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Abstract We present an efficient, robust computational method for modeling the
Newtonian dynamics for rotation curve analysis of thin-disk galaxies. With appropri-
ate mathematical treatments, the apparent numerical difficulties associated with sin-
gularities in computing elliptic integrals are completelyremoved. Using a boundary
element discretization procedure, the governing equations are transformed into a lin-
ear algebra matrix equation that can be solved by straightforward Gauss elimination
in one step without further iterations. The numerical code implemented according to
our algorithm can accurately determine the surface mass density distribution in a disk
galaxy from a measured rotation curve (or vice versa). For a disk galaxy with a typical
flat rotation curve, our modeling results show that the surface mass density monotoni-
cally decreases from the galactic center toward the periphery, according to Newtonian
dynamics. In a large portion of the galaxy, the surface mass density follows an ap-
proximately exponential law of decay with respect to the galactic radial coordinate.
Yet the radial scale length for the surface mass density seems to be generally larger
than that of the measured brightness distribution, suggesting an increasing mass-to-
light ratio with the radial distance in a disk galaxy. In a nondimensionalized form, our
mathematical system contains a dimensionless parameter which we call the “galactic
rotation number” that represents the gross ratio of centrifugal force and gravitational
force. The value of this galactic rotation number is determined as part of the numeri-
cal solution. Through a systematic computational analysis, we have illustrated that the
galactic rotation number remains within±10% of 1.70 for a wide variety of rotation
curves. This implies that the total mass in a disk galaxy is proportional toV 2

0 Rg, with
V0 denoting the characteristic rotation velocity (such as the“flat” value in a typical ro-
tation curve) andRg the radius of the galactic disk. The predicted total galactic mass
of the Milky Way is in good agreement with the star-count data.
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1 INTRODUCTION

Observations have shown that a galaxy is a stellar system consisting of a massive gravitationally
bound assembly of stars, an interstellar medium of gas and cosmic dust, as well as other components.
Many (mature spiral) galaxies share a common structure withthe visible matter distributed in a
flat thin disk, rotating about their center of mass in nearly circular orbits. The behavior of stellar
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systems such as galaxies is believed to be determined by Newton’s laws of motion and Newton’s
law of gravitation (Binney & Tremaine 1987). Thus, modelingthe Newtonian dynamics of thin-
disk galaxies is of fundamental importance to our understanding of the so-called “galaxy rotation
problem”– an apparent discrepancy between the observed rotation of galaxies and the predictions
of Newtonian dynamics as generally perceived in the community of astrophysics (e.g., Freeman &
McNamara 2006; Rubin 2006, 2007; Bennett et al. 2007).

Although scientifically well-established, the actual modeling of Newtonian dynamics, when ap-
plied to thin-disk galaxies, appeared in various forms in the literature with inconsistent conclusions.
Without rigorous justification, some authors (e.g., Rubin 2006, 2007; Bennett et al. 2007; Sparke
& Gallagher 2007; Keel 2007) are tempted by simplicity to apply formulas based on Keplerian dy-
namics to the thin-disk galaxies. Theoretically, Keplerian dynamics can be derived from Newtonian
dynamics as a special case for spherically symmetric gravitational systems such as the solar system
and, therefore, is not expected to provide accurate descriptions for thin-disk galaxies. Hence, seri-
ous efforts were made in integrating the Poisson equation with mass sources distributed on a disk,
as summarized by Binney & Tremaine (1987). The solution directly obtained from such efforts is
the gravitational potential which can yield the gravitational force by taking its gradient. In an ax-
isymmetric disk rotating at steady state, the gravitational force (the radial gradient of gravitational
potential) is expected to equate to the centrifugal force due to rotation at every point.

However, solving the disk-potential problem does not seem to be a trivial pursuit. Traditional
methods involved either treating the disk as a flattened spheroid that consists of a series of thin
homoeoids each having a uniform density (e.g., Brandt 1960;Mestel 1963; Cuddeford 1993) or
using the summation of modified Bessel functions for the potential (e.g., Toomre 1963; Freeman
1970; Nordsieck 1973; Cuddeford 1993; Conway 2000). Although seemingly elegant when derived
in analytical formulas, those methods could yield closed-form solutions only for a few special cases
(e.g., Mestel 1963; Freeman 1970; Binney & Tremaine 1987). For determining the mass distribution
in a galactic disk from the measured rotation curve that could have a variety of shapes, however,
numerical integrations must be carried out and practical difficulties arise when those traditional
analytical formulas are used. For example, the flattened spheroid approach via the Abel integral
and its inversion intrinsically restricts the “vertical” mass distribution in the disk’s axial direction
to that dictated by the homoeoid structure rather than that from observations (e.g., according to van
der Kruit & Searle 1982, the scale heights of galactic disks are nearly independent of radius). It is
rather cumbersome to compute the surface mass density by integrating the mass density in spheroidal
shells and the “spheroid” methods often lead to erroneous results for angular momentum analysis
(cf. Toomre 1963; Nordsieck 1973). The Bessel function approach leads to an integral extending
to infinity, whereas the observed rotation curve always endsat a finite distance. Thus, it becomes
necessary to construct an orbital velocity beyond the observation limit based on various assumptions
(e.g., Nordsieck 1973; Bosma 1978; Jałocha et al. 2008). Moreover, the derivative of rotation velocity
usually appearing in the Bessel function formulation for computing mass density tends to introduce
significant errors in practical applications.

In general, the fundamental solution to the Poisson equation (that governs the gravitation po-
tential) is called Green’s function (Arfken 1985; Cohl & Tohline 1999). The potential from arbitrar-
ily distributed sources can be obtained by integrating the Green’s function–serving as the integral
kernel–multiplied by the source density throughout the region where the sources are located. Thus,
considering the gravitational potential in terms of Green’s function is the most direct approach for
realistic modeling of galactic rotation dynamics (e.g., Eckhardt & Pestaña 2002; Pierens & Huré
2004; Huré & Pierens 2005). For sources distributed axisymmetrically on a thin disk, the Green’s
function can be expressed in terms of the complete elliptic integral of the first kind (e.g., Binney &
Tremaine 1987). Because the dynamics of thin-disk galacticrotation is typically described along the
midplane (z = 0) with the mass distribution being symmetric about the disk midplane and about its
central axis, the radial gradient of potential in the midplane must be evaluated. The elliptic integrals
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of the first kind and second kind that appear in the radial gradient of potential can become math-
ematically singular at the midplane (whenz = 0) where the radius of the source approaches that
of the observation point. Such singularities have been considered “inconvenient from the point of
view of numerical work” by Binney & Tremaine (1987) and “bothersome” by Eckhardt & Pestaña
(2002). Methods were suggested to circumvent such singularities by evaluating the radial gradient of
potential at a vertical distancez slightly away fromz = 0 (cf. Binney & Tremaine 1987; Eckhardt
& Pestaña 2002), which seem to be somewhatad hoc by nature and lack desirable mathematical
elegance. On the other hand, it is the axisymmetric mass distribution within an idealized rotating in-
finitesimally thin disk that has often been of practical interest, especially for rotation curve analysis
(Toomre 1963). Therefore, the efforts of effectively dealing with the singularities arising from ellip-
tic integrals have been continuously made for robust and accurate computations of the disk galaxy
rotation problem (even up to recent years, e.g., Eckhardt & Pestaña 2002; Pierens & Huré 2004;
Huré & Pierens 2005, 2009).

