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Abstract GRS 1915+105 is a prominent black hole system exhibiting variability over
a wide range of time scales and its observed light curves have been classified into 12
temporal states. Here we undertake a complete analysis of these light curves from all
the states using various quantifiers from nonlinear time series analysis, such as the
correlation dimension (D2), the correlation entropy (K2), singular value decomposi-
tion (SVD) and the multifractal spectrum (f(α) spectrum). An important aspect of our
analysis is that, for estimating these quantifiers, we use algorithmic schemes which we
have recently proposed and successfully tested on synthetic as well as practical time
series from various fields. Though the schemes are based on the conventional delay
embedding technique, they are automated so that the above quantitative measures can
be computed using conditions prescribed by the algorithm and without any intermedi-
ate subjective analysis. We show that nearly half of the 12 temporal states exhibit de-
viation from randomness and their complex temporal behavior could be approximated
by a few (three or four) coupled ordinary nonlinear differential equations. These re-
sults could be important for a better understanding of the processes that generate the
light curves and hence for modeling the temporal behavior of such complex systems.
To our knowledge, this is the first complete analysis of an astrophysical object (let
alone a black hole system) using various techniques from nonlinear dynamics.
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1 INTRODUCTION

Most of the systems in Nature are described by models which are inherently nonlinear. Since the
discovery of deterministic chaos a few decades back and the development of various techniques in
subsequent years, there remained the exciting prospect of a better understanding of the complex
behavior shown by various natural systems in terms of simple nonlinear models. Evidence for low
dimensional chaos has been reported - and disputed - not only in physical sciences, but also in many
other fields such as physiology, economics and social sciences (Schreiber 1999). Particular attention
has been paid to systems producing strange and chaotic attractors, with the word strange referring
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to metric properties such as fractal dimension and the word chaotic representing dynamic properties
like exponential divergence of nearby trajectories in phase space. A large number of techniques and
measures from nonlinear dynamics and chaos theory are routinely being employed for the analysis of
such systems. Excellent text books are now available that give a background knowledge on various
methods in nonlinear dynamics (Hilborn 1994; Sprott 2003; Lakshmanan & Rajasekar 2003).

One major difficulty in the analysis of real world systems is that our knowledge regarding the
system is usually limited to a single scalar variable recorded as a function of time, called the time se-
ries. Therefore, a great deal of effort has been devoted to the characterization of underlying attractors
reconstructed from time series. The large number of techniques and computational schemes used for
this purpose have been discussed in detail by many authors (Kantz & Schreiber 1997; Aberbanel
1996; Hegger et al. 1999).

Among the most important quantifiers used for the analysis of time series data are the corre-
lation dimension (D2), the correlation entropy (K2) and the multifractal spectrum. The correlation
dimension is often used as a discriminating statistic for hypothesis testing to detect nontrivial struc-
tures in the time series. However, when the time series involves colored noise, a better discriminating
measure is considered to be K2 (Kennel & Isabelle 1992). Finally, a complete characterization of the
underlying chaotic attractor is done using the generalized dimensions Dq and the f(α) spectrum.

We have recently proposed automated algorithmic schemes (Harikrishnan et al. 2006, 2009a)
for the computation of D2 and K2 from time series based on the delay embedding technique and
applied it successfully to various types of time series data including those from standard chaotic
systems, data augmented with white and colored noise and practical time series like EEG and ECG.
A generalization of these schemes to compute the multifractal spectrum of a chaotic attractor has also
been proposed (Harikrishnan et al. 2010, 2009b). These schemes provide a nonsubjective approach
for the characterization of strange attractors inherent in time series.

It should be noted that so far, most of the analysis of the light curves from X-ray binaries and
active galactic nuclei (AGNs) have used the conventional techniques such as the power spectrum and
distribution. It is widely believed that the light intensity variations are mostly stochastic in nature.
For example, it has been shown in the case of the most prominent black hole system, Cygnus X-
1, that the observed light curves, at least on certain time scales, are consistent with some static
nonlinear transformations of stochastic variations in intensity (Uttley et al. 2005). The authors argue
that models based on nonlinear dynamics are not required to explain the data.

