Research in Astron. Astrophys2011 Vol. 11 No. 12, 1429-1448

R hi
http: //mww.raa-journal.org  http://mwww.iop.org/journals/raa esearch in

Astronomy and
Astrophysics

Modeling the Newtonian dynamicsfor rotation curve analysis of
thin-disk galaxies

James Q. Feng and C. F. Gallo
Superconix Inc, 2440 Lisbon Avenue, Lake EImo, MN 55042, YBRo@superconix.com

Received 2011 June 4; accepted 2011 July 25

Abstract We present an efficient, robust computational method for etiog the
Newtonian dynamics for rotation curve analysis of thinkdjslaxies. With appropri-
ate mathematical treatments, the apparent numericaluifis associated with sin-
gularities in computing elliptic integrals are completegymoved. Using a boundary
element discretization procedure, the governing equa@oe transformed into a lin-
ear algebra matrix equation that can be solved by straighdfia Gauss elimination
in one step without further iterations. The numerical cadplemented according to
our algorithm can accurately determine the surface masstgietistribution in a disk
galaxy from a measured rotation curve (or vice versa). Faslaghlaxy with a typical
flat rotation curve, our modeling results show that the sigrfaass density monotoni-
cally decreases from the galactic center toward the penyphecording to Newtonian
dynamics. In a large portion of the galaxy, the surface massity follows an ap-
proximately exponential law of decay with respect to theagtit radial coordinate.
Yet the radial scale length for the surface mass density seéerbe generally larger
than that of the measured brightness distribution, suggean increasing mass-to-
light ratio with the radial distance in a disk galaxy. In a donensionalized form, our
mathematical system contains a dimensionless parameteh wie call the “galactic
rotation number” that represents the gross ratio of cergafforce and gravitational
force. The value of this galactic rotation number is deteedias part of the numeri-
cal solution. Through a systematic computational analysishave illustrated that the
galactic rotation number remains withinl0% of 1.70 for a wide variety of rotation
curves. This implies that the total mass in a disk galaxydpprtional toV? Ry, with
Vb denoting the characteristic rotation velocity (such asfilag’ value in a typical ro-
tation curve) and?, the radius of the galactic disk. The predicted total gatatiass
of the Milky Way is in good agreement with the star-count data
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1 INTRODUCTION

Observations have shown that a galaxy is a stellar systemistimy of a massive gravitationally
bound assembly of stars, an interstellar medium of gas asrdicalust, as well as other components.
Many (mature spiral) galaxies share a common structure thighiisible matter distributed in a
flat thin disk, rotating about their center of mass in neantguwar orbits. The behavior of stellar
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systems such as galaxies is believed to be determined byoN&swaws of motion and Newton’s

law of gravitation (Binney & Tremaine 1987). Thus, modelifg Newtonian dynamics of thin-

disk galaxies is of fundamental importance to our undedstanof the so-called “galaxy rotation

problem”— an apparent discrepancy between the observatiobf galaxies and the predictions
of Newtonian dynamics as generally perceived in the comtywiiastrophysics (e.g., Freeman &
McNamara 2006; Rubin 2006, 2007; Bennett et al. 2007).

Although scientifically well-established, the actual miiatgof Newtonian dynamics, when ap-
plied to thin-disk galaxies, appeared in various forms @literature with inconsistent conclusions.
Without rigorous justification, some authors (e.g., Rubd®&, 2007; Bennett et al. 2007; Sparke
& Gallagher 2007; Keel 2007) are tempted by simplicity tolggprmulas based on Keplerian dy-
namics to the thin-disk galaxies. Theoretically, Kepleiiggnamics can be derived from Newtonian
dynamics as a special case for spherically symmetric giamital systems such as the solar system
and, therefore, is not expected to provide accurate demorpfor thin-disk galaxies. Hence, seri-
ous efforts were made in integrating the Poisson equatitim mvass sources distributed on a disk,
as summarized by Binney & Tremaine (1987). The solutionadliyeobtained from such efforts is
the gravitational potential which can yield the gravitaabforce by taking its gradient. In an ax-
isymmetric disk rotating at steady state, the gravitafiéoree (the radial gradient of gravitational
potential) is expected to equate to the centrifugal foreetduotation at every point.

However, solving the disk-potential problem does not seeiet a trivial pursuit. Traditional
methods involved either treating the disk as a flattenedrspdhé¢hat consists of a series of thin
homoeoids each having a uniform density (e.g., Brandt 1868stel 1963; Cuddeford 1993) or
using the summation of modified Bessel functions for the miidé (e.g., Toomre 1963; Freeman
1970; Nordsieck 1973; Cuddeford 1993; Conway 2000). Algtoseemingly elegant when derived
in analytical formulas, those methods could yield closearfsolutions only for a few special cases
(e.g., Mestel 1963; Freeman 1970; Binney & Tremaine 1983)dEtermining the mass distribution
in a galactic disk from the measured rotation curve thatddalve a variety of shapes, however,
numerical integrations must be carried out and practicficdities arise when those traditional
analytical formulas are used. For example, the flatteneérsjih approach via the Abel integral
and its inversion intrinsically restricts the “vertical’ass distribution in the disk’s axial direction
to that dictated by the homoeoid structure rather than tieat bbservations (e.g., according to van
der Kruit & Searle 1982, the scale heights of galactic digksreearly independent of radius). It is
rather cumbersome to compute the surface mass densitydgyating the mass density in spheroidal
shells and the “spheroid” methods often lead to erroneasidteefor angular momentum analysis
(cf. Toomre 1963; Nordsieck 1973). The Bessel function apph leads to an integral extending
to infinity, whereas the observed rotation curve always exdsfinite distance. Thus, it becomes
necessary to construct an orbital velocity beyond the elsien limit based on various assumptions
(e.g., Nordsieck 1973; Bosma 1978; Jatocha et al. 2008)eMar, the derivative of rotation velocity
usually appearing in the Bessel function formulation fompaiting mass density tends to introduce
significant errors in practical applications.