In the present work, we derive a numerical model for computing the Newtonian dynamics of
thin-disk galactic rotation that allows the mass to be distributed even in an infinitesimally thin re-
gion around the midplane of the disk with the governing equation being considered strictly along the
midplane (z = 0) and the singularities from elliptic integrals treated rigorously based on the concept
of the mathematical limit. To deal with arbitrary forms of rotation curves and mass–density distri-
butions, we adopt the techniques developed with a boundary element method (cf. Sladek & Sladek
1998; Gray 1998; Sutradhar et al. 2008) for solving integralequations using compactly supported
basis functions instead of that extending to infinity like Bessel functions, as detailed in Section 2.
Hence the finite physical problem domain for disks of finite sizes can be conveniently considered,
without the need for a speculated rotation curve beyond the “cut-off” radius and evaluation of the
derivative of rotation velocity. By nondimensionalizing the governing equations, a dimensionless
parameter which we call the “galactic rotation number” appears in the force balance (or centrifugal-
equilibrium) equation, representing the gross ratio of centrifugal force and gravitational force. We
show that together with a constraint equation for mass conservation, the value of this galactic ro-
tation number can be determined as part of the numerical solution, with computational examples
presented in Section 3. With a known value of the galactic rotation number, the total galactic mass
can be determined from measured galactic radius and characteristic rotation velocity, as shown in
Section 4 where important physical insights are discussed.

2 MATHEMATICAL FORMULATION AND COMPUTATIONAL TECHNIQUES

For convenience of mathematical treatments, we represent arotating galaxy by a self-gravitating
continuum of axisymmetrically distributed mass in a circular disk with an edge at finite radiusRg,
as shown in Figure 1. This kind of continuum representation is typically valid when the distributed
masses are viewed on a scale that is small compared to the sizeof the galaxy, but large compared
to the mean distance between stars. Without loss of generality, we consider the thin disk having a
uniform thicknessh with a variable mass densityρ as a function of radial coordinater. Because
we consider the situation of the thin disk, the vertical distribution of mass (in thez-direction) is
expected to contribute an inconsequential dynamical effect especially as the disk thickness becomes
infinitesimal. In mathematical terms, the meaningful variable here is actually the surface mass den-
sity σ(r) ≡ ρ(r)h. Whether to consider the surface mass densityσ(r) or the bulk mass densityρ(r)
in the mathematical equations is really a matter of taste, since they can easily be converted to each
other using a constant factorh by our definition. In this work, we use the bulk densityρ(r) for its
consistency with the direct physical perception of a thin disk with a nonzero thicknessh.

Physically, the stars in a galaxy must rotate about the galactic center to maintain the disk-
shaped mass distribution. Without the centrifugal effect due to rotation, the stars would collapse
into the galactic center as a result of the gravitational field among themselves. According to Binney
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Fig. 1 Definition sketch of the thin-disk model considered in this work. The mass is assumed to
distribute axisymmetrically in the circular disk of uniform thicknessh with a variable density as a
function of radial coordinater (but independent of the polar angleθ).

& Tremaine (1987), it is also reasonable to assume the galaxyis in an approximately steady state
with the gravitational force and centrifugal force balancing each other, in view of the fact that most
disk stars have completed a large number of revolutions.

2.1 Governing Equations

Instead of following the traditional approach by first solving gravitational potential from the Poisson
equation, we derive the governing equation directly from the consideration of force balance. Here,
the force density on a test mass at the point of observation (r, θ = 0) generated by the gravitational
attraction due to the summation (or integration) of a distributed mass densityρ(r̂) at a position
described by the variables of integration (r̂, θ̂) is expressed as an integral over the entire disk, with
the distance between (r, θ = 0) and (̂r, θ̂) given by(r̂2+r2−2r̂ r cos θ̂)1/2 and the vector projection
given by(r̂ cos θ̂ − r). Thus, the equation for gravitational force to balance the centrifugal force at
each and every point in a thin disk can be written as (according to Newton’s laws)

∫ 1

0

[

∫ 2π

0

(r̂ cos θ̂ − r)dθ̂

(r̂2 + r2 − 2r̂r cos θ̂)3/2

]

ρ(r̂)hr̂dr̂ + A
V (r)2

r
= 0 , (1)

where all the variables are made dimensionless by measuringlengths (e.g.,r, r̂, h) in units of the
outermost galactic radiusRg, disk mass densityρ in units ofMg/R3

g with Mg denoting the total
galactic mass, and rotation velocitiesV (r) in units of a characteristic galactic rotational velocity
V0 (usually defined according to the problem of interest, e.g.,the maximum velocity corresponding
to the flat part of a rotation curve). The disk thicknessh is assumed to be constant and small in
comparison with the galactic radiusRg. Our results for surface mass densityρ(r)h are expected to
be insensitive to the exact value of this ratio as long as it issmall. There is no difference in terms
of physical meaning between the notations(r, θ) and(r̂, θ̂); but mathematically the former denotes
the independent variables in the integral Equation (1) whereas the latter denoted the variables of
integration. The gravitational force represented as the summation of a series of concentric rings is
described by the first (double integral) term while the centrifugal force is described by the second
term in Equation (1).

Our process of nondimensionalization of the force–balanceequation yields a dimensionless pa-
rameter, which we call the “galactic rotation number”A, as given by

A ≡ V 2
0 Rg

Mg G
, (2)

whereG (= 6.67 × 10−11 m3 kg−1 s−2) denotes the gravitational constant,Rg is the outermost
galactic radius, andV0 is the characteristic velocity (which is equated here to themaximum asymp-
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totic rotational velocity). This galactic rotation numberA simply indicates the relative importance
of centrifugal force versus gravitational force.

Equation (1) can either be used to determine the surface massdensityρ(r)h from a given rota-
tion curveV (r) or vice versa. However, when bothρ(r) andA are unknown, another independent
equation is needed to have a well-posed mathematical problem. According to the law of conservation
of mass, the total mass of the galaxyMg should be constant satisfying the constraint

2π

∫ 1

0

ρ(r̂)hr̂dr̂ = 1. (3)

This constraint can be used for determining the value of galactic rotation numberA while
Equation (1) can be used to determineρ(r). Equations (1)–(3) can in principle be used to deter-
mine the mass density distributionρ(r) in the disk, the galactic rotation numberA, and the total
galactic massMg, all from measured values ofV (r), Rg, V0 andh. On the other hand, ifρ(r) andh
(or ρ(r)h) are known,V (r) can of course be determined from Equation (1).

