005)). Previous theoretical
studies (Mukhopadhyay et al. 2005) have shown that the Keplerian flow may render a transition to
the turbulent regime at a Reynolds number ∼ 106 and turbulence might have just started at this crit-
ical value. It should now be checked whether all shear flows, exhibiting subcritical turbulence in the
laboratory, do exhibit large growth due to secondary perturbation.
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