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Abstract We investigate in detail the influence of parametrizations of the dark energy
equation of state on reconstructing dark energy geometrical parameters, such as the
deceleration parameterq(z) andOm diagnostic. We use a type Ia supernova sample,
baryon acoustic oscillation data, cosmic microwave background information along
with twelve observational Hubble data points to constrain cosmological parameters.
With the joint analysis of these current datasets, we find that the parametrizations of
w(z) have little influence on the reconstruction result ofq(z) andOm. The same is
true for the transition (cosmic deceleration to acceleration) redshiftzt, for which we
find that for different parametrizations ofw(z), the best fitted values ofzt are very
close to each other (about 0.65). All of our results are in good agreement with the
ΛCDM model. Furthermore, using the combination of datasets,we do not find any
signal of decreasing cosmic acceleration as suggested in some recent papers. The re-
sults suggest that the influence of the priorw(z) is not as severe as one may anticipate,
and thus we can, to some extent, safely use a reasonable parametrization ofw(z) to
reconstruct some other dark energy parameters (e.g.q(z), Om) with a combination of
datasets.
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1 INTRODUCTION

The observations of type Ia supernovae (SNe Ia) suggest thatour universe is experiencing an accel-
erated expansion epoch (Riess et al. 1998; Perlmutter et al.1999), which has become the most chal-
lenging mystery in cosmology today. Besides SNe Ia, the acceleration was also confirmed by precise
measurement of the Cosmic Microwave Background (CMB) anisotropies (Spergel et al. 2003) as
well as the baryon acoustic oscillations (BAO) in the Sloan Digital Sky Survey (SDSS) luminous
galaxy sample (Eisenstein et al. 2005). This accelerated expansion can be explained by introducing
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the so called dark energy - a hypothetical energy component with a negative pressure (see Peebles
& Ratra 2003; Copeland et al. 2006 for reviews).

Various theoretical models of dark energy have been proposed, the simplest being the cosmo-
logical constantΛ with constant dark energy density and equation of statewDE = p/ρ = −1. This
model, the popularΛCDM model, provides an excellent fit to a wide range of observational data so
far. However, there are two well known problems in it. One is the so called “fine tuning” problem,
which is that the observed value ofΛ is extremely small compared with particle physics expecta-
tions (Weinberg 1989). The other is the coincidence problem, i.e. the present energy density of dark
energyΩΛ0 and the present matter densityΩm0 are of the same order of magnitude, for no obvious
reason. Alternatively, there are other dark energy scalar field models with time varying dark energy
density and equation of state, such as quintessence which hasw > −1 (Caldwell et al. 1998; Zlatev
et al. 1999), as well as more exotic “phantom” models withw < −1 (Caldwell 2002).

Although most recent studies show that theΛCDM model is in good agreement with observa-
tional data, dynamical dark energy can also explain the data. In order to distinguish between these
two different kinds of models from the background evolution, one may need to reconstruct dark
energy from observations in parametric or non-parametric ways. This paper will focus on the for-
mer. The equation of state of dark energyw is most widely used in the literature nowadays, since
any deviation from –1 ofw would favor dynamical models. Many parametrizations ofw(z) have
been proposed so far (Johri & Rath 2007). Although most of them are purely phenomenological,
they are necessary steps towards a more complete characterization of dark energy and are routinely
employed to analyze data, to optimize survey design and to compare results. Besides, the decelera-
tion parameterq(z) = −äa/ȧ2, constructed from the second derivative of the scale factora(t), is
also commonly used to explore the nature of dark energy. Furthermore, the redshiftzt at which the
universe transits from deceleration to acceleration is also a useful constraint on dark energy dynam-
ics. Recently, a new diagnostic of dark energy was introduced (Sahni et al. 2008), which is called
theOm diagnostic. Constructed from the first derivative of luminosity distance and less sensitive to
observational errors, and also independent of the value of matter densityΩm0, theOm diagnostic is
commonly used to distinguish the cosmological constant model from other dark energy models.

It is well known that fitting data to an assumed functional form would lead to possible biases in
the determination of properties of the dark energy and its evolution, especially if the true behavior
of the dark energy equation of state differs significantly from the assumed one, and often the results
will depend on the chosen parametrization (Li et al. 2007; Sarkar et al. 2008). However, given the
same dataset, one can compare the fitting results between different parametrizations and thus check
the influence on the results from different parametrizations. This is just what we will investigate.

In this paper, we use four different parametrizations of thedark energy equation of state to
constrain the evolution behavior of dark energy and to studytheir influence on the expansion history
of the universe, through the deceleration parameterq(z) and the transition redshiftzt. Furthermore,
we investigate the influence on reconstructingOm using different ansatzs of the dark energy equation
of state.

