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Abstract We use the recently released data of lookback time (LT)higd=lation,

the cosmic microwave background shift parameter and thgbaacoustic oscillation
measurements to constrain cosmological parametef$®j gravity in the Palatini
formalism by considering th¢ (R) form of type (a)f(R) = R — 8/R"™ and (b)
f(R) = R+ aln R — . Under the assumption of a Friedmann-Robertson-Walker
universe, we achieved the best fitting results of the frearpaterg(2,,,0,n) for (a)

and €2,,,0, o) for (b). We find that current LT data can provide interestingl effective
constraints on gravity models. Compared with other datLihconstraints favor a
smaller value of the non-relativistic matter energy densit
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1 INTRODUCTION

The accelerating expansion of the universe is one of the mumirtant discoveries in cosmology
in the last few years. This surprising phenomenon is supdday a variety of cosmological obser-
vations, including measurements of luminosity-distarfdge la supernovae (SNe la) (Riess et al.
1998; Hicken et al. 2009), the large scale structure (LSSNY\& Tegmark 2004), the mapping of
the cosmic microwave background (CMB) anisotropy (Spezgal. 2007; Komatsu et al. 2011) and
measurements of the baryon acoustic oscillation (BAO)giiSein et al. 2005; Percival et al. 2010),
etc. However the underlying mechanism which causes thisicozcceleration is still not clear. In
principle, the explanations of this phenomenon can alwaysldssified into two categories. One is
to introduce exotic matter sources. This route is most contynesed and gives rise to the idea of
a dark energy component (Santos et al. 2008), for exampleasrological constant. The other is
related to the introduction of changes to the gravitatigraat of general relativity, i.e. modifying
the geometric part of the gravitational theory. Among thtelaseveral approaches are proposed to
solve the problem of cosmic acceleration, for examplefth®) gravity, which examines the possi-
bility of modifying Einstein’s general relativity by addirterms proportional to powers of the Ricci
scalar to the Einstein-Hilbert Lagrangian (Buchdahl 195tyrobinsky 1980; Kerner 1982; Barrow
& Cotsakis 1988; Li & Barrow 2007). Besides that, tffieR) gravity also attracts us because this
theory can describe the early inflation as well as the late tieceleration of the universe without
introducing dark energy (DE).
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Another important aspect should also be noticed, that iryti®) gravity theory, there are two
different variational approaches, namely, the metric aathtihi formalism (Sotiriou & Liberati
2007). In the metric formalism, the connections are assumée the Christoffel symbols defined
in terms of the metric. The variation of the action is takethwespect to the metric. While in the
Palatini variational approach, the affine connections aedietric are treated as independent fields
and the variation is taken with respect to both of them. Fogrzegalf (R) term in the action, these
approaches give different equations of motion.

In the metric approach, the field equations are fourth orddithis makes them difficult to deal
with in practice. Furthermore, the simple&tR) model of typef(R) = R — $/R" has difficulties
passing the solar system tests (Amendola & Tsujikawa 2008)gaining the correct Newtonian
limit (Sotiriou 2006b,a). In addition, such theories alsdfer gravitational instability (Dolgov &
Kawasaki 2003). On the other hand, variations using thetiRatpproach derive the second order
field equations which are free of instabilities (Meng & War@03, 2004b). This theory can also
satisfy the solar system tests and reach the correct Neavtdimit (Sotiriou 2006a). Remarkably,
such a theory accounts for the present cosmic acceleratibowvintroducing DE.

Thus in our analysis, we will consider the Palatini formalior gravitation and will focus
on its application to a flat Friedmann-Robertson-Walker\fRrosmological model. Under the
assumption of homogeneity and isotropy, we will study fi&) gravity with the models of type (a)
f(R)=R—(/R™and (b)f(R) = R+ «aln R — (3. Unlike the metric formalism, these models can
produce the sequence of radiation-dominated, mattersubtad and de Sitter periods.