In general, the fundamental solution to the Poisson equédtimt governs the gravitation po-
tential) is called Green’s function (Arfken 1985; Cohl & Tote 1999). The potential from arbitrar-
ily distributed sources can be obtained by integrating thee@'s function—serving as the integral
kernel-multiplied by the source density throughout theaegvhere the sources are located. Thus,
considering the gravitational potential in terms of Grednhction is the most direct approach for
realistic modeling of galactic rotation dynamics (e.g.klEardt & Pestafia 2002; Pierens & Huré
2004; Huré & Pierens 2005). For sources distributed axmaginically on a thin disk, the Green’s
function can be expressed in terms of the complete elliptegral of the first kind (e.g., Binney &
Tremaine 1987). Because the dynamics of thin-disk galaatation is typically described along the
midplane ¢ = 0) with the mass distribution being symmetric about the disttpiane and about its
central axis, the radial gradient of potential in the misig@lanust be evaluated. The elliptic integrals
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of the first kind and second kind that appear in the radial igradf potential can become math-
ematically singular at the midplane (when= 0) where the radius of the source approaches that
of the observation point. Such singularities have beenidersd “inconvenient from the point of
view of numerical work” by Binney & Tremaine (1987) and “betsome” by Eckhardt & Pestafia
(2002). Methods were suggested to circumvent such singetapy evaluating the radial gradient of
potential at a vertical distanceslightly away fromz = 0 (cf. Binney & Tremaine 1987; Eckhardt
& Pestafla 2002), which seem to be somewdthhoc by nature and lack desirable mathematical
elegance. On the other hand, it is the axisymmetric masstison within an idealized rotating in-
finitesimally thin disk that has often been of practical iet, especially for rotation curve analysis
(Toomre 1963). Therefore, the efforts of effectively deglwith the singularities arising from ellip-
tic integrals have been continuously made for robust andrate computations of the disk galaxy
rotation problem (even up to recent years, e.g., Eckharde&dfa 2002; Pierens & Huré 2004;
Huré & Pierens 2005, 2009).

In the present work, we derive a numerical model for computire Newtonian dynamics of
thin-disk galactic rotation that allows the mass to be iisted even in an infinitesimally thin re-
gion around the midplane of the disk with the governing eigudieing considered strictly along the
midplane ¢ = 0) and the singularities from elliptic integrals treatedrigusly based on the concept
of the mathematical limit. To deal with arbitrary forms otaton curves and mass—density distri-
butions, we adopt the techniques developed with a boundamysst method (cf. Sladek & Sladek
1998; Gray 1998; Sutradhar et al. 2008) for solving integrplations using compactly supported
basis functions instead of that extending to infinity likesBel functions, as detailed in Section 2.
Hence the finite physical problem domain for disks of finigesican be conveniently considered,
without the need for a speculated rotation curve beyond ¢hé-6ff” radius and evaluation of the
derivative of rotation velocity. By nondimensionalizinget governing equations, a dimensionless
parameter which we call the “galactic rotation number” egrpén the force balance (or centrifugal-
equilibrium) equation, representing the gross ratio ofticiiyal force and gravitational force. We
show that together with a constraint equation for mass cwasen, the value of this galactic ro-
tation number can be determined as part of the numericatiso/uvith computational examples
presented in Section 3. With a known value of the galactiatimh number, the total galactic mass
can be determined from measured galactic radius and ckasdict rotation velocity, as shown in
Section 4 where important physical insights are discussed.

2 MATHEMATICAL FORMULATION AND COMPUTATIONAL TECHNIQUES

For convenience of mathematical treatments, we represestaing galaxy by a self-gravitating
continuum of axisymmetrically distributed mass in a ciesudisk with an edge at finite radiug,,
as shown in Figure 1. This kind of continuum representasagpically valid when the distributed
masses are viewed on a scale that is small compared to thefdize galaxy, but large compared
to the mean distance between stars. Without loss of getyeraé consider the thin disk having a
uniform thicknessh with a variable mass densifyas a function of radial coordinaie Because
we consider the situation of the thin disk, the vertical rilisition of mass (in the:-direction) is
expected to contribute an inconsequential dynamical effgmecially as the disk thickness becomes
infinitesimal. In mathematical terms, the meaningful Valéehere is actually the surface mass den-
sity o(r) = p(r) h. Whether to consider the surface mass density or the bulk mass densipy(r)
in the mathematical equations is really a matter of tasteesihey can easily be converted to each
other using a constant factarby our definition. In this work, we use the bulk density) for its
consistency with the direct physical perception of a theskdvith a nonzero thickneds

Physically, the stars in a galaxy must rotate about the tialaenter to maintain the disk-
shaped mass distribution. Without the centrifugal effagt b rotation, the stars would collapse
into the galactic center as a result of the gravitationad flEhong themselves. According to Binney
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Fig.1 Definition sketch of the thin-disk model considered in thigrkv The mass is assumed to
distribute axisymmetrically in the circular disk of uniforthicknessh with a variable density as a
function of radial coordinate (but independent of the polar andle

& Tremaine (1987), it is also reasonable to assume the gagaxyan approximately steady state
with the gravitational force and centrifugal force balamceach other, in view of the fact that most
disk stars have completed a large number of revolutions.

2.1 Governing Equations

Instead of following the traditional approach by first salyigravitational potential from the Poisson
equation, we derive the governing equation directly from ¢bnsideration of force balance. Here,
the force density on a test mass at the point of observatigh-£ 0) generated by the gravitational
attraction due to the summation (or integration) of a distied mass density(7) at a position
described by the variables of integration §) is expressed as an integral over the entire disk, with
the distance between,( = 0) and ¢, §) given by(72+r2—27r cos §)'/2 and the vector projection
given by (7 cosf — r). Thus, the equation for gravitational force to balance #mrifugal force at
each and every point in a thin disk can be written as (accgriditNewton’s laws)

/1 VQW (reos6 —n)d) | iyniar 1+ aY0E _ g, ()
0 0 (

72 4+ 12 — 271 cos é)3/2 r

where all the variables are made dimensionless by measiengghs (e.g.r, #, k) in units of the
outermost galactic radiug,, disk mass density in units of M, /R? with M, denoting the total
galactic mass, and rotation velociti&gr) in units of a characteristic galactic rotational velocity
Vo (usually defined according to the problem of interest, ¢hg. maximum velocity corresponding
to the flat part of a rotation curve). The disk thicknésis assumed to be constant and small in
comparison with the galactic radidg,. Our results for surface mass density) .. are expected to
be insensitive to the exact value of this ratio as long assmall. There is no difference in terms
of physical meaning between the notatigns?) and (7, é); but mathematically the former denotes
the independent variables in the integral Equation (1) e&eithe latter denoted the variables of
integration. The gravitational force represented as timensation of a series of concentric rings is
described by the first (double integral) term while the déumal force is described by the second
term in Equation (1).

