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Abstract We use the recently released data of lookback time (LT)-redshift relation,
the cosmic microwave background shift parameter and the baryon acoustic oscillation
measurements to constrain cosmological parameters off(R) gravity in the Palatini
formalism by considering thef(R) form of type (a)f(R) = R − β/Rn and (b)
f(R) = R + α lnR − β. Under the assumption of a Friedmann-Robertson-Walker
universe, we achieved the best fitting results of the free parameters(Ωm0, n) for (a)
and (Ωm0, α) for (b). We find that current LT data can provide interestingand effective
constraints on gravity models. Compared with other data, the LT constraints favor a
smaller value of the non-relativistic matter energy density.
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1 INTRODUCTION

The accelerating expansion of the universe is one of the mostimportant discoveries in cosmology
in the last few years. This surprising phenomenon is supported by a variety of cosmological obser-
vations, including measurements of luminosity-distance of type Ia supernovae (SNe Ia) (Riess et al.
1998; Hicken et al. 2009), the large scale structure (LSS) (Wang & Tegmark 2004), the mapping of
the cosmic microwave background (CMB) anisotropy (Spergelet al. 2007; Komatsu et al. 2011) and
measurements of the baryon acoustic oscillation (BAO) (Eisenstein et al. 2005; Percival et al. 2010),
etc. However the underlying mechanism which causes this cosmic acceleration is still not clear. In
principle, the explanations of this phenomenon can always be classified into two categories. One is
to introduce exotic matter sources. This route is most commonly used and gives rise to the idea of
a dark energy component (Santos et al. 2008), for example thecosmological constant. The other is
related to the introduction of changes to the gravitationalpart of general relativity, i.e. modifying
the geometric part of the gravitational theory. Among the latter, several approaches are proposed to
solve the problem of cosmic acceleration, for example thef(R) gravity, which examines the possi-
bility of modifying Einstein’s general relativity by adding terms proportional to powers of the Ricci
scalar to the Einstein-Hilbert Lagrangian (Buchdahl 1970;Starobinsky 1980; Kerner 1982; Barrow
& Cotsakis 1988; Li & Barrow 2007). Besides that, thef(R) gravity also attracts us because this
theory can describe the early inflation as well as the late time acceleration of the universe without
introducing dark energy (DE).
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Another important aspect should also be noticed, that in thef(R) gravity theory, there are two
different variational approaches, namely, the metric and Palatini formalism (Sotiriou & Liberati
2007). In the metric formalism, the connections are assumedto be the Christoffel symbols defined
in terms of the metric. The variation of the action is taken with respect to the metric. While in the
Palatini variational approach, the affine connections and the metric are treated as independent fields
and the variation is taken with respect to both of them. For a generalf(R) term in the action, these
approaches give different equations of motion.

In the metric approach, the field equations are fourth order and this makes them difficult to deal
with in practice. Furthermore, the simplestf(R) model of typef(R) = R − β/Rn has difficulties
passing the solar system tests (Amendola & Tsujikawa 2008) and gaining the correct Newtonian
limit (Sotiriou 2006b,a). In addition, such theories also suffer gravitational instability (Dolgov &
Kawasaki 2003). On the other hand, variations using the Palatini approach derive the second order
field equations which are free of instabilities (Meng & Wang 2003, 2004b). This theory can also
satisfy the solar system tests and reach the correct Newtonian limit (Sotiriou 2006a). Remarkably,
such a theory accounts for the present cosmic acceleration without introducing DE.

Thus in our analysis, we will consider the Palatini formalism for gravitation and will focus
on its application to a flat Friedmann-Robertson-Walker (FRW) cosmological model. Under the
assumption of homogeneity and isotropy, we will study thef(R) gravity with the models of type (a)
f(R) = R− β/Rn and (b)f(R) = R + α lnR− β. Unlike the metric formalism, these models can
produce the sequence of radiation-dominated, matter-dominated and de Sitter periods.

In order to test the theory, we will consider the observational data. In this paper, we use two
data sets of lookback time (LT) versus redshift measurements, for galaxy-clusters (Capozziello et al.
2004) and for passively evolving galaxies (Simon et al. 2005). These data have been used to constrain
the DE models (Samushia et al. 2010) and the results show a present accelerating expansion of our
universe. So it is natural to test if the application of thesedata to the modified gravity can give similar
results. Following this direction, we apply these data to thef(R) models listed above and constrain
the free parameters. The calculation can also be compared with the previous works which studied
the SNe Ia, CMB and LSS data (Amarzguioui et al. 2006; Fay et al. 2007; Koivisto 2007; Fairbairn
& Rydbeck 2007). In order to better constrain the free parameters of thef(R) models, we combined
the LT data with the BAO and CMB shift parameter data.