Moreover, it is known that the integral with respect toθ̂ in Equation (1) can be written as

∫ 2π

0

(r̂ cos θ̂ − r)dθ̂

(r̂2 + r2 − 2r̂r cos θ̂)3/2
= 2

[

E(m)

r(r̂ − r)
− K(m)

r(r̂ + r)

]

, (4)

whereK(m) andE(m) denote the complete elliptic integrals of the first kind and second kind, with

m ≡ 4r̂r

(r̂ + r)2
. (5)

Thus, Equation (1) can be expressed in a simpler form

∫ 1

0

[

E(m)

r̂ − r
− K(m)

r̂ + r

]

ρ(r̂)hr̂dr̂ +
1

2
AV (r)2 = 0 , (6)

which is more suitable for the boundary element type of numerical implementation (with the double
integral converted to a single integral).

2.2 Computational Techniques

Following a standard boundary element approach (e.g., Sladek & Sladek 1998; Gray 1998; Sutradhar
et al. 2008), the governing Equations (6) and (3) can be discretized by dividing the one-dimensional
problem domain0 ≤ r ≤ 1 into a finite number of line segments called (linear) elements. Each ele-
ment covers a subdomain confined by two end nodes, e.g., element n corresponds to the subdomain
[rn, rn+1], wherern andrn+1 are nodal values ofr at nodesn andn + 1, respectively. On each
element, which is mapped onto a unit line segment[0, 1] in the ξ-domain (i.e., the computational
domain),ρ is expressed in terms of linear basis functions as

ρ(ξ) = ρn(1 − ξ) + ρn+1ξ , 0 ≤ ξ ≤ 1 , (7)

whereρn andρn+1 are nodal values ofρ at nodesn andn + 1, respectively. Similarly, the ra-
dial coordinatêr on each element is also expressed in terms of linear basis functions by so-called
isoparameteric mapping

r̂(ξ) = r̂n(1 − ξ) + r̂n+1ξ , 0 ≤ ξ ≤ 1 . (8)
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If the rotation curveV (r) is given (from observational measurements), theN nodal values ofρn =
ρ(rn) are determined by solvingN independent residual equations overN − 1 elements obtained
from the collocation procedure, i.e.,

N−1
∑

n=1

∫ 1

0

[

E(mi)

r̂(ξ) − ri
− K(mi)

r̂(ξ) + ri

]

ρ(ξ)hr̂(ξ)
dr̂

dξ
dξ +

1

2
AV (ri)

2 = 0 , i = 1, 2, ..., N , (9)

with

mi(ξ) ≡
4r̂(ξ)ri

[r̂(ξ) + ri]2
, (10)

whereρ(ξ) = ρn(1 − ξ) + ρn+1ξ. The value ofA can be solved by the addition of the constraint
equation

2π

N−1
∑

n=1

∫ 1

0

ρ(ξ)hr̂(ξ)
dr̂

dξ
dξ − 1 = 0 . (11)

Thus, we haveN + 1 independent equations for determiningN + 1 unknowns. The mathematical
problem is well-posed. The set of linear equations comprising Equations (9) and (11) forN + 1
unknowns (i.e.,N nodal values ofρn andA), once computed with appropriate treatments of the
mathematical singularities shown in Appendix A, can be transformed into matrix form using the
Newton–Raphson method and then solved with a standard matrix solver, e.g., by Gauss elimination
in one step without further iterations (Press et al. 1988).

3 COMPUTATIONAL EXAMPLES

As we mentioned before, Equations (9) and (11) can be used to either solve forρ(r) andA from a
given rotation curveV (r) or determine the rotation curveV (r) from a given surface mass–density
distributionσ(r) = ρ(r)h. Usually, solving forρ(r) from a given rotation curveV (r) requires
computation of a linear algebra matrix problem whereas determining V (r) from a givenρ(r) only
involves a straightforward integration. In a spiral galaxy, however, it is the rotation curve that can
be measured with considerable accuracy; therefore, the observed rotation curve has been accepted
to provide the most reliable means for determining the distribution of gravitating matter therein
(Toomre 1963; Sofue & Rubin 2001). Hence, we first consider examples of solving forρ(r) andA
from a givenV (r).

3.1 Mass Distribution for a Rotation Curve of Typical Shape

To obtain numerical solutions, the value of (constant) diskthicknessh must be provided; we assume
h = 0.01, which is typical of disk galaxies like the Milky Way. For computational efficiency, we
distribute more nodes in the regions (e.g., near the galactic center and disk edge) whereρ has a
greater gradient. The typical number of nonuniformly distributed nodesN used in the computation
is 1001 with which we found for most cases to be sufficient for obtaining a smooth curve ofρ versus
r and discretization-insensitive values of galactic rotation numberA. When numerically integrating
element-by-element in Equations (9) and (11), we use ordinary 6-point Gaussian quadrature for
integrals with respect to0 ≤ ξ ≤ 1. The two-dimensional integrals (A.4) on a singular elementare
calculated numerically by ordinary6×6-point Gaussian quadrature on a unit square with0 ≤ η ≤ 1
and0 ≤ ξ ≤ 1.

The measurements of a galactic rotation curve of mature spiral galaxies reveal that the rota-
tion velocityV (r) typically rises linearly from the galactic center in a smallcore and then bends
down to reach an approximately constant value extending to the galactic periphery (Rubin & Ford



Modeling Newtonian Dynamics of Thin-Disk Galaxies 1435

Fig. 2 Nondimensionalized orbital velocity profilesV (r) according to the mathematically idealized
description Eq. (12) forRc = 0.01, 0.02, 0.05, 0.1 and0.2.

1970; Roberts & Whitehurst 1975; Bosma 1978; Rubin et al. 1980). These basic features may be
mathematically idealized as

V (r) = 1 − e−r/Rc , (12)

where the dimensionless orbital velocityV (r) is measured in units of the characteristic velocity
V0 defined as the maximum orbital velocity, and the parameterRc can serve as the scale of the
“core” of a galaxy. As shown in Figure 2, close to the galacticcenter whenr/Rc is small, we have
V (r) ∼ r/Rc describing a linearly rising rotation velocity (by virtue of the Taylor expansion of
e−r/Rc). The initial slope of this rising rotation velocity is given by1/Rc. Thus, a larger value ofRc

leads to a more gradual rise of the rotation velocity and a shrinking “flat” part of the rotation curve
which seems to disappear forRc ≥ 0.2.