In order to test the theory, we will consider the observatiatata. In this paper, we use two
data sets of lookback time (LT) versus redshift measuresnértgalaxy-clusters (Capozziello et al.
2004) and for passively evolving galaxies (Simon et al. 200Bese data have been used to constrain
the DE models (Samushia et al. 2010) and the results showsandraccelerating expansion of our
universe. So itis natural to test if the application of théata to the modified gravity can give similar
results. Following this direction, we apply these data ®/thR?) models listed above and constrain
the free parameters. The calculation can also be compatbdhve previous works which studied
the SNe la, CMB and LSS data (Amarzguioui et al. 2006; Fay.&xC017; Koivisto 2007; Fairbairn
& Rydbeck 2007). In order to better constrain the free patamsef thef (R) models, we combined
the LT data with the BAO and CMB shift parameter data.

Our paper is organized as follows. In Section 2 we will give filrmalisms of thef (R) gravity
in the Palatini approach. In Section 3 we describe the dagd unsthe calculation. In Section 4, we
show the models used in the calculation and present theraamtsiesults with our analysis. Finally,
we will give some discussion and conclusions.

2 f(R) FORMALISM IN THE PALATINI APPROACH

The modified Einstein-Hilbert action in the Palatjf{i?) gravity is given as
1
5= [doy=a |5+ 2] &

wheref is a differentiable function of the Ricci scal&r, £,, is the Lagrangian for the matter fields,
andx = 8w (G. As was mentioned above, the variation of this action givessecond order field
equation

1
'Ry — ngff(R) = KT, (@)
wheref’ denotesf’ = df /dR, andT,, is the energy-momentum tensor. For a perfect-fluid system,

we haveT ), = (pm + Pm)Uu Uy + Pmgu; herep,, andp,, are the energy density and fluid pressure
respectively, and:, is the fluid four-velocity. In the Palatini approach, the &iscalar isR =
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9" Ry, (T) with Ry, (T') being defined a&,,, (T') = [y, , — T4, , + 5T, — [, T2,; here the
connectiorT will be treated as an independent field separately from theene

Motivated by recent cosmological observations, we shaikaer the spatially flat FRW uni-
verse with the metric

ds® = —dt* + a(t)*6;;dz"da? (3)

wherea(t) is the cosmological scale factor. Considering the den3jty = xpmo/3(HZ) and the
redshift parameter = a¢/a — 1, one can get the generalized Friedmann equation (Fay €2@{; 2
Carvalho et al. 2008)

o2 B 3Qmo(1 + 2)% + f/H? @)
T2 T ., 312
HO 6fl [1 + %‘f);_/ Hg%?g(j; )3}

wherep,,q is the present matter density. Additionally, the trace effield equation gives another
useful relation
Rf —2f = —3H3Qmo(1 + 2)>. (5)

One can easily find that the Friedmann equation will returtheEinstein-Hilbert one under the
conditionf(R) = R.

3 THE OBSERVATIONAL DATA

3.1 TheLookback Time Data

As one of the time-based cosmological tests, the LT observad different from other widely-
used distance-based cosmological tests (Samushia eflfl). Because this is a time-based method,
the ages of distant objects are independent of each othir.f@dture makes it avoid the biases
existing in techniques that use the distance of primary corsgary indicators in the cosmic distance
ladder method. Such time-based methods contain the measot® of the absolute age of objects,
differential age of objects and LT of objects (Samushia.e2@10).

Since the seminal work of Sandage (Sandage 1988), the Ishifedelation has been used to
constrain cosmological models in several works (Samuslaia 2010; Xu & Wang 2010; Pires et al.
2006). The LT is defined as the difference between the preggnof the universe() and its age
(t.) when a particular light ray at redshiftwas emitted

1 o dz' o dz'
wen) =0 =0 = | [ e | e

1 [7 dz'
- ), TR ©

wherep are the parameters of the cosmological model under comrgider(here is the particular
f(R) gravity models),E(z,p) = H(z,p)/Hoy, H(z,p) is the Hubble parameter at redshiftand
the Hubble constarffy = 100 h km s~! Mpc ™.