Our paper is organized as follows. In Section 2 we will give the formalisms of thef(R) gravity
in the Palatini approach. In Section 3 we describe the data used in the calculation. In Section 4, we
show the models used in the calculation and present the constraint results with our analysis. Finally,
we will give some discussion and conclusions.

2 f(R) FORMALISM IN THE PALATINI APPROACH

The modified Einstein-Hilbert action in the Palatinif(R) gravity is given as

S =

∫

d4x
√
−g

[

1

2κ
f(R) + Lm

]

, (1)

wheref is a differentiable function of the Ricci scalarR, Lm is the Lagrangian for the matter fields,
andκ = 8πG. As was mentioned above, the variation of this action gives the second order field
equation

f ′Rµν − 1

2
gµνf(R) = κTµν , (2)

wheref ′ denotesf ′ = df/dR, andTµν is the energy-momentum tensor. For a perfect-fluid system,
we haveTµν = (ρm +pm)uµuν +pmgµν ; hereρm andpm are the energy density and fluid pressure
respectively, anduµ is the fluid four-velocity. In the Palatini approach, the Ricci scalar isR =
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gµνRµν(Γ̄) with Rµν(Γ̄) being defined asRµν(Γ̄) = Γ̄α
µν,α − Γ̄α

µα,ν + Γ̄α
αλΓ̄λ

µν − Γ̄α
µλΓ̄λ

αν ; here the
connection̄Γ will be treated as an independent field separately from the metric.

Motivated by recent cosmological observations, we shall consider the spatially flat FRW uni-
verse with the metric

ds2 = −dt2 + a(t)2δijdxidxj , (3)

wherea(t) is the cosmological scale factor. Considering the densityΩm0 = κρm0/3(H2
0 ) and the

redshift parameterz = a0/a − 1, one can get the generalized Friedmann equation (Fay et al. 2007;
Carvalho et al. 2008)

H2

H2
0

=
3Ωm0(1 + z)3 + f/H2

0

6f ′

[

1 + 9
2

f ′′

f ′

H2

0
Ωm0(1+z)3

Rf ′′−f ′

]2 , (4)

whereρm0 is the present matter density. Additionally, the trace of the field equation gives another
useful relation

Rf ′ − 2f = −3H2
0Ωm0(1 + z)3. (5)

One can easily find that the Friedmann equation will return tothe Einstein-Hilbert one under the
conditionf(R) = R.

3 THE OBSERVATIONAL DATA

3.1 The Lookback Time Data

As one of the time-based cosmological tests, the LT observation is different from other widely-
used distance-based cosmological tests (Samushia et al. 2010). Because this is a time-based method,
the ages of distant objects are independent of each other. This feature makes it avoid the biases
existing in techniques that use the distance of primary or secondary indicators in the cosmic distance
ladder method. Such time-based methods contain the measurements of the absolute age of objects,
differential age of objects and LT of objects (Samushia et al. 2010).

Since the seminal work of Sandage (Sandage 1988), the LT-redshift relation has been used to
constrain cosmological models in several works (Samushia et al. 2010; Xu & Wang 2010; Pires et al.
2006). The LT is defined as the difference between the presentage of the universe (t0) and its age
(tz) when a particular light ray at redshiftz was emitted

tL(z, p) = t0(p) − t(z) =
1

H0

[
∫ ∞

0

dz′

(1 + z′)E(z′, p)
−

∫ ∞

z

dz′

(1 + z′)E(z′, p)

]

=
1

H0

∫ z

0

dz′

(1 + z′)E(z′, p)
, (6)

wherep are the parameters of the cosmological model under consideration (here is the particular
f(R) gravity models),E(z, p) = H(z, p)/H0, H(z, p) is the Hubble parameter at redshiftz, and
the Hubble constantH0 = 100 h km s−1 Mpc−1.