Our process of nondimensionalization of the force—bal@oertion yields a dimensionless pa-
rameter, which we call the “galactic rotation numbér"as given by

Vi R,
M, G’

whereG (= 6.67 x 10~ m? kg~! s72) denotes the gravitational constaft, is the outermost
galactic radius, antfj is the characteristic velocity (which is equated here tontlagimum asymp-

A=

(2)
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totic rotational velocity). This galactic rotation numhérsimply indicates the relative importance
of centrifugal force versus gravitational force.

Equation (1) can either be used to determine the surface deasityp(r) h from a given rota-
tion curveV (r) or vice versa. However, when boiir) and A are unknown, another independent
equation is needed to have a well-posed mathematical prollecording to the law of conservation
of mass, the total mass of the galaki should be constant satisfying the constraint

2 /0 1 p(P)hidi = 1. A3)

This constraint can be used for determining the value of agialaotation numberA while
Equation (1) can be used to determine). Equations (1)—(3) can in principle be used to deter-
mine the mass density distributigrir) in the disk, the galactic rotation numbgdr and the total
galactic masd/,, all from measured values ®f(r), R, Vo andh. On the other hand, ji(r) andh

(or p(r) h) are knownV (r) can of course be determined from Equation (1).

Moreover, it is known that the integral with respecéthn Equation (1) can be written as

=2 - ) (4)

72 + 12 — 277 cos 0)3/2 r(f—r) r(F+r)

/Qﬁ (7 cos f — r)dd E(m)  K(m)
o (

whereK (m) andE(m) denote the complete elliptic integrals of the first kind aeadand kind, with

47rr
Thus, Equation (1) can be expressed in a simpler form
[Em) Km)] oo 1 2
/0 [f—r - 7:+T}p(r)hrdr+§AV(r) =0, (6)

which is more suitable for the boundary element type of nicakimplementation (with the double
integral converted to a single integral).

2.2 Computational Techniques

Following a standard boundary element approach (e.g.e8l&dladek 1998; Gray 1998; Sutradhar
et al. 2008), the governing Equations (6) and (3) can beelized by dividing the one-dimensional
problem domair) < r < 1 into a finite number of line segments called (linear) elermeBach ele-
ment covers a subdomain confined by two end nodes, e.g., elencerresponds to the subdomain
[rn, Tn+1], Wwherer,, andr,, ;1 are nodal values of at nodes: andn + 1, respectively. On each
element, which is mapped onto a unit line segniént] in the {-domain (i.e., the computational
domain),p is expressed in terms of linear basis functions as

wherep,, andp, 1, are nodal values op at nodesn andn + 1, respectively. Similarly, the ra-
dial coordinate® on each element is also expressed in terms of linear basitidas by so-called
isoparameteric mapping

&) =1 =& +7mg1é, 06T (8)
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If the rotation curvé/ (r) is given (from observational measurements),shaodal values op,, =
p(ry,) are determined by solvingy independent residual equations ovér— 1 elements obtained
from the collocation procedure, i.e.,

N—-1 1 ) ) ~
/ [%”1) - fg”l) PORHE) G + AV (R =0, =12, N, (@)
n—=1 7 1 S
with ©
o 472 S )T

wherep(§) = pn(1 = &) + pry1€. The value ofA can be solved by the addition of the constraint
equation

23 [ oo e —1-0. (11)

Thus, we havéV + 1 independent equations for determinihg+ 1 unknowns. The mathematical
problem is well-posed. The set of linear equations commgigquations (9) and (11) faV + 1
unknowns (i.e..N nodal values ofp,, and A), once computed with appropriate treatments of the
mathematical singularities shown in Appendix A, can be dfarmed into matrix form using the
Newton—Raphson method and then solved with a standardxnsatxier, e.g., by Gauss elimination
in one step without further iterations (Press et al. 1988).

3 COMPUTATIONAL EXAMPLES

As we mentioned before, Equations (9) and (11) can be useithir solve forp(r) and A from a
given rotation curvé/(r) or determine the rotation curvyé(r) from a given surface mass—density
distributiono(r) = p(r) h. Usually, solving forp(r) from a given rotation curvé (r) requires
computation of a linear algebra matrix problem whereasrdetgng V' (r) from a givenp(r) only
involves a straightforward integration. In a spiral galaxgwever, it is the rotation curve that can
be measured with considerable accuracy; therefore, theradxd rotation curve has been accepted
to provide the most reliable means for determining the ithigtion of gravitating matter therein
(Toomre 1963; Sofue & Rubin 2001). Hence, we first considengles of solving fop(r) and A
from a givenV (r).

3.1 MassDistribution for a Rotation Curve of Typical Shape

To obtain numerical solutions, the value of (constant) thééknessh must be provided; we assume
h = 0.01, which is typical of disk galaxies like the Milky Way. For cutational efficiency, we
distribute more nodes in the regions (e.g., near the galaetiter and disk edge) whepehas a
greater gradient. The typical number of nonuniformly distred nodesV used in the computation
is 1001 with which we found for most cases to be sufficient for obtagra smooth curve gf versus
r and discretization-insensitive values of galactic rotatiumberA. When numerically integrating
element-by-element in Equations (9) and (11), we use ordiigpoint Gaussian quadrature for
integrals with respect t0 < ¢ < 1. The two-dimensional integrals (A.4) on a singular elenaget
calculated numerically by ordinafiyx 6-point Gaussian quadrature on a unit square withn < 1
and0 < £ < 1.

The measurements of a galactic rotation curve of maturalsgalaxies reveal that the rota-
tion velocity V () typically rises linearly from the galactic center in a snwire and then bends
down to reach an approximately constant value extendingeaalactic periphery (Rubin & Ford
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Fig.2 Nondimensionalized orbital velocity profil®5(r) according to the mathematically idealized
description Eq. (12) foR. = 0.01, 0.02, 0.05, 0.1 and0.2.

1970; Roberts & Whitehurst 1975; Bosma 1978; Rubin et al0)98hese basic features may be
mathematically idealized as

V(r)=1—e "/ Ee (12)

where the dimensionless orbital velocity(r) is measured in units of the characteristic velocity
Vo defined as the maximum orbital velocity, and the param&tecan serve as the scale of the
“core” of a galaxy. As shown in Figure 2, close to the galactater when/ R, is small, we have
V(r) ~ r/R. describing a linearly rising rotation velocity (by virtué the Taylor expansion of
e~"/He). The initial slope of this rising rotation velocity is ginéy 1/ R... Thus, a larger value d&.
leads to a more gradual rise of the rotation velocity and mkimg “flat” part of the rotation curve
which seems to disappear f&. > 0.2.