Corresponding to the rotation curves in Figure 2 as described by Equation (12), the computed
mass density distributions in a galactic disk are shown in Figure 3. ForRc ≤ 0.02, the curves
of ρ versusr are asymptotic for the most part except in a tiny region around the galactic center
where the peak density value atr = 0 still increases with further decreasingRc. In other words,
the mass density tends to decrease rapidly from the galacticcenter (with a slope becoming steeper
for a tighter galactic core with a smallerRc). However, beyondr = Rc, the mass density decreases
more gradually towards the galactic periphery until reaching the galactic edge where it takes a sharp
drop. Outside the galactic core (r > Rc), only forRc > 0.1 do changes in mass–density distribution
and the value ofA become noticeable with varyingRc. Noteworthy here is that the computed values
of galactic rotation numberA for Rc ≤ 0.15 are within a small interval [1.5708, 1.6422] despite
orders of magnitude ofRc variation. It appears that asRc → 0 the value ofA approaches a limit at
∼ 1.5708. For example, the computed results show thatA = 1.57085 and1.57080 for Rc = 0.005
and0.001, respectively. However, the increase ofA with Rc becomes more significant forRc >
0.15, as illustrated by the computed results atRc = 0.2 and0.3 yielding A = 1.7098 and1.9224,
respectively.
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Fig. 3 Distributions of mass densityρ(r) computed forRc = 0.01, 0.02, 0.05, 0.1 and0.2 with
A = 1.5710, 1.5719, 1.5777, 1.5999 and1.7098 determined as part of the numerical solutions.

At the limit of Rc → 0, the (idealized) rotation curve as described by Equation (12) approaches
a completely flat oneV (r) = 1 (except in the infinitesimal neighborhood ofr = 0). The solution at
this limit should approach that of the well-known Mestel’s disk (Mestel 1963) given by

ρ(r) =
A

2πhr

[

1 − 2

π
sin−1(r)

]

, (13)

in a dimensionless form consistent with the nomenclature ofthe present work. Here, according to
Equation (3), the galactic rotation numberA can be determined by

A =
1

∫ 1

0

[

1 − 2
π sin−1(r̂)

]

dr̂
=

π

2
= 1.5707963 . (14)

As a test, we can substituteρ(r) given by Equation (13) into Equations (9) and (11) and compute
with our code for numerical integrations to determineV (r) andA. With the first node atr = 0 being
ignored to avoid the numerical difficulties with the singularity of ρ in Equation (13), we can indeed
obtain a flatV (r) = 1 throughout the entire interval(0, 1] (except in an infinitesimal neighborhood
aroundr = 0) andA = 1.57081. The computed curve ofρ versusr corresponding to Equation (13)
with A = 1.57081 overlaps that ofRc = 0.01 in Figure 3 (except in the infinitesimal neighborhood
of r = 0), as expected. This exercise demonstrates our code’s capability for determining the rotation
curve from a given disk mass distribution, and also in a way verifies the correctness of our compu-
tational code’s implementation. Since most Sb galaxies – anintermediate type of spiral galaxies –
have rotation curves typically with a very steep rise in a small central core region, the mass density
distribution in those Sb galaxies (including the Milky Way)is expected to be reasonably approxi-
mated by that of the Mestel disk (13). However, for less massive Sc galaxies having a more gradual
rise in rotation curves, their mass density distributions can deviate noticeably from that of the Mestel
disk, especially toward the galactic center, as shown in Figure 3 for those withRc > 0.02.
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3.2 Rotation Curve for a Given Mass Distribution

As demonstrated in Section 3.1, numerically computing the integration in Equation (9) for a given
ρ(r̂) like that of Mestel’s disk can produce a completely flat rotation curve. Actually, rotation curves
similar to those in Figure 2 can also be produced by a combination of the Freeman exponential
disk and Mestel disk. Here, the Freeman disk has a surface mass density proportional toe−r/Rd

with Rd denoting a scale length for the exponential disk (Freeman 1970). However, the Freeman
exponential disk alone is known not to be able to produce a rotation curve with a considerable flat
portion as is often observed in disk galaxies (e.g., Freeman1970; Binney & Tremaine 1987). The
case ofV (r) for the Freeman exponential disk can also be computed with our code, as a check; the
result showed excellent agreement with that of Freeman’s analytical formula. If we use the Freeman
disk for describing the galactic core having a rising rotation velocity and Mestel disk for the outer
flat part, there is a good chance to obtain rotation curves of typically observed shapes. For example,
we can simply construct a mass density model (which we call the Freeman–Mestel model) as

ρ(r) =







ρ0 e−r/Rd , 0 ≤ r < R̃c

A
2πh r

[

1 − 2
π sin−1(r)

]

, R̃c ≤ r ≤ 1

, (15)

where

Rd =







1

R̃c

+
2

π
√

1 − R̃2
c [1 − 2 sin−1(R̃c)/π]







−1

and

ρ0 =
A

2πh R̃ce−R̃c/Rd

[

1 − 2

π
sin−1(R̃c)

]

,

so that bothρ anddρ/dr are continuous at the connecting pointr = R̃c. Moreover, the mass con-
servation constraint Equation (11) can be used to determinethe value of galactic rotation number
as

A =

[

2 π
N−1
∑

n=1

∫ 1

0

ρ∗(ξ)hr̂(ξ)
dr̂

dξ
dξ

]−1

, (16)

whereρ∗ comes from that given by Equation (15) by settingA = 1.
AlthoughR̃c here also serves as a scaling parameter for the galactic core, having a similar phys-

ical meaning asRc in Equation (12), the value of̃Rc does not have any mathematical relationship
with that ofRc. For example, at̃Rc = 0.05 Equations (15) and (16) yieldV (r) andρ(r) in Figures 4
and 5 which are noticeably different from those in Figures 2 and 3. For smaller values of̃Rc, the
differences betweenρ(r) given by the Freeman-Mestel model and those in Figure 3 at thesame
values ofRc are less visually discernable. However, the value ofA determined by the Freeman–
Mestel model can still be slightly different. For example, at R̃c = Rc = 0.01 Equation (16) yields
A = 1.5777 whereas that computed in Section 3.1 isA = 1.5710. It seems for a given value of
R̃c = Rc the rotation curve of the Freeman–Mestel model has a greaterslope for the rising velocity
in the galactic core but a somewhat less flat velocity outsidethe core, as shown in Figure 4. Such a
numerical difference tends to diminish with diminishing̃Rc, e.g., we haveA = 1.57147, 1.57084
and1.57081 for R̃c = 10−3, 10−4 and10−5, respectively. As expected,A → 1.57080 as that for
the Mestel disk given in Equation (14) at the limit ofR̃c → 0.