Following Capozziello et al. (2004), one can define the aget(zi) of an object (a galaxy, a quasar
and so on) at redshiftzi as the difference between the age of the universe atzi and the agezF when
the object was born,

t(zi, p) =

∫ ∞

zi

dz′

(1 + z′)E(z′, p)
−

∫ ∞

zF

dz′

(1 + z′)E(z′, p)
= tL(zF , p) − tL(zi, p) (7)

(The relations between these cosmological times can be clearly seen in fig. 1 in Pires et al. 2006).
Then the observed LT to an object atzi can be defined as

tobs
L (zi) = tL(zF ) − t(zi) = [tobs

0 − t(zi)] − [tobs
0 − tL(zF )] = tobs

0 − t(zi) − tinc. (8)
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Heretobs
0 is the measured current age of the universe, andtinc stands for the delay factor or incuba-

tion time which accounts for our ignorance about the absolute age of the universe when the object is
formed att(zF ).

In order to constrain the free parameters of the particularf(R) gravity models, we use two age
data sets. One is the ages of 32 passively evolving galaxies (Capozziello et al. 2004) with a redshift
interval0.117 ≤ z ≤ 1.845. As suggested in Samushia et al. (2010), we consider a 12% onestandard
deviation uncertainty on the age measurements. The other isthe ages of six galaxy clusters in the
redshift range0.10 ≤ z ≤ 1.27 and their one standard deviation uncertainty is 1 Gyr. Thus we have
38 measurements oftobs

L with uncorrelated uncertaintiesσi to constrain the model parameters.
We apply theχ2 statistic to constrain the parameters of each model

χ2
LT(p, H0, tinc, t

obs
0 ) =

38
∑

i=1

[

tL(zi, p, H0) − tobs
L (zi, tinc, t

obs
0 )

]2

σ2
i + σ2

tobs

0

+

[

t0(p, H0) − tobs
0

]2

σ2
tobs

0

(9)

whereσobs
t0

is the uncertainty in the estimate oft0 andtL(zi, p) andt0(p) are the predicted values
in the model under consideration. In order to get the constraint results of the parameter sets, we
should calculate the likelihood functionL′(p, H0, tinc, t

obs
0 ) ∝ exp(−χ2/2). It can be easily seen

that the likelihood functionL is based on the total age of the universetobs
0 , the delay factortinc

and the Hubble constantH0. Similarly, we also analyze the DE constraints (Samushia etal. 2010).
We will treat tinc as a nuisance parameter and marginalizeL′ over it in an interval [0,20] Gyr. For
tobs
0 we apply a Bayesian prior as a Gaussian function with centralvalues and variance based on

the WMAP estimate of the total age of the universetobs
0 = (13.75 ± 0.13)Gyr in each model

constraint. Furthermore, we treatH0 as another nuisance parameter and marginalize over it with a
Gaussian prior ofh = 0.742±0.036 which is not the same but is consistent with the previous values
of h = 0.68±0.04 (Chen et al. 2003) andh = 0.72±0.08 (Freedman et al. 2001). Thus the resulting
LT likelihood function depends only on the parameter setsp. The best fit values ofp can be achieved
through minimizingχ2

LT.

3.2 The CMB Data

The CMB shift parameterR is arguably one of the most model-independent parameters among those
which can be inferred from CMB data. It is directly proportional to the ratio of the angular diameter
distance to the decoupling epoch divided by the Hubble horizon size at that special epoch. That is

R =
√

Ωm0H2
0

∫ zs

0

dz

H(z)
, (10)

wherezs = 1089 is the redshift of recombination. The value ofR obtained from acoustic oscillations
in the CMB temperature anisotropy power spectrum isR = 1.715 ± 0.021 (Hinshaw et al. 2009;
Komatsu et al. 2009). One important aspect worth emphasizing is that the CMB shift parameter
provides the information at a high redshift level. The calculation has to be integrated up to the
matter/radiation decoupling, i.e. the contribution of radiation can be no longer be neglected and
should be taken into account. So in our analysis, as Carvalhoet al. (2008); Santos et al. (2008)
suggest, a radiation component ofΩr = 5 × 10−5 has been included. For the CMB shift parameter
data, the correspondingχ2 is

χ2
CMB =

(

R− 1.715

0.021

)2

. (11)

3.3 The BAO Data

Similar to the case of shift parameterR, the BAO peak detected in the Sloan Digital Sky Survey
luminous red galaxies is another tool to test the model against observational data. BAO can be
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described by the dimensionlessA-parameter (Tegmark et al. 2004)