Corresponding to the rotation curves in Figure 2 as destfiyeEquation (12), the computed
mass density distributions in a galactic disk are shown gufg 3. ForR. < 0.02, the curves
of p versusr are asymptotic for the most part except in a tiny region adotlne galactic center
where the peak density valueat= 0 still increases with further decreasitiy. In other words,
the mass density tends to decrease rapidly from the gatzatier (with a slope becoming steeper
for a tighter galactic core with a smallé&.). However, beyond = R., the mass density decreases
more gradually towards the galactic periphery until reaghihe galactic edge where it takes a sharp
drop. Outside the galactic core & R.), only for R, > 0.1 do changes in mass—density distribution
and the value ofA become noticeable with varying.. Noteworthy here is that the computed values
of galactic rotation numbed for R. < 0.15 are within a small intervall.5708, 1.6422] despite
orders of magnitude ak, variation. It appears that d8. — 0 the value ofA approaches a limit at
~ 1.5708. For example, the computed results show that 1.57085 and1.57080 for R. = 0.005
and0.001, respectively. However, the increase 4fwith R. becomes more significant fag. >
0.15, as illustrated by the computed resultsiat= 0.2 and0.3 yielding A = 1.7098 and1.9224,
respectively.
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Fig. 3 Distributions of mass density(r) computed forR. = 0.01, 0.02, 0.05, 0.1 and0.2 with
A =1.5710, 1.5719, 1.5777, 1.5999 and1.7098 determined as part of the numerical solutions.

At the limit of R, — 0, the (idealized) rotation curve as described by Equati@h&pproaches
a completely flat on& (r) = 1 (except in the infinitesimal neighborhood:of= 0). The solution at
this limit should approach that of the well-known Mesteliskd(Mestel 1963) given by

A 2
= 1— Zsin™! 13
plr) = 5 [ 1= 2sin ()] (19
in a dimensionless form consistent with the nomenclaturta@fpresent work. Here, according to
Equation (3), the galactic rotation numbhé&ican be determined by

1 T
A= — = = = 1.5707963. (14)
Jo 1= 2sin (7)) di 2

e

As a test, we can substitytér) given by Equation (13) into Equations (9) and (11) and comput
with our code for numerical integrations to determing-) and A. With the first node at = 0 being
ignored to avoid the numerical difficulties with the singitiaof p in Equation (13), we can indeed
obtain a flatV’ () = 1 throughout the entire intervél, 1] (except in an infinitesimal neighborhood
aroundr = 0) andA = 1.57081. The computed curve gf versusr corresponding to Equation (13)
with A = 1.57081 overlaps that of?. = 0.01 in Figure 3 (except in the infinitesimal neighborhood
of r = 0), as expected. This exercise demonstrates our code’sitigpiao determining the rotation
curve from a given disk mass distribution, and also in a waifies the correctness of our compu-
tational code’s implementation. Since most Sb galaxies int@nmediate type of spiral galaxies —
have rotation curves typically with a very steep rise in alsoemntral core region, the mass density
distribution in those Sb galaxies (including the Milky Wag)expected to be reasonably approxi-
mated by that of the Mestel disk (13). However, for less nvasSt galaxies having a more gradual
rise in rotation curves, their mass density distributicers deviate noticeably from that of the Mestel
disk, especially toward the galactic center, as shown infei@ for those withR. > 0.02.
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3.2 Rotation Curvefor a Given Mass Distribution

As demonstrated in Section 3.1, numerically computing titegration in Equation (9) for a given
p(7) like that of Mestel’s disk can produce a completely flat riofaturve. Actually, rotation curves
similar to those in Figure 2 can also be produced by a combimaif the Freeman exponential
disk and Mestel disk. Here, the Freeman disk has a surface deassity proportional te—"/%«
with Rq denoting a scale length for the exponential disk (Freemai®lHowever, the Freeman
exponential disk alone is known not to be able to produceatiost curve with a considerable flat
portion as is often observed in disk galaxies (e.g., Freeb®ai0; Binney & Tremaine 1987). The
case ofl/(r) for the Freeman exponential disk can also be computed witlcaie, as a check; the
result showed excellent agreement with that of Freemarily/tical formula. If we use the Freeman
disk for describing the galactic core having a rising ratatvelocity and Mestel disk for the outer
flat part, there is a good chance to obtain rotation curvegméally observed shapes. For example,
we can simply construct a mass density model (which we calFteeman—Mestel model) as

poe "/ R 0<7r<Re
p(T‘) = . , (15)
sa-[1-2sin7'(r)] , R.<r<1
where 1
1 2
Rd - = + = -
Re /1 R2[1 - 2sin™Y(R.)/x]
and ,
2 -
- = |1-Zgn! .
& 27h Ree™fie/Ra [ _— (B )} ’

so that bottp anddp/dr are continuous at the connecting point R.. Moreover, the mass con-
servation constraint Equation (11) can be used to deterthmealue of galactic rotation number

as .
27 Z / dg] , (16)

wherep* comes from that given by Equation (15) by settithg= 1.

Although R, here also serves as a scaling parameter for the galacticdamieg a similar phys-
ical meaning as?. in Equation (12), the value d. does not have any mathematical relationship
with that of R... For example, ak. = 0.05 Equations (15) and (16) yield () andp(r) in Figures 4
and 5 which are noticeably different from those in Figuresi@d a. For smaller values d&., the
differences betweep(r) given by the Freeman-Mestel model and those in Figure 3 asdhee
values ofR. are less visually discernable. However, the valueladetermined by the Freeman—
Mestel model can still be slightly different. For example/&a = R. = 0.01 Equation (16) yields
A = 1.5777 whereas that computed in Section 3.14is= 1.5710. It seems for a given value of
R. = R. the rotation curve of the Freeman—Mestel model has a grslaiee for the rising velocity
in the galactic core but a somewhat less flat velocity outidecore, as shown in Figure 4. Such a
numerical difference tends to diminish with diminishifiy, e.g., we haved = 1.57147, 1.57084
and1.57081 for R, = 1073, 10~* and10~°, respectively. As expected, — 1.57080 as that for
the Mestel disk given in Equation (14) at the limitBf — 0.