What we try to illustrate here is that for obtaining rotationcurves with basic observed features,
a simple analytical mass density model as constructed by a combination of those of Mestel (1963)
and Freeman (1970) in Equation (15) seems to be quite reasonable and convenient. In terms of
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Fig. 4 Rotation velocityV (r) determined withρ(r) given by Eq. (25) for the Freeman-Mestel model
at R̃c = 0.05, compared with that in Fig. 2 forRc = 0.05.

Fig. 5 Distribution of mass densityρ(r) given by Eq. (25) for the Freeman-Mestel model atR̃c =
0.05 with A = 1.6060, compared with that in Fig. 3 forRc = 0.05 with A = 1.5777.

computational efforts, it is usually much easier and fasterto compute the rotation velocityV (r)
from a given mass density distributionρ(r) than vice versa. This is because computingV (r) for a
knownρ(r) does not need to solve the matrix problem. However, there hasnot been a reliable means
for directly measuring the mass distribution in a disk galaxy. The mass distribution derived from a
measured luminosity must rely on an assumed mass-to-luminosity ratio, with the validity of which
being a subject of debate. Thus, accurately measured rotation curves remain as the most reliable
basis for determining the distribution of mass in disk galaxies, providing fundamental information
for understanding the stellar dynamics in galactic disks (Sofue & Rubin 2001).
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3.3 Analysis of Measured Rotation Curves of Arbitrary Shapes

For rotation curves with “idealized” shapes expressed in terms of simple mathematical functions
like that in Equation (12), we have shown that the numerically computed mass–density distribution
ρ(r) approaches that of Mestel’s disk (13) when the galactic coreis small, e.g., forRc ≤ 0.02.
However, some measured rotation curves can vary significantly from those described by simple
mathematical functions or those produced by conveniently constructed mass density functions like
with the Freeman-Mestel model (15).

To determine the mass density distribution according to Newtonian dynamics from a measured
rotation curve of arbitrary shape, our computational scheme based on a sound mathematical foun-
dation as presented in Section 2 (as well as Appendix A) can become a generally applicable and
flexible tool for many practical applications. As an example, here in Figures 6 and 7 we show our
computed mass density distributions for a few actually measured galactic rotation curves with no-
ticeably different characteristics.

The measured rotation curve for the Milky Way in Figure 6 seems to be just a few bumps and
wiggles superposed on that in Figure 2 forRc = 0.01. Therefore, it is no surprise to see that the
corresponding mass density curve for the Milky Way in Figure7 also exhibits a few bumps and
wiggles around that in Figure 3 forRc = 0.01. Similarly, the measured rotation curve for NGC
3198 in Figure 6 appears to be just that in Figure 2 forRc = 0.05 with some small perturbations,
and so does the computed NGC 3198 mass density in Figure 7 compared with that forRc = 0.05
in Figure 3. However, the rotation curve for NGC 2708 in Figure 6 differs significantly from those
of typical shapes in Figure 2. The computed mass density distribution for NGC 2708 in Figure 7
shows noticeably different features from those in Figure 3.The sharp rise of mass density toward the
galactic center corresponds to a fast decrease in rotation velocity, as required for the force balance in
Newtonian dynamics. The gradual increase in the rotation velocity in the middle section(0.1, 0.7)
of NGC 2708 leads to a slowly decreasing local mass density. Then a slight reduction of the rotation

Fig. 6 Rotation curvesV (r) of the Milky Way withV0 = 2.2×105 m s−1 andRg = 4.73×1020 m,
NGC 3198 withV0 = 1.5 × 105 m s−1 andRg = 9.24 × 1020 m and NGC 2708 withV0 =
2.3 × 105 m s−1 andRg = 1.42× 1020 m.
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Fig. 7 Computed mass–density distributionsρ(r) from given rotation curves in Fig. 6 for the Milky
Way, NGC 3198 and NGC 2708, with the values ofA determined as1.564, 1.619 and1.644, re-
spectively.

velocity toward the galactic periphery is responsible for afaster decrease of local mass density in the
outer regionr > 0.7 than those for flat rotation curves in Figure 7 for NGC 2708.

Despite the differences in rotation curves in Figure 6, the computed values of galactic rotation
numberA for these three galaxies are quite close, within a few percent, namely,A = 1.564, 1.619
and1.644, respectively for the Milky Way, NGC 3198 and NGC 2708. This is consistent with that
shown in Figure 3 for a wide range ofRc. Thus, we may reasonably conclude that for most disk
galaxies, the value of galatic rotation number is expected to be within±10% of A = 1.70, with
smallerA for the galaxies having a high-density core and smallRc, and largerA for those having a
more gradual rise in the rotation curve with largerRc.

Although we only computed examples with a few representative rotation curves, such as those
described by the idealized formula (12) with several valuesof Rc and those actually measured with
different characteristics, we believe the cases examined here actually cover a wide enough range
of observational measurements that our results can offer general physical insights. Cases with ro-
tation curves falling either close to or in between those illustrated here are not expected to differ
considerably from our present findings.

4 DISCUSSION

The problem of determining the mass distribution in a thin axisymmetric disk from observed circular
velocities has been investigated by many authors over the past fifty years, through various mathe-
matical approaches. Yet a satisfactory method for accuratecomputation is still lacking, despite that
the galactic rotation model has been simplified as much as possible for concisely describing only the
most essential features. The main obstacle here appears to have been due to the mathematical singu-
larities in the elliptic integrals that are apparently difficult to handle. Here in this work, we present
an efficient, robust computational method with appropriatemathematical treatments such that the
apparent difficulties associated with the singularities are completely removed. Thus, we are able to
systematically analyze the basic features in a rotating disk galaxy, with properly nondimentionalized
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mathematical formulations. Further refinement of the present galactic rotation model may provide a
description of some of the fine details such as the spiral arm structure with non-axisymmetic motion
(Koda & Wada 2002), the gas pressure effect in the central core (Dalcanton & Stilp 2010), the disk
thickness effect (Casertano 1983), etc. However, those finedetails should not alter the basic fea-
tures significantly, at least in a gross qualitative sense. Our results in Figure 7 show that the general
shape of the mass density distribution remains quite similar for rotation curves of drastically dif-
ferent appearances. The value of the galactic rotation number A does not change more than±10%
for a variety of rotation curves, indicating that the gross balance between the centrifugal force and
gravitational force in a disk galaxy is usually insensitiveto fine details.

4.1 Total Mass in the Galactic Disk

In the dimensionless form as presented here, our mathematical system contains a dimensionless
parameter called galactic rotation numberA. This galactic rotation number, with its value determined
as part of the computational solution, can provide a unique insight into the dynamical system of a
rotating galaxy. From the knowledge ofV0 andRg from measured rotation curves, we can determine
the value of the total massMg based on the computed value ofA (cf. Eq. (2)) as

Mg =
V 2

0 Rg

AG
. (17)

According to the rotation curve of the Milky Way in Figure 6, we have the galactic rotation
numberA = 1.564. Then, from the measured valuesV0 = 2.2 × 105 m s−1 andRg = 5 × 104

light-years= 4.73×1020 m (which is about15.3 kpc where1 kpc= 3.086×1019 m), Equation (17)
yields

Mg = 2.19 × 1041(kg) = 1.10 × 1011M⊙ .