Following Capozziello et al. (2004), one can define thetdgg of an object (a galaxy, a quasar
and so on) at redshift; as the difference between the age of the universgatd the age» when
the object was born,

[&°] dZ/ oo dZI
o= || armEe ), wrmEey ~ e —uen )

(The relations between these cosmological times can bdycksen in fig. 1 in Pires et al. 2006).
Then the observed LT to an objectzatcan be defined as

1% (20) = tuler) — t(z) = [t0”° — t(zi)] = [t8”° — tu(zp)] = 187 — t(2i) = tinc.  (8)
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Heret3s is the measured current age of the universe tandtands for the delay factor or incuba-
tion time which accounts for our ignorance about the absa@ge of the universe when the object is
formed att(zp).

In order to constrain the free parameters of the partict(&) gravity models, we use two age
data sets. One is the ages of 32 passively evolving galakegsozziello et al. 2004) with a redshift
interval0.117 < z < 1.845. As suggested in Samushia et al. (2010), we consider a 12%iamaard
deviation uncertainty on the age measurements. The othlee iages of six galaxy clusters in the
redshift rangd.10 < z < 1.27 and their one standard deviation uncertainty is 1 Gyr. Theihave
38 measurements oibs with uncorrelated uncertainties to constrain the model parameters.

We apply they? statistic to constrain the parameters of each model

38 bs obs\12 obs12
tr(zi, 0, Ho) — 127°(2i, tine, t to(p, Ho) —t
X%T(paHmtinc,tng) _ § [ ( i )2 L 2( i liney Ug )} + [ ( : 0 } (9)
g; +Ut8bs o

1=1 tgbs

wherec¢P is the uncertainty in the estimate ©f andiL(z;, p) andto(p) are the predicted values
in the model under consideration. In order to get the coimétrasults of the parameter sets, we
should calculate the likelihood functiai (p, Ho, tinc, t5) o exp(—x?/2). It can be easily seen
that the likelihood functiorl. is based on the total age of the univetg'@', the delay factot;,.
and the Hubble constaitf,. Similarly, we also analyze the DE constraints (Samushé. €010).
We will treatt;,. as a nuisance parameter and marginalizever it in an interval [0,20] Gyr. For
t3> we apply a Bayesian prior as a Gaussian function with cemgilales and variance based on
the WMAP estimate of the total age of the univer§&® = (13.75 & 0.13) Gyr in each model
constraint. Furthermore, we treBfy as another nuisance parameter and marginalize over it with a
Gaussian prior oh = 0.742+0.036 which is not the same but is consistent with the previousaeslu
of h = 0.684+0.04 (Chen etal. 2003) and = 0.72+0.08 (Freedman et al. 2001). Thus the resulting
LT likelihood function depends only on the parameter gefhe best fit values gf can be achieved
through minimizingy?.

3.2 TheCMB Data

The CMB shift parameteR is arguably one of the most model-independent parametays@those
which can be inferred from CMB data. It is directly proportéd to the ratio of the angular diameter
distance to the decoupling epoch divided by the Hubble barsize at that special epoch. That is

R =/ Qo H2 /0 %, (10)

wherez, = 1089 is the redshift of recombination. The value®fobtained from acoustic oscillations
in the CMB temperature anisotropy power spectruriRis= 1.715 + 0.021 (Hinshaw et al. 2009;
Komatsu et al. 2009). One important aspect worth emphagizgithat the CMB shift parameter
provides the information at a high redshift level. The ckdtion has to be integrated up to the
matter/radiation decoupling, i.e. the contribution ofiedidn can be no longer be neglected and
should be taken into account. So in our analysis, as Canetitad. (2008); Santos et al. (2008)
suggest, a radiation component®f = 5 x 10~° has been included. For the CMB shift parameter
data, the corresponding is ,
R 1.715) (11)

2 _
XCMB = ( 0.021
3.3 TheBAO Data

Similar to the case of shift parametgr, the BAO peak detected in the Sloan Digital Sky Survey
luminous red galaxies is another tool to test the model agaihservational data. BAO can be
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described by the dimensionledsparameter (Tegmark et al. 2004)

2
1 2 d/ 3
- ] ; 12)