What we try to illustrate here is that for obtaining rotatmmves with basic observed features,
a simple analytical mass density model as constructed byrdication of those of Mestel (1963)
and Freeman (1970) in Equation (15) seems to be quite relalgoand convenient. In terms of
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Fig~.4 Rotation velocityl’ () determined withp(r) given by Eqg. (25) for the Freeman-Mestel model
at R. = 0.05, compared with that in Fig. 2 faR. = 0.05.
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Fig.5 Distribution of mass density(r) given by Eq. (25) for the Freeman-Mestel modeRat=
0.05 with A = 1.6060, compared with that in Fig. 3 faR. = 0.05 with A = 1.5777.

computational efforts, it is usually much easier and fastecompute the rotation velocity/ (r)
from a given mass density distributigiir) than vice versa. This is because compufifng) for a
knownp(r) does not need to solve the matrix problem. However, theradigseen a reliable means
for directly measuring the mass distribution in a disk gglahe mass distribution derived from a
measured luminosity must rely on an assumed mass-to-lwityrmatio, with the validity of which
being a subject of debate. Thus, accurately measuredawotetirves remain as the most reliable
basis for determining the distribution of mass in disk gedaxproviding fundamental information
for understanding the stellar dynamics in galactic disk€§8 & Rubin 2001).
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3.3 Analysis of Measured Rotation Curves of Arbitrary Shapes

For rotation curves with “idealized” shapes expressed imseof simple mathematical functions
like that in Equation (12), we have shown that the numeraamputed mass—density distribution
p(r) approaches that of Mestel’s disk (13) when the galactic commall, e.g., forR. < 0.02.
However, some measured rotation curves can vary significéoim those described by simple
mathematical functions or those produced by conveniemthstructed mass density functions like
with the Freeman-Mestel model (15).

To determine the mass density distribution according to tdeian dynamics from a measured
rotation curve of arbitrary shape, our computational sahbased on a sound mathematical foun-
dation as presented in Section 2 (as well as Appendix A) caonrbhe a generally applicable and
flexible tool for many practical applications. As an examypilere in Figures 6 and 7 we show our
computed mass density distributions for a few actually messgalactic rotation curves with no-
ticeably different characteristics.

The measured rotation curve for the Milky Way in Figure 6 seémbe just a few bumps and
wiggles superposed on that in Figure 2 8¢ = 0.01. Therefore, it is no surprise to see that the
corresponding mass density curve for the Milky Way in Figidralso exhibits a few bumps and
wiggles around that in Figure 3 fdk. = 0.01. Similarly, the measured rotation curve for NGC
3198 in Figure 6 appears to be just that in Figure 2Rgr= 0.05 with some small perturbations,
and so does the computed NGC 3198 mass density in Figure 7atethpith that forR. = 0.05
in Figure 3. However, the rotation curve for NGC 2708 in Fig@rdiffers significantly from those
of typical shapes in Figure 2. The computed mass densityilalition for NGC 2708 in Figure 7
shows noticeably different features from those in Figurét sharp rise of mass density toward the
galactic center corresponds to a fast decrease in rotagiogity, as required for the force balance in
Newtonian dynamics. The gradual increase in the rotatidocity in the middle sectiorf0.1,0.7)
of NGC 2708 leads to a slowly decreasing local mass dendign® slight reduction of the rotation
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Fig.6 Rotation curved/(r) of the Milky Way with Vo = 2.2x10° ms™ andR, = 4.73x10%° m,
NGC 3198 with1, = 1.5 x 10°m s ' and R, = 9.24 x 10** m and NGC 2708 with, =
2.3 x10°ms ' andR, = 1.42 x 10*° m.
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Fig.7 Computed mass—density distributign@:) from given rotation curves in Fig. 6 for the Milky
Way, NGC 3198 and NGC 2708, with the valuesAetermined as.564, 1.619 and1.644, re-
spectively.

velocity toward the galactic periphery is responsible feasier decrease of local mass density in the
outer region~ > 0.7 than those for flat rotation curves in Figure 7 for NGC 2708.

Despite the differences in rotation curves in Figure 6, theputed values of galactic rotation
numberA for these three galaxies are quite close, within a few pércamely,A = 1.564, 1.619
and1.644, respectively for the Milky Way, NGC 3198 and NGC 2708. Thiconsistent with that
shown in Figure 3 for a wide range @&.. Thus, we may reasonably conclude that for most disk
galaxies, the value of galatic rotation number is expeatelet within+10% of A = 1.70, with
smallerA for the galaxies having a high-density core and smajland largerA for those having a
more gradual rise in the rotation curve with larder.

Although we only computed examples with a few represergativation curves, such as those
described by the idealized formula (12) with several vahfeB8. and those actually measured with
different characteristics, we believe the cases examieee actually cover a wide enough range
of observational measurements that our results can offegrgéphysical insights. Cases with ro-
tation curves falling either close to or in between thosgstilated here are not expected to differ
considerably from our present findings.

4 DISCUSSION

The problem of determining the mass distribution in a thiisyxmetric disk from observed circular
velocities has been investigated by many authors over thefifty years, through various mathe-
matical approaches. Yet a satisfactory method for accamatgputation is still lacking, despite that
the galactic rotation model has been simplified as much asilgesor concisely describing only the
most essential features. The main obstacle here appeagddben due to the mathematical singu-
larities in the elliptic integrals that are apparently diffit to handle. Here in this work, we present
an efficient, robust computational method with appropriatghematical treatments such that the
apparent difficulties associated with the singularities@mpletely removed. Thus, we are able to
systematically analyze the basic features in a rotatingghsaxy, with properly nondimentionalized
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mathematical formulations. Further refinement of the pregalactic rotation model may provide a
description of some of the fine details such as the spiral &nuatsire with non-axisymmetic motion
(Koda & Wada 2002), the gas pressure effect in the central @alcanton & Stilp 2010), the disk
thickness effect (Casertano 1983), etc. However, thoseditails should not alter the basic fea-
tures significantly, at least in a gross qualitative sensg.résults in Figure 7 show that the general
shape of the mass density distribution remains quite sirfolarotation curves of drastically dif-
ferent appearances. The value of the galactic rotation eumlnloes not change more than 0%

for a variety of rotation curves, indicating that the groatabnce between the centrifugal force and
gravitational force in a disk galaxy is usually insensitiodine details.