Here,1 M⊙ = 1.98892 × 1030 kg. This value is in very good agreement with the Milky Way star
counts of 100 billion (Sparke & Gallagher 2007).

Another example in Figures 6 and 7 is the galaxy NGC 3198, withV0 = 1.5 × 105 m s−1 and
Rg = 30 kpc = 9.24 × 1020 m (Begeman 1987, 1989). Using the computedA = 1.619, we obtain
Mg = 1.925 × 1041 kg = 9.68 × 1010 M⊙.

For a small disk galaxy NGC 6822, we have a rotation curve similar to that described byRc ∼
0.3 in Equation (12), withV0 = 6.0 × 104 m s−1 andRg = 5 kpc = 1.54 × 1020 m (Weldrake
et al. 2003). If we takeA = 1.92 for Rc = 0.3, Equation (17) yieldsMg = 4.33 × 1039 kg
= 2.18 × 109 M⊙.

Because the value ofA does not vary much for a large range of rotation curves with various
shapes (see, e.g., Figs. 6 and 7), what Equation (17) impliesis thatMg ∝ V 2

0 Rg as Bosma (1978)
found from evaluating mass versus size in a large number of observed disk galaxies. For a fixed
value ofV0, Mg ∝ Rg. Therefore, a disk galaxy cannot physically extend indefinitely in size, for
Mg to remain finite. In other words, there must be an edge of the galactic disk at a finite radius
Rg, where the mass density precipitously diminishes. Normally, one would defineRg as the radial
distance where the “luminous,’ “visible,” or “detectable”signal for rotating matter ends. With the
advance in measurement technology using different emission lines, the detectable rotating matter
(in the form of gas) seems to extend further out from the optically visible disk (cf. Sofue & Rubin
2001). Thus, the value ofRg may change with the evolving astronomical observation technology.
Wherever the trueRg is located, it must correspond to an abruptly steep decreaseof mass density
whereas the mass density variation withinRg is expected to be smooth, according to our Newtonian
dynamics model for thin-disk galaxies with typical rotation curves. It should be noted that although
for a given rotation curve with fixedV0 the total massMg of the galactic disk increases linearly with
Rg, the dimensional value of surface mass density should generally decrease withRg according to
1/Rg because it scales asMg/R2

g.
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As an interesting exercise, we take Equation (13) for the convenience in estimating the surface
mass densityσ(r) ≡ ρ(r)h around the Sun in the Milky Way whenRg increases. Then, we obtain
σ(rsun) = 0.3106, 0.7954 and 1.7532 for rsun = 0.5229, 0.2614 and 0.1307, respectively for
Rg = 15.3, 30.6 and61.2 kpc assuming the Sun is located atrsun Rg = 8 kpc from the galactic
center. Based on the value given by Equation (18), we have thedimensional surface mass density
σ(rsun)Mg/R2

g ≈ 146 M⊙ pc−2 for Rg = 15.3 kpc. If Rg for the flat rotation curve were found to
be at30.6 or 61.2 kpc, the dimensional surface mass density would become187 or 206M⊙ pc−2,
varying much less dramatically than the value ofRg. This phenomenon is a consequence of the1/r
part of Equation (13), which becomes more dominant for smaller values ofr. In fact, if the surface
mass densityσ(r) were to strictly follow a distribution∝ 1/r, the dimensional surface mass density
for a given dimensional radial coordinaterRg would remain constant because the value ofA changes
little if at all. Thus, asRg extends further out, the value of dimensional surface mass density in the
neighborhood of the Sun is expected to become almost independent of the value ofRg.

4.2 Computed Mass Density Versus Observed Surface Brightness

Observations of disk galaxies suggest that the surface brightness — the total stellar luminosity emit-
ted per unit area of the disk — is approximately an exponential function of radius (Freeman 1970;
Binney & Tremaine 1987). This exponential approximation seems to be especially good for the outer
part of disk galaxies where the inner bulge component diminishes (e.g., Freeman 1970). Our com-
puted mass–density distributions in Figure 3, according totypical flat rotation curves, indeed show
a nearly straight-line shape in the log-linear plots corresponding to an approximately exponential
function for a large portion of the problem domain, e.g., in the interval(0.2, 0.9). In fact, the least-
square fit of our computedln ρ versusr for the case ofRc = 0.01 (cf. Fig. 3) to a linear function
for 0.2 ≤ r ≤ 0.9 yields

ln ρ = 5.2614− 3.4377 r , (18)

with the correlation coefficient “R2” being 0.9968 suggesting that the portion of mass density in
(0.2, 0.9) can indeed be well described by an exponential functionρ = ρ0 e−r/Rd with ρ0 = 192.75
andRd = 0.2909. If the same least-square fitting were done for0.1 ≤ r ≤ 0.9, we would haveρ0 =
238.41 andRd = 0.2668 but with a slightly reduced correlation coefficientR2 = 0.9870, which
still indicates a good approximation with the exponential function. However, the dimensional “radial
scale length”Rd Rg for the Milky Way would be∼ 4.5 (or 4.1) kpc according toRd = 0.2909 (or
0.2668) assumingRg = 15.3 kpc. This is larger than the radial scale length2.5 kpc from fitting the
brightness measurement data reported by Freudenreich (1998). For NGC 3198 withRg = 30 kpc,
we would haveRd Rg = 8.73 (or 8.00) kpc, again larger than the radial scale length of2.63 kpc for
the luminosity profile (cf. Begeman 1987, 1989). So, our computed results suggest that the surface
mass density decreases toward the galactic periphery at a slower rate than the luminosity density. In
other words, the mass-to-light ratio in a disk galaxy is not aconstant; it generally increases with the
radial distance from the galactic center as indicated by ouranalysis for the exponential portion of
mass density distribution (which was also suggested by Bosma 1978).

However, it is known that the constructed mass density distribution in terms of a single expo-
nential function cannot generate an observed flat rotation curve (Freeman 1970; Binney & Tremaine
1987). The sharp increase of the mass density near the galactic center that drastically deviates from
the exponential description for0.1 ≤ r ≤ 0.9 or 0.2 ≤ r ≤ 0.9 seems to play an important role
for keeping the rotation curve flat toward the galactic center up to the edge of the core. In reality,
most disk galaxies also have a central bulge with an apparently high concentration of stars. Our pure
disk model does not explicitly treat the bulge as a separate object; instead, the gravitational effect
of the bulge is lumped in the rotating disk. Thus, our computed mass density should be regarded as
a combination of that from the pure disk and the effective bulge represented in the disk form. This
sharp increase of the disk mass density near the galactic center can be considered to account for
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the highly concentrated mass in the central bulge. Actually, it may not be impossible to extend the
formulation in Section 3.2 for a mass–density distributionto include a summation (or expansion)
of several exponential terms with different radial scale lengths, for matching an observed rotation
curve with a more complicated shape. Yet, the most straightforward method for determining the
mass density distribution for a given rotation curve (of arbitrary shape) is by numerically solving the
linear algebra matrix equation based on sound mathematicalgrounds for disk galaxies of finite size
as presented in Section 2 and demonstrated in Sections 3.1 and 3.3.