O =

wherez;, = 0.35 is the redshift at which the acoustic scale has been meaduarEtsenstein et al.
(2005), the value of4 has been determined to b&,,s = 0.469(ns/0.98)79-3% £ 0.017. In our
calculation, the scalar spectral indexis taken to be 0.957 from Liu & Li (2009). Thus thé of

the BAO data is )
A - Ao S
‘hao = (25222) (13)
oA

4 THE f(R) GRAVITY MODELSAND CONSTRAINTS
4.1 The f(R) Gravity Models

We apply the data listed in Section 3 to tyi6R) gravity models

(@)
f(R) = R—p/R", (14)

(b)
f(R)=R+alnR—p4. (15)

Recently, the model of the type (a) case has been tested bsas&inds of data, including SNe
la, CMB, BAO and observational H(z) data (OHD) (CarvalholeP808; Santos et al. 2008). Their
constraints do not exactly show the same results, but treeganrsistent. Their best fit results of the
parameters show a present accelerating expansion. Hevdeveled this by considering the LT data
and combined them with the CMB and BAO data to test this model.

The type (b) model with &n R term has also been discussed recently (Nojiri & Odintsowvi200
Meng & Wang 2004a; Fay et al. 2007). It is shown that in the tRalformalism, theln R gravity
can drive a current exponential accelerated expansiontaraiiices to the standard Friedmann
evolution for the high redshift region. Although this modehy have problems in the electron-
electron scattering experiment, it has a well-defined Neigtolimit and may eliminate the need of
dark energy to provide the current cosmic accelerationn®u$ paper, we still consider this gravity
model and compare the constraint results with the type &.ca

It is should be mentioned that in both of the tyi0R) gravity models, there are three undeter-
mined parameters. For (a), they &ig,o, n and 3 while for (b), they are&?,,,0, « and 5. However,
at z = 0, the evaluation of Equation (5) imposes a relation amonggthieree parameters, so there
are only two free parameters for each model. In our calanative choosé<2,,¢,n) for (a) and
(Qmo, «) for (b) as the free parameters to work with.

4.2 Cosmological Constraints

Figure 1 shows the constraints of the LT and combined datatsefr each gravity model. The
best fit values of (a) aré¢Q,,0,n,5) = (0.01,-0.97,1.03) for LT only and (2,,0,n,5) =
(0.27,—0.04, 4.04) for LT+CMB+BAO. For (b), the results arg?,,,o, «, 5) = (0.09, —4.7, —3.46)

for LT only and (2,0, v, ) = (0.27,—0.2,3.97) for LT+CMB+BAO. We can see that the data
combination gives the same fitting value of the matter dgrsirameter?,,,, for both models.
The ¥ confidence interval of2,, in both constraints is contained in (0.2, 0.4). This is censi
tent with current observational results (Spergel et al.72@003), which show the universe is made
of a large amount of energy density in the form of non-relstiz matter with a proportion up to
70%. However the LT constraints of both models are diffefemh the combination ones; both,,
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0.8 1

Fig.1 (a) Confidence regions in the,,o — n plane for thef(R) = R — 3/R" gravity model.
The dashed lines and solid lines for the constraint resudta £ T and LT+CMB+BAO respectively.
(b) Confidence regions in th@,,0 — « plane for thef(R) = R + aln R — [ gravity model.
The dashed lines and solid lines for the constraint resudta £ T and LT+CMB+BAO respectively.
The confidence regions at the 68.3%, 95.4% and 99.7% lewats iinner to outer are presented
respectively, and the stars in the centers stand for thefibesssults.

0.2 0.2
0 0
-0.2 -0.2
k3 k3
3" 04 3" 04

-0.6 -0.6

-0.8 -0.8

2
lg(1+2) lg(1+z)

Fig.2 Effective equation of state (EOS) as a function of redshiftthe best fit results from the
constraints of LT only dotted line) and LT+CMB+BAO combinedgplid line). (a) results for type
(a), and (b) results for type (b).

values are smaller than other observation estimates asdesbilt is consistent with the DE tests
(Samushia et al. 2010). Moreover, from both the constraihfs), we can see that the best fit value
of 3 is nonzero which shows that the R term cannot derive the cosmic acceleration only without
introducing dark energy. This is consistent with the restiay et al. (2007).