4.1 Total Massin the Galactic Disk

In the dimensionless form as presented here, our mathaahatistem contains a dimensionless
parameter called galactic rotation numbefThis galactic rotation number, with its value determined
as part of the computational solution, can provide a unigsaght into the dynamical system of a
rotating galaxy. From the knowledge & and R, from measured rotation curves, we can determine
the value of the total mas®, based on the computed valuetfcf. Eq. (2)) as

Vi Re
AG
According to the rotation curve of the Milky Way in Figure 6evihave the galactic rotation
numberA = 1.564. Then, from the measured valubs = 2.2 x 10°m s ! andR, = 5 x 10*
light-years= 4.73 x 102° m (which is about 5.3 kpc wherel kpc= 3.086 x 10 m), Equation (17)
yields

M, =

(17)

Mg =2.19 x 10*!(kg) = 1.10 x 10" M, .

Here,1 My = 1.98892 x 1030 kg. This value is in very good agreement with the Milky Wayr sta
counts of 100 billion (Sparke & Gallagher 2007).

Another example in Figures 6 and 7 is the galaxy NGC 3198, Wjth= 1.5 x 10°m s~ ! and
Ry = 30kpc= 9.24 x 102 m (Begeman 1987, 1989). Using the computee: 1.619, we obtain
M, =1.925 x 10* kg = 9.68 x 100 My,

For a small disk galaxy NGC 6822, we have a rotation curvelaino that described byR. ~
0.3 in Equation (12), with/, = 6.0 x 10*m s™! and R, = 5kpc = 1.54 x 10 m (Weldrake
et al. 2003). If we taked = 1.92 for R. = 0.3, Equation (17) yieldsM, = 4.33 x 10%%kg
=2.18 x 10° M.

Because the value of does not vary much for a large range of rotation curves witiious
shapes (see, e.g., Figs. 6 and 7), what Equation (17) implibst )M, < Vi R, as Bosma (1978)
found from evaluating mass versus size in a large number eérobd disk galaxies. For a fixed
value of Vg, M, o R,. Therefore, a disk galaxy cannot physically extend indtipiin size, for
M, to remain finite. In other words, there must be an edge of thecte disk at a finite radius
R,, where the mass density precipitously diminishes. Noynate would defing?, as the radial
distance where the “luminous,’ “visible,” or “detectablgiynal for rotating matter ends. With the
advance in measurement technology using different enmidsies, the detectable rotating matter
(in the form of gas) seems to extend further out from the afiticvisible disk (cf. Sofue & Rubin
2001). Thus, the value d®, may change with the evolving astronomical observationrietdyy.
Wherever the true?, is located, it must correspond to an abruptly steep deci@fasgss density
whereas the mass density variation witlilp is expected to be smooth, according to our Newtonian
dynamics model for thin-disk galaxies with typical rotaticurves. It should be noted that although
for a given rotation curve with fixetf the total mass/, of the galactic disk increases linearly with
R, the dimensional value of surface mass density should gyelecrease wittR, according to
1/R, because it scales ad, / ;.
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As an interesting exercise, we take Equation (13) for theveoience in estimating the surface
mass density () = p(r) h around the Sun in the Milky Way wheR, increases. Then, we obtain
o(rsun) = 0.3106, 0.7954 and 1.7532 for ry,, = 0.5229, 0.2614 and 0.1307, respectively for
R, = 15.3, 30.6 and61.2kpc assuming the Sun is locatedra}, R, = 8kpc from the galactic
center. Based on the value given by Equation (18), we havdithensional surface mass density
o (Tsun) Mg/Rg ~ 146 M pc2 for R, = 15.3kpc. If R, for the flat rotation curve were found to
be at30.6 or 61.2kpc, the dimensional surface mass density would bectsfieor 206 M, pc2,
varying much less dramatically than the valuegfaf This phenomenon is a consequence oflthe
part of Equation (13), which becomes more dominant for ssnathlues of-. In fact, if the surface
mass density () were to strictly follow a distributionx 1/r, the dimensional surface mass density
for a given dimensional radial coordinat®, would remain constant because the valud changes
little if at all. Thus, asR, extends further out, the value of dimensional surface massity in the
neighborhood of the Sun is expected to become almost indepéenf the value of?,.

4.2 Computed Mass Density Versus Observed Surface Brightness

Observations of disk galaxies suggest that the surfacatoegs — the total stellar luminosity emit-
ted per unit area of the disk — is approximately an exponkfurection of radius (Freeman 1970;
Binney & Tremaine 1987). This exponential approximatiogms to be especially good for the outer
part of disk galaxies where the inner bulge component dshes (e.g., Freeman 1970). Our com-
puted mass—density distributions in Figure 3, accordintypaal flat rotation curves, indeed show
a nearly straight-line shape in the log-linear plots cqroesling to an approximately exponential
function for a large portion of the problem domain, e.g.hia interval(0.2,0.9). In fact, the least-
square fit of our computelah p versusr for the case of?. = 0.01 (cf. Fig. 3) to a linear function
for 0.2 <r < 0.9yields

In p=5.2614 — 3.4377r, (18)

with the correlation coefficientR?” being 0.9968 suggesting that the portion of mass density in
(0.2,0.9) can indeed be well described by an exponential fungtienpy e ="/ with py = 192.75
andR4 = 0.2909. If the same least-square fitting were donefdr< r < 0.9, we would havey, =
238.41 and R4 = 0.2668 but with a slightly reduced correlation coefficieRt = 0.9870, which
still indicates a good approximation with the exponentialdtion. However, the dimensional “radial
scale length’Ry R, for the Milky Way would be~ 4.5 (or 4.1) kpc according ta?q = 0.2909 (or
0.2668) assumingR, = 15.3kpc. This is larger than the radial scale len@thkpc from fitting the
brightness measurement data reported by FreudenreicB)1P& NGC 3198 withR, = 30Kkpc,
we would haveRy R, = 8.73 (or 8.00) kpc, again larger than the radial scale lengtR.68 kpc for
the luminosity profile (cf. Begeman 1987, 1989). So, our cotaeg results suggest that the surface
mass density decreases toward the galactic periphery avarstate than the luminosity density. In
other words, the mass-to-light ratio in a disk galaxy is nobastant; it generally increases with the
radial distance from the galactic center as indicated byamaitysis for the exponential portion of
mass density distribution (which was also suggested by Bdk®78).