Recently, by analyzing the Constitution SNIa sample together with BAO data and using the
Chevallier-Polarski-Linder (CPL) (i.e., parametrization A in our paper) parametrization, Shafieloo
et al. (2009) found that there appears to be an increase ofOm and a positive value ofq at low redshift,
which means that the cosmic acceleration may have already passed the peak and now the acceleration
is slowing down. However, when including the CMB data, it wasfound that the result changes
dramatically and the behaviors ofOm andq become consistent with theΛCDM model. They argued
that this could either be due to the systematics in some datasets or the CPL parametrization which
is strained to describe the dark energy behavior at low and high redshift. The same issue was also
studied in Gong et al. (2010); Li et al. (2011). By using a different combination of datasets, they also
found that the systematics in datasets have a significant effect on the outcomes of the reconstructed
cosmic expansion history. In this paper, we will further examine this problem. Different from their
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work, we study the influence of different parametrizations of w(z) by using the same combination
of datasets.

This paper is organized as follows. In Section 2, we summarize the parametrizations of dark
energy adopted in this paper. Then, in Section 3, we show the observational data we used and the
method to analyze them. In Section 4, the fitting results are given and the influence of different
parametrizations ofw(z) on constraining the behavior of dark energy is discussed. Wegive our
conclusion in the last section.

2 PARAMETRIZATIONS OF DARK ENERGY

In the framework of a spatially flat Friedmann universe, the expansion history of the universe is
given by

H2(z) = H2
0 [Ωm0(1 + z)3 + (1 − Ωm0)f(z)], (1)

and

q =
3w(z)Ωx(z) + 1

2
, (2)

whereH ≡ ȧ/a is the Hubble parameter,q is the deceleration parameter,Ωm0 ≡ ρ0/ρc is the
current value of the normalized matter density,Ωx(z) is the normalized dark energy density as a
function of redshift which evolves asΩx(z) = Ωx0f(z)H2

0/H2 and

f(z) = exp

[

3

∫ z

0

1 + w(z′)

1 + z′
dz′

]

. (3)

The luminosity distance is given by

dL(z) = c(1 + z)

∫ z

0

dz′

H(z′)
. (4)

Next we turn to the parametrizations ofw(z). There are many functional forms ofw(z) in the
literature. In this work, we consider four popular parametrizations. The first is the most widely used
CPL parametrization (Chevallier & Polarski 2001; Linder 2003)

A : w(z) = w0 + w1
z

1 + z
. (5)

We call it parametrizationA in this paper. In this case, the equation of state becomesw(z = 0) = w0

at present time andw(z → ∞) = w0 + w1 at earlier time. This simple parameterization is most
useful if dark energy is important at late times and insignificant at early times. In addition to its
simplicity, this CPL parameterization exhibits interesting properties as discussed in detail by Linder
(2008). However, it cannot describe rapid variations in theequation of state. Using this functional
form and Equation (3), Equation (1) can be written analytically as

H2(z) = H2
0

[

Ωm0(1 + z)3 + (1 − Ωm0)(1 + z)3(1+w0+w1) exp

(−3w1z

1 + z

)]

. (6)

The second parametrization for the dark energy equation of state we would like to consider here is
(Jassal et al. 2005)

B : w(z) = w0 + w1
z

(1 + z)2
. (7)

We call this parametrizationB. It can model a dark energy component which has the same equation
of state at the present epoch and at high redshift (i.e.w(0) = w(∞) = w0), with rapid variation at
low z. Inserting Equation (7) into Equation (3), Equation (1) then becomes

H2(z) = H2
0

[

Ωm0(1 + z)3 + (1 − Ωm0)(1 + z)3(1+w0) exp

(

3w1z
2

2(1 + z)2

)]

. (8)
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The next parametrization used in this paper is suggested in Barboza & Alcaniz (2008), which is

C : w(z) = w0 + w1
z(1 + z)

1 + z2
. (9)

Like the CPL one, this parametrization hasw(z = 0) = w0 andw(z → ∞) = w0 + w1. Different
from the CPL expression, it is a bounded function of the redshift throughout the entire cosmic evo-
lution, which allows researchers to study the effects of a time varyingw(z) from z ≃ −1 to the last
scattering surface of the CMB atz ≃ 1100. We call it parametrizationC. In this case, Equation (1)
can be expressed as

H2(z) = H2
0

[

Ωm0(1 + z)3 + (1 − Ωm0)(1 + z)3(1+w0)(1 + z2)
3w1
2

]