4.3 Inaccuracy of Keplerian Dynamics for Disk Galaxies

Enchanted by its simplicity, the Keplerian dynamics was applied by several authors to the descrip-
tion of the disk galaxy behavior without seriously investigating its validity or accuracy. To clarify
some of the problems in such an over-simplification, here we present a quantitative analysis of the
fundamental differences between the Keplerian dynamics and Newtonian dynamics, especially when
applied to disk galaxies.

From analyzing the orbits of planets around the Sun, Kepler empirically discovered laws for
planet motion in the solar system. It was Newton who mathematically showed that Kepler’s laws
are actually consequences of Newton’s laws of motion and theuniversal law of gravitation. The
so-called Keplerian dynamics can be derived from Newton’s theorems for the gravitational potential
of any spherically symmetric mass distribution. In considering the balance between gravitational
force from the distributed mass in a galaxy and centrifugal force due to rotation, applying Keplerian
dynamics would lead to the equation

2π

r2

∫ r

0

ρ(r̂)h r̂dr̂ − A
V (r)2

r
= 0 , (19)

which is apparently quite different from Equation (1) as rigorously derived for the thin-disk galaxies.
However, the force balance equation based on Keplerian dynamics (19) looks much simpler than
that of Newtonian dynamics (1). If justifiable in a quantitative sense, it may be conveniently used
as a reasonable approximation to more involved rigorous computations. To provide a quantitative
comparison, we examine a few basic mathematical features of(19) to illustrate whether the Keplerian
dynamics can be practically used as a reasonable approximation to Newtonian dynamics (1) for disk
galaxies.

For a given rotation curve with the orbital velocityV (r) described by Equation (12), an analyt-
ical solution to Equation (19) forρ(r) can be obtained as

ρ(r) =
A

2π h

[

1

r

(

1 − 2e−r/Rc + e−2r/Rc

)

+
2

Rc

(

e−r/Rc − e−2r/Rc

)

]

. (20)

Thus, Equation (20) describes a mass density approaching3Ar/(2π h R2
c) → 0 asr → 0 with a

positive slope for smallr, yet approachingA/(2π h r) asr → 1 (becausee−1/Rc can be negligibly
small for smallRc, e.g.,e−1/Rc = 4.54−5, 2.06 × 10−9 and1.93 × 10−22 for Rc = 0.1, 0.05 and
0.02, respectively). The mass density distribution of Equation(20) does not monotonically decrease
with r as that shown in Figure 3; instead, it is zero at the galactic center and increases for smallr
according to a slope∝ 1/R2

c (which can be large for smallRc) until reaching a peak value, then
decreases in a form∝ 1/r towards the galactic peripheryr = 1 without the precipitous drop seen in
Figure 3.

Substituting Equation (20) to Equation (3) yields

A =
1

1 − 2e−r/Rc + e−2r/Rc

, (21)
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which leads toA ≈ 1 for small Rc, quite different from1.57 when Rc → 0 as obtained in
Section 3.1. Hence using Keplerian dynamics to describe disk galaxies can be misleading, because
not only do the results differ quantitatively but also qualitatively from those based on rigorous com-
putations.

On the other hand, if we assume the mass density distributionis known, e.g., like that given by
Equation (13), Equation (19) leads to

V (r)2 =
1

r

∫ r

0

[

1 − 2

π
sin−1(r̂)

]

dr̂ = 1 − 2

π

[

sin−1(r) − 1 −
√

1 − r2

r

]

.

Instead of a completely flat rotation curve, the Mestel’s disk mass density distribution with Keplerian
dynamics would yield an orbital velocityV (r) that monotonically decreases withr, havingV (0) =
1 andV (1) = 0.7979. Therefore, a mass density distribution corresponding to aflat rotation curve
based on Newtonian dynamics would be mistaken as failing to explain the observed flat rotation
curve when Keplerian dynamics were inappropriately employed, because it instead predicts a falling
rotation curve.

5 CONCLUSIONS

In this paper, we show that with appropriate mathematical treatments the apparent difficulties asso-
ciated with singularities in computing elliptic integralscan be eliminated when modeling Newtonian
dynamics of thin-disk galactic rotation. Using the well-established boundary element techniques,
the nondimensionalized governing equations for disks of finite sizes can be discretized, transformed
into a linear algebra matrix equation, and solved by straightforward Gauss elimination in one step
without further iterations. Although the mathematical derivations in Appendix A for removing the
singularities seem somewhat sophisticated, the actual implementations of the numerical code are not
as lengthy. With our code on a typical personal computer witha single Pentium 4 processor, each
solution in Section 3 takes no more than a minute or so to compute. Thus, a numerical code im-
plemented according to our algorithm can be conveniently used to accurately determine the surface
mass density distribution in a disk galaxy from a measured rotation curve (or vice versa), which is
important for in-depth understanding of the Newtonian dynamics and its capability of explaining the
“galaxy rotation problem” via rotation curve analysis. Moreover, the dimensionless galactic rotation
numberA in our mathematical system can provide important insights into the general dynamical
behavior of disk galaxies.

Through systematic computational analysis, we have illustrated that the value of the galactic
rotation number remains within±10% of A = 1.70 for a wide variety of rotation curves. For most
Sb type galaxies like the Milky Way, having rotation curves typically with a very steep rise in a
small central core region and a large flat portion range, we have shown thatA ≈ 1.60 with a surface
mass density very close to that of Mestel’s disk (except in the infinitesimal neighborhood of the
galactic center where the Mestel disk becomes singular). However, for galaxies with “non-ideal”
rotation curves containing considerable irregularities,our numerical approach can easily be used
without modification for computing the corresponding surface mass density distributions accurately
for rotation curve analysis.