A = Ω
1

2

m0E(zb)
− 1

3

[

1

zb

∫ zb

0

dz′

E(z′)

]
2

3

, (12)

wherezb = 0.35 is the redshift at which the acoustic scale has been measured. In Eisenstein et al.
(2005), the value ofA has been determined to beAobs = 0.469(ns/0.98)−0.35 ± 0.017. In our
calculation, the scalar spectral indexns is taken to be 0.957 from Liu & Li (2009). Thus theχ2 of
the BAO data is

χ2
BAO =

(

A− Aobs

σA

)2

. (13)

4 THE f(R) GRAVITY MODELS AND CONSTRAINTS

4.1 The f(R) Gravity Models

We apply the data listed in Section 3 to twof(R) gravity models
(a)

f(R) = R − β/Rn, (14)

(b)
f(R) = R + α lnR − β. (15)

Recently, the model of the type (a) case has been tested by several kinds of data, including SNe
Ia, CMB, BAO and observational H(z) data (OHD) (Carvalho et al. 2008; Santos et al. 2008). Their
constraints do not exactly show the same results, but they are consistent. Their best fit results of the
parameters show a present accelerating expansion. Here we extended this by considering the LT data
and combined them with the CMB and BAO data to test this model.

The type (b) model with alnR term has also been discussed recently (Nojiri & Odintsov 2004;
Meng & Wang 2004a; Fay et al. 2007). It is shown that in the Palatini formalism, thelnR gravity
can drive a current exponential accelerated expansion and it reduces to the standard Friedmann
evolution for the high redshift region. Although this modelmay have problems in the electron-
electron scattering experiment, it has a well-defined Newtonian limit and may eliminate the need of
dark energy to provide the current cosmic acceleration. So in this paper, we still consider this gravity
model and compare the constraint results with the type (a) case.

It is should be mentioned that in both of the twof(R) gravity models, there are three undeter-
mined parameters. For (a), they areΩm0, n andβ while for (b), they areΩm0, α andβ. However,
at z = 0, the evaluation of Equation (5) imposes a relation among these three parameters, so there
are only two free parameters for each model. In our calculation, we choose(Ωm0, n) for (a) and
(Ωm0, α) for (b) as the free parameters to work with.

4.2 Cosmological Constraints

Figure 1 shows the constraints of the LT and combined data results for each gravity model. The
best fit values of (a) are(Ωm0, n, β) = (0.01,−0.97, 1.03) for LT only and (Ωm0, n, β) =
(0.27,−0.04, 4.04) for LT+CMB+BAO. For (b), the results are(Ωm0, α, β) = (0.09,−4.7,−3.46)
for LT only and(Ωm0, α, β) = (0.27,−0.2, 3.97) for LT+CMB+BAO. We can see that the data
combination gives the same fitting value of the matter density parameterΩm0 for both models.
The 3σ confidence interval ofΩm0 in both constraints is contained in (0.2, 0.4). This is consis-
tent with current observational results (Spergel et al. 2007, 2003), which show the universe is made
of a large amount of energy density in the form of non-relativistic matter with a proportion up to
70%. However the LT constraints of both models are differentfrom the combination ones; bothΩm0



1262 Z. X. Zhai & W. B. Liu

Ω
m0

n

(a)(a)

0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

1.5

2

Ω
m0

α

(b)(b)

0.2 0.4 0.6 0.8 1

−4

−3

−2

−1

0

Fig. 1 (a) Confidence regions in theΩm0 − n plane for thef(R) = R − β/Rn gravity model.
The dashed lines and solid lines for the constraint results from LT and LT+CMB+BAO respectively.
(b) Confidence regions in theΩm0 − α plane for thef(R) = R + α lnR − β gravity model.
The dashed lines and solid lines for the constraint results from LT and LT+CMB+BAO respectively.
The confidence regions at the 68.3%, 95.4% and 99.7% levels from inner to outer are presented
respectively, and the stars in the centers stand for the bestfit results.
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Fig. 2 Effective equation of state (EOS) as a function of redshift for the best fit results from the
constraints of LT only (dotted line) and LT+CMB+BAO combined (solid line). (a) results for type
(a), and (b) results for type (b).

values are smaller than other observation estimates and this result is consistent with the DE tests
(Samushia et al. 2010). Moreover, from both the constraintsof (b), we can see that the best fit value
of β is nonzero which shows that thelnR term cannot derive the cosmic acceleration only without
introducing dark energy. This is consistent with the resultof Fay et al. (2007).