. (10)

The last parametrization adopted in this paper is the one proposed in Wetterich (2004), which
has a functional form

D : w(z) =
w0

[1 + w1 ln(1 + z)]2
. (11)

We call it parametrizationD. It is easy to see that when the redshift increases, the valueof w(z)
approaches zero, which can include the possibility that dark energy contributes to the total energy
of the universe to some extent at an earlier epoch. In fact, this parametrization is motivated by a
wide range of quintessence models to allow for such an early time dark energy. In this condition,
Equation (1) can be written as

H2(z) = H2
0

[

Ωm0(1 + z)3 + (1 − Ωm0)(1 + z)3+3w̄(z)
]

, (12)

wherew̄(z) = w0/[1 + w1 ln(1 + z)].
Above, we have discussed various parametrizations of the dark energy equation of state used

in this paper. Since our purpose is to compare the effects of these different parametrizations on
constraining dark energy behavior and expansion history, we use the deceleration parameterq(z)
along with the transition redshiftzt andOm diagnostic to incorporate these different parametriza-
tions. Next we reconstructq(z) for different parametrizations and then give the definitionof Om.
Combining Equations (2), (3) and (5) we can getq(z) for parametrizationA

qA(z) =
1

2
+

3

2

(

w0 + w1
z

1 + z

)

×
[

1 +
Ωm0

1 − Ωm0
(1 + z)−3(w0+w1) exp

(

3w1z

1 + z

)]

−1

. (13)

Similarly, we getq(z) for other parametrizations. For parametrizationB, q(z) can be expressed as

qB(z) =
1

2
+

3

2

[

w0 + w1
z

(1 + z)2

]

×
[

1 +
Ωm0

1 − Ωm0
(1 + z)−3w0 exp

(

3w1z
2

2(1 + z)2

)]−1

. (14)

For parametrizationC, we have

qC(z) =
1

2
+

3

2

[

w0 + w1
z(1 + z)

1 + z2

]

×
[

1 +
Ωm0

1 − Ωm0
(1 + z)−3w0(1 + z2)−

3w1
2

]

−1

. (15)

For parametrizationD, q(z) can be written as

qD(z) =
1

2
+

3

2

w0

[1 + w1 ln(1 + z)]2
×

[

1 +
Ωm0

1 − Ωm0
(1 + z)

−
3w0

1+w1 ln(1+z)

]

−1

. (16)

TheOm diagnostic of dark energy was introduced in Sahni et al. (2008) and is widely used in
the literature to distinguish theΛCDM model from other dark energy models. It is a combination of
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the Hubble parameter and the redshift and provides a null test of dark energy being a cosmological
constant. It only depends on the first derivative of the luminosity distance and is less sensitive to
observational errors thanw(z). Moreover, it has the advantage of being independent of the value of
matter density. Knowing the expansion history of the universe, we can define theOm diagnostic as

Om(z) =
E2(z) − 1

(1 + z)3 − 1
, (17)

whereE2(z) = H2(z)/H2
0 .

TheOm diagnostic is very useful in establishing the properties ofdark energy at low redshifts. A
constantOm indicates the cosmological constant model, while a positive slope ofOm is suggestive
of phantom (w < −1) and a negative slope quintessence (w > −1). To reconstructOm(z), we need
to apply the specific models, and also to consider the uncertainties ofΩm0, w0 andw1.

3 DATA AND METHOD

In this section, we describe the observational data and analysis method used in this paper. We
will fit the models by employing recent observational data including SNIa, BAO, CMB and the
Observational Hubble Data (OHD).

For the SNIa data, we use the UNION2 compilation (Amanullah et al. 2010) which totally
contains 557 SNe Ia with redshift ranging from 0.511 to 1.12.Theχ2 for SNe Ia is defined as

χ2
SN =

∑

i

[µobs(zi) − µth(zi)]
2

σ2
i

, (18)

where the theoretical distance modulusµth(z) = 5 log10[dL(z)/Mpc] + 25, σi is the total uncer-
tainty in the SNIa data, and the luminosity distance is defined in Equation (4).