However, it is known that the constructed mass densityiligion in terms of a single expo-
nential function cannot generate an observed flat rotatiovec(Freeman 1970; Binney & Tremaine
1987). The sharp increase of the mass density near theigadaoter that drastically deviates from
the exponential description fox1 < » < 0.9 0r0.2 < r < 0.9 seems to play an important role
for keeping the rotation curve flat toward the galactic centeto the edge of the core. In reality,
most disk galaxies also have a central bulge with an apdgt@gh concentration of stars. Our pure
disk model does not explicitly treat the bulge as a sepaiajgct instead, the gravitational effect
of the bulge is lumped in the rotating disk. Thus, our comg@umess density should be regarded as
a combination of that from the pure disk and the effectivgbukpresented in the disk form. This
sharp increase of the disk mass density near the galactiercesn be considered to account for
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the highly concentrated mass in the central bulge. Actuilipay not be impossible to extend the
formulation in Section 3.2 for a mass—density distributiorinclude a summation (or expansion)
of several exponential terms with different radial scaleglfis, for matching an observed rotation
curve with a more complicated shape. Yet, the most straghtfrd method for determining the

mass density distribution for a given rotation curve (ofitrdoy shape) is by numerically solving the

linear algebra matrix equation based on sound mathematicahds for disk galaxies of finite size

as presented in Section 2 and demonstrated in Sections@3.3n

4.3 Inaccuracy of Keplerian Dynamics for Disk Galaxies

Enchanted by its simplicity, the Keplerian dynamics wasliegoy several authors to the descrip-
tion of the disk galaxy behavior without seriously inveatigg its validity or accuracy. To clarify
some of the problems in such an over-simplification, here kgsgnt a quantitative analysis of the
fundamental differences between the Keplerian dynamid$\tonian dynamics, especially when
applied to disk galaxies.

From analyzing the orbits of planets around the Sun, Kepigpigcally discovered laws for
planet motion in the solar system. It was Newton who mathiealat showed that Kepler's laws
are actually consequences of Newton’s laws of motion andutiieersal law of gravitation. The
so-called Keplerian dynamics can be derived from Newtdréetems for the gravitational potential
of any spherically symmetric mass distribution. In consitg the balance between gravitational
force from the distributed mass in a galaxy and centrifugadd due to rotation, applying Keplerian
dynamics would lead to the equation

p(F) hidi — A

2r [ @ —0, (19)

7’2 0

which is apparently quite different from Equation (1) a®rigusly derived for the thin-disk galaxies.
However, the force balance equation based on Keplerianndigzsa(19) looks much simpler than
that of Newtonian dynamics (1). If justifiable in a quaniitatsense, it may be conveniently used
as a reasonable approximation to more involved rigorouspeations. To provide a quantitative
comparison, we examine a few basic mathematical featu@9pfo illustrate whether the Keplerian
dynamics can be practically used as a reasonable appraéaimtatNewtonian dynamics (1) for disk
galaxies.
For a given rotation curve with the orbital velociti(r) described by Equation (12), an analyt-
ical solution to Equation (19) fgs(r) can be obtained as
A T1
) = 57 |

2
_ a4 1 — 96"/ Re 727‘/RC) -~ ( —r/Re _ 727‘/RC) . 20
g | (12 e TR\ ¢ (20)

,
Thus, Equation (20) describes a mass density approadhing (27 h R?) — 0 asr — 0 with a
positive slope for smalt, yet approaching! /(27 hr) asr — 1 (because /% can be negligibly
small for smallR,, e.g.,e~/Fe = 4.545,2.06 x 10~2 and1.93 x 10~22 for R, = 0.1, 0.05 and
0.02, respectively). The mass density distribution of Equa(i) does not monotonically decrease
with r as that shown in Figure 3; instead, it is zero at the galaetiter and increases for small
according to a slopec 1/R2 (which can be large for smalk.) until reaching a peak value, then
decreases in a form 1/r towards the galactic periphery= 1 without the precipitous drop seen in
Figure 3.

Substituting Equation (20) to Equation (3) yields

1
= 1 —2e—7/Re +672T/RC ’

A (21)
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which leads toA ~ 1 for small R, quite different from1.57 when R. — 0 as obtained in
Section 3.1. Hence using Keplerian dynamics to descrilegfitaxies can be misleading, because
not only do the results differ quantitatively but also gtatlvely from those based on rigorous com-
putations.

On the other hand, if we assume the mass density distribigilmown, e.g., like that given by
Equation (13), Equation (19) leads to

1—+vV1—1r2

r

V(r)? =~ /OT {1 2 sinl(ﬁ)} di =1— % [sinl(r) _

™

Instead of a completely flat rotation curve, the Mestel'k digss density distribution with Keplerian
dynamics would yield an orbital velocifiy () that monotonically decreases withhavingV (0) =
1andV (1) = 0.7979. Therefore, a mass density distribution correspondingftataotation curve
based on Newtonian dynamics would be mistaken as failingpda@ the observed flat rotation
curve when Keplerian dynamics were inappropriately empdoypecause it instead predicts a falling
rotation curve.

5 CONCLUSIONS

In this paper, we show that with appropriate mathematieattnents the apparent difficulties asso-
ciated with singularities in computing elliptic integralksn be eliminated when modeling Newtonian
dynamics of thin-disk galactic rotation. Using the weltaddished boundary element techniques,
the nondimensionalized governing equations for disks dtefgizes can be discretized, transformed
into a linear algebra matrix equation, and solved by sttéogivard Gauss elimination in one step
without further iterations. Although the mathematicalidations in Appendix A for removing the
singularities seem somewhat sophisticated, the actudmgntations of the numerical code are not
as lengthy. With our code on a typical personal computer wifiingle Pentium 4 processor, each
solution in Section 3 takes no more than a minute or so to céenfinus, a numerical code im-
plemented according to our algorithm can be convenientiglus accurately determine the surface
mass density distribution in a disk galaxy from a measuréatiom curve (or vice versa), which is
important for in-depth understanding of the Newtonian dyita and its capability of explaining the
“galaxy rotation problem” via rotation curve analysis. Mover, the dimensionless galactic rotation
numberA in our mathematical system can provide important insightis the general dynamical
behavior of disk galaxies.

Through systematic computational analysis, we have ittt that the value of the galactic
rotation number remains withift10% of A = 1.70 for a wide variety of rotation curves. For most
Sh type galaxies like the Milky Way, having rotation curvgpitally with a very steep rise in a
small central core region and a large flat portion range, we Bhown thatd ~ 1.60 with a surface
mass density very close to that of Mestel's disk (except @itffinitesimal neighborhood of the
galactic center where the Mestel disk becomes singulaneder, for galaxies with “non-ideal”
rotation curves containing considerable irregularit@s; numerical approach can easily be used
without modification for computing the corresponding soefanass density distributions accurately
for rotation curve analysis.