In a word, we can see that the LT data can give a comparable constraint on thef(R) gravity
models with other data. In order to verify if these twof(R) gravity models in Palatini formalism
can produce a standard matter-dominated era followed by an accelerating expansion, it is useful to
calculate the effective equation of state (EOS) which is given by Santos et al. (2008)

ωeff = −1 +
2

3

1 + z

H(z)

dH

dz
. (16)



Lookback Time as a Test forf(R) Gravity in the Palatini Approach 1263

0 2 4 6 8 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

z

q(
z)

(a)

0 2 4 6 8 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

z

q(
z)

(b)

Fig. 3 Behavior of the deceleration parameterq(z) as a function of redshiftz. The dotted and solid
lines are the results from LT only and LT+CMB+BAO jointly.Left panel: results for type (a) and
Right panel: results for type (b).

This EOS curve is shown in Figure 2. It should be mentioned that a component ofΩr = 5 × 10−5

is included. We can see that the best fit values from constraints of LT only and LT+CMB+BAO
combined give different evolutions of EOS. Both combinations of constraints in (a) and (b) show that
the universe goes through the last three phases of cosmological evolutions: radiation-era (ω = 1/3),
matter-era (ω = 0) and late time acceleration (ω = −1). However, the constraints of LT only
for both models show that there is no apparent matter-dominated era followed by an accelerated
expansion. The evolution curve of LT only for (a) is consistent with the results achieved from OHD
only in Carvalho et al. (2008) which behaves similarly as in the metric formalism (Amendola et al.
2007b,a).

Focusing on the behavior of the universe in the late time, onecan calculate the deceleration
parameterq(z) ≡ − ä

aȧ2 which can be rewritten as (Nesseris & Shafieloo 2010)

q(z) = −1 + (1 + z)
dln(H(z))

dz
. (17)

Figure 3 showsq(z) as a function of redshiftz with the best fitting results in both constraints. All
the constraints show that the universe is now undergoing an accelerated phase as widely suggested.
As we go back, the universe will enter a decelerating phase. The moment that the expansion of the
universe changes from decelerated to accelerated can also be calculated. Especially for (a), we can
see that the LT constraint and the LT+CMB+BAO constraint give the same time of deceleration-
acceleration transition in theq(z) curve.

5 DISCUSSION AND CONCLUSIONS

As an alternative way to solve the problem of the acceleratedexpansion of the universe, the issue of
modified gravity has been studied from different aspects of DE. The combination with observational
data is maybe one of the most important steps to test theories. In this paper, we analyze thef(R)
gravity of type (a)f(R) = R − β/Rn and (b)f(R) = R + α lnR − β in the Palatini approach by
assuming a spatially flat FRW cosmology. By use of the lookback time-redshift relation, we check
the cosmological behavior of these gravity models.

As the previous works show, the LT can give an efficient contribution in constraining the cos-
mological parameters in DE models (Samushia et al. 2010; Xu &Wang 2010; Pires et al. 2006),
so the role that LT plays in modified gravity should also be focused on in future work. Because the
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time-based observation is different from the ones achievedfrom the distance-based method, whether
this test can give researchers some new information is worthnoticing. Following this direction, we
use the LT to constrain the free parameters of the particularmodified gravity models. The results
using LT only show that the universe is now undergoing an accelerating expansion phase. However
this conclusion is not perfectly satisfactory because it cannot derive an apparent matter-dominated
era right after the radiation-dominated era. So the combination with other data becomes necessary.
When CMB and BAO are being considered, the combined constraints show that the universe goes
through the last three phases of cosmological evolution: radiation era, matter era and a late time
cosmic acceleration. This is consistent with previous works which use SNe Ia and OHD (Fay et al.
2007; Carvalho et al. 2008; Santos et al. 2008).

From the above analysis and constraint, we find that our results from LT are believable. Although
the constraint of LT only is not perfectly obeyed, the combination with other data can derive a well-
behaved gravity model. With more and better data being collected in the future, we can imagine that
the LT may give more efficient constraints in bothf(R) gravity models and DE models. This can
also provide more information about the evolution of our universe.
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