In a word, we can see that the LT data can give a comparabléraonion thef(R) gravity
models with other data. In order to verify if these tWoR) gravity models in Palatini formalism
can produce a standard matter-dominated era followed by@aiexating expansion, it is useful to
calculate the effective equation of state (EOS) which iggiy Santos et al. (2008)

214 zdH

SHG @ (16)

Weff = —
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Fig.3 Behavior of the deceleration parameig€r) as a function of redshift. The dotted and solid
lines are the results from LT only and LT+CMB+BAO jointlyeft panel: results for type (a) and
Right panel: results for type (b).

This EOS curve is shown in Figure 2. It should be mentionetiatmomponent of), = 5 x 107

is included. We can see that the best fit values from conssrainL T only and LT+CMB+BAO
combined give different evolutions of EOS. Both combinasiof constraints in (a) and (b) show that
the universe goes through the last three phases of cosroal@golutions: radiation-era(= 1/3),
matter-eray = 0) and late time acceleratiow (= —1). However, the constraints of LT only
for both models show that there is no apparent matter-dasdnera followed by an accelerated
expansion. The evolution curve of LT only for (a) is congisteith the results achieved from OHD
only in Carvalho et al. (2008) which behaves similarly ashi@ inetric formalism (Amendola et al.

2007b,a).
Focusing on the behavior of the universe in the late time, carecalculate the deceleration
parameter(z) = ——%z which can be rewritten as (Nesseris & Shafieloo 2010)

din(H(z))
dz ’

Figure 3 showg(z) as a function of redshift with the best fitting results in both constraints. All
the constraints show that the universe is now undergoingeelerated phase as widely suggested.
As we go back, the universe will enter a decelerating phase.rifoment that the expansion of the
universe changes from decelerated to accelerated canalsaldulated. Especially for (a), we can
see that the LT constraint and the LT+CMB+BAO constrainedgive same time of deceleration-
acceleration transition in thgz) curve.

gz)=—-1+(1+2) a7)

5 DISCUSSION AND CONCLUSIONS

As an alternative way to solve the problem of the acceleraxgdnsion of the universe, the issue of
modified gravity has been studied from different aspectsifThe combination with observational
data is maybe one of the most important steps to test thedmi¢lsis paper, we analyze th& R)
gravity of type (a)f (R) = R — 3/R"™ and (b)f(R) = R+ aln R — (3 in the Palatini approach by
assuming a spatially flat FRW cosmology. By use of the lookhimae-redshift relation, we check
the cosmological behavior of these gravity models.

As the previous works show, the LT can give an efficient cbation in constraining the cos-
mological parameters in DE models (Samushia et al. 2010; XWaag 2010; Pires et al. 2006),
so the role that LT plays in modified gravity should also beufs on in future work. Because the
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time-based observation is different from the ones achiéweed the distance-based method, whether
this test can give researchers some new information is wantiicing. Following this direction, we
use the LT to constrain the free parameters of the particutatified gravity models. The results
using LT only show that the universe is now undergoing anlacatng expansion phase. However
this conclusion is not perfectly satisfactory becauseriinca derive an apparent matter-dominated
era right after the radiation-dominated era. So the contisinavith other data becomes necessary.
When CMB and BAO are being considered, the combined conssrahow that the universe goes
through the last three phases of cosmological evolutiotiat@n era, matter era and a late time
cosmic acceleration. This is consistent with previous Wwavkich use SNe la and OHD (Fay et al.
2007; Carvalho et al. 2008; Santos et al. 2008).

From the above analysis and constraint, we find that ourtsefsam LT are believable. Although
the constraint of LT only is not perfectly obeyed, the conaltion with other data can derive a well-
behaved gravity model. With more and better data being c@itein the future, we can imagine that
the LT may give more efficient constraints in bothR) gravity models and DE models. This can
also provide more information about the evolution of ounvense.
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