Because the value of = V{ R, /(M. G) remains almost invariant for various galaxies, we
can draw a conclusion that the total mass in a disk galeixymust be proportional t& R,. For
galaxies with similar characteristic rotation veloclty, their total massl/, must be proportional
to their disk sizeR,. Our model predicts that at the disk edge the surface masstgénexpected
to diminish precipitously whereas within the disk edge thdace mass density should vary rather
smoothly without sharp changes except near the galactieicerhus, a disk galaxy with a finite
amount of mass must also have a finite size, based on Newtdyieamics modeling.
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For a disk galaxy with a typical flat rotation curve, our madglresult shows that the surface
mass density monotonically decreases from the galactiecémward the periphery, according to
Newtonian dynamics. In a large portion of the galaxy, théase mass density follows an approx-
imately exponential law of decay with respect to the gatactdial coordinate. Yet the radial scale
length for the exponential portion of the surface mass dgssems to be generally larger than that of
the measured exponential brightness distribution, suijgean increasing mass-to-light ratio with
the radial distance in a disk galaxy. This is consistent wjtfical edge-on views of disk galaxies
often revealing a dark edge against a bright backgroundebulg
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Appendix A: TREATMENTS OF SINGULAR ELEMENTS

The complete elliptic integrals of the first kind and secomttiican be numerically computed with
the formulas (Abramowitz & Stegun 1972)

4 4
(m) = Z aym} —log(m,) Z bim!, (A1)
1=0 1=0
and
4 4
E(m)=1+ Z cmt —log(my Z mY (A.2)
=1 =1
where )
r—r
=l-m= . A.3
m=1-m = (1) (a3)

Clearly, the terms associated wi(m;) andE(m;) in Equation (9) become singular whénr- r;
on the elements with; as one of their end points.

Logarithmic singularity can be treated by converting tigsiar one-dimensional integrals into
non-singular two-dimensional integrals by virtue of thentlties

{ fol §)logéd = — fo fo 577 dnd§
Jo F(&)log(1 —€)de = — [} [ f(1 — €n)dnde

wheref (&) denotes a well-behaving (non-singular) functiog@n 0 < ¢ < 1.

However, a more serious non-integrable singuldrityf: — ;) exists due to the ter®(m;) /(7 —
r;) in (9) ast — r;. Thel/(# — r;) type of singularity is treated by using the Cauchy principal
value to obtain a meaningful evaluation (cf. Kanwal 1996)isscommonly done with the boundary
element method (Sladek & Sladek 1998; Gray 1998; Sutradhar 2008). In view of the fact that
eachr; is considered to be shared by two adjacent elements covérénantervals|r;_1,r;] and
[r;, mi+1], the Cauchy principal value of the integral over these tveonents is given by

Ti—€ ~ Ad/\ Ti41 - Ad/\
Jim [/ plF)rdi +/ M] , (A.5)
e—0 Pio1 r—r; ride T T

(A.4)
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In terms of elementd], Equation (A.5) is equivalent to

~lim ¢ [ /o) [y (1 €) + il a (1= €) +
0

e—0 1 _5
) /1 [0i(1 = €) + pisié] [?(1 — &) +ripaé]dg } . (A.6)
€/(rig1—73)

Performing integration by parts on Equation (A.6) yields

T — T ld i — 1— i G| | Ti— 1— T
pmlog<n+—1T)_(/o {lpi-a( E)+p§]£[ 1(1-9+ 6]}10g(1_£)d5

Y d{lpi(1 = &) + pipa[ri(1 — ) + ri41€]}
+/0 T

where the two terms associated wiitly ¢ cancel out each other, the terms witlog ¢ become zero
at the limit ofe — 0 and the first term becomes nonzero when the mesh nodes aneifootmly dis-
tributed (namely, the adjacent elements are not of the sagraent size). In other words, inclusion
of this first term enables the usage of nonuniformly distedunodes for more effective computa-
tions, which is one of the algorithm improvements over thabur previous works (Gallo & Feng
2009, 2010).

At the galaxy center; = 0 (i.e.,i = 1),

/+ plo)rdr /0+ p(F)dF . (A.7)

7:—7’1'

loggdg) ,

i

Thus, thel /(7 — r;) type of singularity disappears naturally. However, nueerifficulty can still
arise if p itself becomes singular as— 0, e.g.,p « 1/r as for the Mestel disk (Mestel 1963). The
singular mass density at= 0 corresponds to a mathematical cusp, which usually indscheneed
for finer resolution in the physical space. To avoid the cagpass density at the galactic center, we
can impose a requirement of continuity in the derivative af the galaxy center = 0. This can be
easily implemented at the first node= 1 to demandip/dr = 0 atr = 0. In discretized form for
r1 = 0 we simply have

p(r) = p(rs). (A.8)

Whenr; = 1 (i.e.,i = N), we are at the end node of the problem domain. Here we use arikum
cally relaxing boundary condition by considering an additil element beyond the domain boundary
covering the intervdl-;, ;11 ], because it is needed to obtain a meaningful Cauchy prih@jize. In
doing so we can also assumg — r; = ; — ;1 such thatog[(r;11 — r;)/(r; — ri—1)] becomes
zero, to simplify the numerical implementation. Moreoveilis reasonable to assumg,; = 0
because it is located outside the disk edge where the exXirdave intergalactic mass density is
expected to have an inconsequential gravitational efi&fith sufficiently fine local discretization,
this extra element can be considered to cover a diminishiitygipal space such that its existence
becomes numerically inconsequential. Thus; at 1 (wherei = N) we have

/1 d{[pi(1 — &) + pir1&][ri(1 — &) + riy1]}
0 dé

1
= (pit1 — Pi)/o r(§)log £d€ + (i1 — Ti)/o p(&)log &dE = pi[ri — g(ri —7ri—1)].

log £d¢

Now that only logarithmic singularities are left, Equati@4) can be used to eliminate all singu-
larities in computing the integrals in Equation (9).
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Noteworthy here is that the (removable) singularities mkkrnels of the integral equation (6),
when properly treated, lead to a diagonally dominant Jacobatrix with a bounded condition
number in the Newton—Raphson formulation (Press et al. 198s fact makes the matrix equation
robust for any straightforward matrix solver.
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