Because the value ofA ≡ V 2
0 Rg/(Mg G) remains almost invariant for various galaxies, we

can draw a conclusion that the total mass in a disk galaxyMg must be proportional toV 2
0 Rg. For

galaxies with similar characteristic rotation velocityV0, their total massMg must be proportional
to their disk sizeRg. Our model predicts that at the disk edge the surface mass density is expected
to diminish precipitously whereas within the disk edge the surface mass density should vary rather
smoothly without sharp changes except near the galactic center. Thus, a disk galaxy with a finite
amount of mass must also have a finite size, based on Newtoniandynamics modeling.
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For a disk galaxy with a typical flat rotation curve, our modeling result shows that the surface
mass density monotonically decreases from the galactic center toward the periphery, according to
Newtonian dynamics. In a large portion of the galaxy, the surface mass density follows an approx-
imately exponential law of decay with respect to the galactic radial coordinate. Yet the radial scale
length for the exponential portion of the surface mass density seems to be generally larger than that of
the measured exponential brightness distribution, suggesting an increasing mass-to-light ratio with
the radial distance in a disk galaxy. This is consistent withtypical edge-on views of disk galaxies
often revealing a dark edge against a bright background bulge.
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Appendix A: TREATMENTS OF SINGULAR ELEMENTS

The complete elliptic integrals of the first kind and second kind can be numerically computed with
the formulas (Abramowitz & Stegun 1972)

K(m) =
4

∑

l=0

alm
l
1 − log(m1)

4
∑

l=0

blm
l
1 (A.1)

and

E(m) = 1 +
4

∑

l=1

clm
l
1 − log(m1)

4
∑

l=1

dlm
l
1 , (A.2)

where

m1 ≡ 1 − m =

(

r̂ − r

r̂ + r

)2

. (A.3)

Clearly, the terms associated withK(mi) andE(mi) in Equation (9) become singular whenr̂ → ri

on the elements withri as one of their end points.
Logarithmic singularity can be treated by converting the singular one-dimensional integrals into

non-singular two-dimensional integrals by virtue of the identities

{ ∫ 1

0 f(ξ) log ξdξ = −
∫ 1

0

∫ 1

0 f(ξη)dηdξ
∫ 1

0 f(ξ) log(1 − ξ)dξ = −
∫ 1

0

∫ 1

0 f(1 − ξη)dηdξ
, (A.4)

wheref(ξ) denotes a well-behaving (non-singular) function ofξ on0 ≤ ξ ≤ 1.
However, a more serious non-integrable singularity1/(r̂−ri) exists due to the termE(mi)/(r̂−

ri) in (9) asr̂ → ri. The1/(r̂ − ri) type of singularity is treated by using the Cauchy principal
value to obtain a meaningful evaluation (cf. Kanwal 1996), as is commonly done with the boundary
element method (Sladek & Sladek 1998; Gray 1998; Sutradhar et al. 2008). In view of the fact that
eachri is considered to be shared by two adjacent elements coveringthe intervals[ri−1, ri] and
[ri, ri+1], the Cauchy principal value of the integral over these two elements is given by

lim
ǫ→0

[

∫ ri−ǫ

ri−1

ρ(r̂)r̂dr̂

r̂ − ri
+

∫ ri+1

ri+ǫ

ρ(r̂)r̂dr̂

r̂ − ri

]

. (A.5)
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In terms of elementalξ, Equation (A.5) is equivalent to

− lim
ǫ→0

{

∫ 1−ǫ/(ri−ri−1)

0

[ρi−1(1 − ξ) + ρiξ][ri−1(1 − ξ) + riξ]dξ

1 − ξ

−
∫ 1

ǫ/(ri+1−ri)

[ρi(1 − ξ) + ρi+1ξ][ri(1 − ξ) + ri+1ξ]dξ

ξ

}

. (A.6)

Performing integration by parts on Equation (A.6) yields

ρi ri log

(

ri+1 − ri

ri − ri−1

)

−
(

∫ 1

0

d{[ρi−1(1 − ξ) + ρiξ][ri−1(1 − ξ) + riξ]}
dξ

log(1 − ξ)dξ

+

∫ 1

0

d{[ρi(1 − ξ) + ρi+1ξ][ri(1 − ξ) + ri+1ξ]}
dξ

log ξdξ

)

,

where the two terms associated withlog ǫ cancel out each other, the terms withǫ log ǫ become zero
at the limit ofǫ → 0 and the first term becomes nonzero when the mesh nodes are not uniformly dis-
tributed (namely, the adjacent elements are not of the same segment size). In other words, inclusion
of this first term enables the usage of nonuniformly distributed nodes for more effective computa-
tions, which is one of the algorithm improvements over that in our previous works (Gallo & Feng
2009, 2010).

At the galaxy centerri = 0 (i.e., i = 1),
∫ ri+1

ri

ρ(r̂)r̂dr̂

r̂ − ri
=

∫ ri+1

0

ρ(r̂)dr̂ . (A.7)

Thus, the1/(r̂ − ri) type of singularity disappears naturally. However, numerical difficulty can still
arise ifρ itself becomes singular asr → 0, e.g.,ρ ∝ 1/r as for the Mestel disk (Mestel 1963). The
singular mass density atr = 0 corresponds to a mathematical cusp, which usually indicates the need
for finer resolution in the physical space. To avoid the cusp in mass density at the galactic center, we
can impose a requirement of continuity in the derivative ofρ at the galaxy centerr = 0. This can be
easily implemented at the first nodei = 1 to demanddρ/dr = 0 at r = 0. In discretized form for
r1 = 0 we simply have

ρ(r1) = ρ(r2) . (A.8)

Whenri = 1 (i.e.,i = N ), we are at the end node of the problem domain. Here we use a numeri-
cally relaxing boundary condition by considering an additional element beyond the domain boundary
covering the interval[ri, ri+1], because it is needed to obtain a meaningful Cauchy principal value. In
doing so we can also assumeri+1 − ri = ri − ri−1 such thatlog[(ri+1 − ri)/(ri − ri−1)] becomes
zero, to simplify the numerical implementation. Moreover,it is reasonable to assumeρi+1 = 0
because it is located outside the disk edge where the extremely low intergalactic mass density is
expected to have an inconsequential gravitational effect.With sufficiently fine local discretization,
this extra element can be considered to cover a diminishing physical space such that its existence
becomes numerically inconsequential. Thus, atri = 1 (wherei = N ) we have

∫ 1

0

d{[ρi(1 − ξ) + ρi+1ξ][ri(1 − ξ) + ri+1ξ]}
dξ

log ξdξ

= (ρi+1 − ρi)

∫ 1

0

r(ξ) log ξdξ + (ri+1 − ri)

∫ 1

0

ρ(ξ) log ξdξ = ρi[ri −
3

2
(ri − ri−1)] .

Now that only logarithmic singularities are left, Equation(A.4) can be used to eliminate all singu-
larities in computing the integrals in Equation (9).
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Noteworthy here is that the (removable) singularities in the kernels of the integral equation (6),
when properly treated, lead to a diagonally dominant Jacobian matrix with a bounded condition
number in the Newton–Raphson formulation (Press et al. 1988). This fact makes the matrix equation
robust for any straightforward matrix solver.
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Huré, J.-M., & Pierens, A. 2005, ApJ, 624, 289
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