The competition between gravitational force and primordial relativistic plasma gives rise to
acoustic oscillations which leave their signature in everyepoch of the universe. Eisenstein et al.
(2005) first found a peak of these baryon acoustic oscillations in the large-scale correlation function
at 100h−1 Mpc separation measured from a spectroscopic sample of 46 748 luminous red galaxies
from the SDSS. This detection of BAO provided another independent test for constraining the prop-
erty of dark energy. For the BAO data, we use the SDSS DR7 sample (Percival et al. 2010). The
datapoints are

rs(zd)

Dv(0.275)
|obs = 0.1390± 0.0037, (19)

and
Dv(0.35)

Dv(0.2)
|obs = 1.736 ± 0.065, (20)

wherers(zd) is the comoving sound horizon at the baryon drag epoch,

rs(z) = c

∫

∞

z

cs(z
′)

H(z′)
dz′. (21)

The redshiftzd at the baryon drag epoch is fitted with the formula proposed byEisenstein & Hu
(1998)

zd =
1291(Ωm0h

2)0.251

1 + 0.659(Ωm0h2)0.828
[1 + b1(Ωbh

2)b2 ], (22)

b1 = 0.313(Ωm0h
2)−0.419[1 + 0.607(Ωm0h

2)0.674], b2 = 0.238(Ωm0h
2)0.223. (23)
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Here, the sound speedcs(z) = 1/
√

3(1 + R̄b/(1 + z), with R̄b = 31500Ωbh
2(TCMB/2.7K)−4 and

TCMB = 2.726K. The effective distance measure,Dv(z), is given by (Eisenstein et al. 2005)

Dv(z) =

[

d2
L(z)

(1 + z)2
cz

H(z)

]1/3

. (24)

Thus we can calculateχ2 statistics for BAO data as

χ2
BAO =

[rs(zd)/Dv(0.275)− 0.1390]2

0.00372
+

[Dv(0.35)/Dv(0.2) − 1.736]2

0.0652
. (25)

Since the SNIa and BAO data contain information about the universe at relatively low redshift,
we will include the CMB information by implementing the WMAP7-year data (Komatsu et al.
2011) to probe the entire expansion history up to the last scattering surface. Theχ2 for the CMB
data is constructed as

χ2
CMB = XT C−1X, (26)

where

X =





lA − 302.09
R − 1.725
z∗ − 1091.3



 . (27)

HerelA is the “acoustic scale” defined as

lA =
πdL(z∗)

(1 + z)rs(z∗)
, (28)

where the redshift of decouplingz∗ is given by (Hu & Sugiyama 1996)

z∗ = 1048[1 + 0.00124(Ωbh
2)−0.738][1 + g1(Ωm0h

2)g2 ], (29)

g1 =
0.0783(Ωbh

2)−0.238

1 + 39.5(Ωbh2)0.763
, g2 =

0.560

1 + 21.1(Ωbh2)1.81
, (30)

and the “shift parameter,”R is (Bond et al. 1997)

R =

√
Ωm0

c

∫ z∗

0

dz

E(z)
. (31)

C−1 is the inverse covariance matrix

C−1 =





2.305 29.698 −1.333
29.698 6825.270 −113.180
−1.333 −113.180 3.414



 . (32)

Determination of the Hubble parameter from observations isone important method used to study
the expansion history of the universe, and also the dark energy. The Hubble data at different redshifts
are based on differential ages of passive evolving galaxies(Jimenez & Loeb 2002). Recently, twelve
Hubble parameter data points were given in Stern et al. (2010). Theχ2 for these OHD is defined as

χ2
OHD =

12
∑

i=1

[Hth(zi) − Hobs(zi)]
2

σ2
i

, (33)

with zi ranging from 0 to 1.75.
Finally, the totalχ2 for these four sets of observational data is

χ2
total = χ2

SN + χ2
BAO + χ2

CMB + χ2
OHD. (34)

Given theχ2
total, we can perform a global fitting to determine the cosmological parameters using the

Markov Chain Monte Carlo method.
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4 RESULTS

In this section, we present our fitting results for differentparametrizations of the dark energy equation
of state and correspondingOm(z) andq(z) for each parametrization.

Table 1 shows the marginalized results ofΩm0, w0 andw1 for each parametrization. It can be
seen that for different parametrizations ofw(z), the present values ofw0 are very close to each other
(all near –1). The only difference is their evolution itemw1, but they do not deviate very far from
the concordanceΛCDM model. This can be further shown in Figure 1, where the evolution of w is
plotted with a 1σ confidence level. We can see that, although a mildly evolvingw is favored, some-
how, due to systematic errors, theΛCDM model remains a good fit to the current data. Furthermore,
obviously, the evolution behavior of the equation of state is different for different parametrizations
of w(z). Next, we shall see that this “model-dependent” feature changes when reconstructing the
deceleration parameterq(z) andOm diagnostic.

Table 1 Marginalized Results with 1σ Errors for Each Parametrization

Parametrization Ωm0 w0 w1 zt

A 0.28± 0.01 −1.09± 0.08 0.43+0.26

−0.31
0.66± 0.03

B 0.28± 0.01 −1.03± 0.10 0.95+0.92

−0.84
0.65± 0.05

C 0.28± 0.01 −1.08± 0.07 0.23+0.14

−0.17
0.64+0.05

−0.03

D 0.28± 0.01 −1.09± 0.08 0.17+0.11

−0.12
0.66+0.04

−0.03

Figure 2 shows the deceleration parameterq(z) reconstructed for each parametrization (A, B, C
andD), from which we can see that different parametrizations give almost the same behavior - a late
time acceleration, with a transition from deceleration to acceleration at a redshiftzt. We calculate
zt for each parametrization and show them in Table 1. It is clearthat they are almost the same, and
consistent with theΛCDM value (zt ≃ 0.7). Note our results are in good agreement with the recent
result made by Cunha & Lima (2008), where they directly parameterizedq(z) and gotzt = 0.61
using SNLS supernova data.

Bassett et al. (2004) showed that for the transition redshift, different parametrizations of the
dark energy equation of state give widely different values,which vary fromzt = 0.14 to zt = 0.59,
all below that of theΛCDM model. However, they only used supernova data, containing 157 data
points, which are more sensitive to systematic errors and parametrizations. Our results show that
when using a combination of datasets, with many more data points than a single dataset, the fitting
results would be more reliable (less sensitive to systematics and parametrizations), as we can see
from the almost model-independentq(z) reconstructed in Figure 2.

Next let us turn to the reconstructed result of theOm diagnostic for different parametrizations
of w(z). In Figure 3, we plotOm for each parametrization. Once again, it can be seen that different
parametrizations ofw(z) have little influence on the evolutionary behavior ofOm. We find that
ΛCDM is in good agreement with the data (within 1σ), with the phantom model slightly favored
(positive slope ofOm). Our results are also in good agreement with Sahni et al. (2008).

Finally, our work suggests that for the same combination of datasets (SNIa + CMB + BAO +
OHD), different parametrizations ofw(z) give almost the same reconstructed results ofOm and
q(z). Everything is perfectly consistent withΛCDM, and there is no “cosmic deceleration” feature
derived fromq(z) andOm as suggested in some recent papers. Thus the parametrizations ofw(z)
do not lead to severe bias in the reconstructed expansion history q(z), and dark energy diagnostic
Om.
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Fig. 1 Equation of state of dark energyw reconstructed for each parametrization (A, B, C andD)
using the combination of datasets. The central line represents the best fit (median) and the shaded
contour represents the 1σ confidence level around the best fit. The dashed horizontal line represents
the cosmological constant.
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Fig. 2 Deceleration parameterq evolving with redshift for each parametrization (A, B, C andD)
using the combination of datasets. The central line represents the best fit (median) and the shaded
contour represents the 1σ confidence level.
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Fig. 3 Om diagnostic reconstructed for each parametrization (A, B, C andD) using the combina-
tion of datasets. The central line represents the best fit (median) and the shaded contour represents
the 1σ confidence level. The dashed line represents theΛCDM model.

5 CONCLUSIONS

To summarize, we have examined the influence of parametrizations of the dark energy equation of
state on reconstructing other geometrical parameters of dark energy, i.e.q(z) andOm. We have
used four parametrizations ofw(z) (A, B, C and D denoted in this paper) to reconstructq(z)
andOm. Using the latest combination of datasets (SNIa + CMB + BAO + OHD), we found that,
although the fitting results ofw(z) depend upon the parametrizations, the reconstructedq(z) andOm
are almost parametrization-independent and both in good agreement with the concordanceΛCDM
model. Meanwhile, for a different ansatz ofw(z), the reconstructed value of the transition redshiftzt

is almost the same (≃ 0.65), which is also consistent with the value derived from theΛCDM model
(≃ 0.7). Furthermore, our reconstructed results ofq(z) andOm for different parametrizations of
w(z) suggest that, regardless of the ansatz ofw(z), the cosmic expansion is speeding up rather than
slowing down. However, with other combinations of datasets, this result would change as shown
in Gong et al. (2010), thus we must wait for more reliable dataand analysis methods to give the
definite answer. Above all, our work suggests that, when studying dark energy behavior using a
combination of datasets, the parametrizations ofw(z) have little influence on reconstructing other
diagnostics of dark energy (e.g.q(z), Om), so we can safely, to some extent, use any of those
popular parametrizations to study cosmic expansion history, with a lower price to pay for the prior
as anticipated before.
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