However, there is also some analysis based on nonlinearity measures that has been attempted
earlier (Voges et al. 1987; Norris & Matilsky 1989; Timmer et al. 2000) on the light curves of some
prominent black hole systems, such as Her X-1 and Cygnus X-1. However, these studies have so
far not been able to provide conclusive evidence for nontrivial structures in the temporal behavior
of such systems. One reason for this has been the limited number of data sets available from such
sources with sufficient signal to noise ratio required for such analysis (Norris & Matilsky 1989).
The scenario has changed in the last few years as enough data are now available through RXTE
observations. Recently, nonlinear time series analysis performed on light intensity data from various
astrophysical objects, such as PG 1351+489 (Jevtic et al. 2005), 3C 390–3 (Gliozzi et al. 2005)
and 4U 1543–47 (Gliozzi et al. 2010), has provided much more information regarding the system
compared to the conventional power spectrum analysis. Attempts have also been made to use the
above analysis to differentiate between neutron stars and black holes (Karak et al. 2010) and also
between AGNs and black holes (Gliozzi et al. 2010).

Studies on GRS1915+105 have been limited because it became active just over a decade ago.
However, the system turns out to be unique among all such sources in that it seems to flip from one
state to another continuously with each state having its own temporal variability which is different
from the other states. The light curves have been classified into 12 spectroscopic classes based on
RXTE observations by Belloni et al. (2000). The nature of the light curves changes completely as
the system flips from one state to another. Evidently, pure stochastic processes cannot account for
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such qualitative changes in the light curves. Hence, the question naturally arises as to whether some
nonlinear deterministic processes are also involved. We do find evidence to support this.

In this paper, we apply the above mentioned automated schemes developed by us to undertake
a complete analysis of the X-ray light curves from GRS1915+105. Earlier, a surrogate analysis with
D2 as the discriminating measure has shown that a few of these states manifest the time evolutions
analogous to those from low dimensional nonlinear systems with some inherent noise (Misra et al.
2006). This motivates us to undertake an exhaustive numerical analysis of the light curves from the
source in all its temporal states using the prominent tools from nonlinear dynamics.

Another motivation for the present investigation has been derived from the fact that the accretion
disk in such systems are driven by magneto-hydrodynamic turbulence which is an intrinsically non-
linear process. A model for such a process should be nonlinear and is expected to show qualitative
changes in its behavior as a control parameter is varied. For the X-ray radiation from an accretion
disk, the rate of mass accretion could possibly be considered as a suitable control parameter. There
also exist theoretical models to this effect (Voges et al. 1987; Atmanspacher et al. 1989a) from
which it is possible to derive the temporal variability of the X-ray radiation in different regimes of
mass accretion rate. Since many of the states of the black hole system under study show nonlinear
characters, a complete analysis of the light curves using various nonlinear measures can greatly help
in the search for a nonlinear deterministic model to describe the temporal variability of the system.

Our paper is organized as follows: All the quantitative measures used in this paper and the corre-
sponding computational schemes are discussed in detail in the following section. While Sections 2.1
and 2.2 present the computational details for D2 and K2, Sections 2.3 and 2.4 focus on SVD and
f(α) spectrum respectively. The time series from a standard chaotic system - the Rossler system - is
used as an example to illustrate the results in all the cases. The analysis of the X-ray light curves from
the black hole system is then undertaken in Section 3 and the conclusions are drawn in Section 4.

2 QUANTITATIVE MEASURES USED FOR THE ANALYSIS

2.1 Correlation Dimension and Surrogate Analysis

Correlation dimension D2 is often used as a discriminating statistic for hypothesis testing. The con-
ventional method for the calculation of D2 is the delay embedding method first introduced by Takens
(1981), and used effectively by Grassberger & Procaccia (1983), now known as the GP algorithm.
More details can be found in Sauer et al. (1991). It creates an embedding space of dimension M
with delay vectors constructed by splitting a discretely sampled scalar time series s(ti) with delay
time τ as

xi = [s(ti), s(ti + τ), ...., s(ti + (M − 1)τ)] . (1)

The correlation sum is the relative number of points within a distance R from a particular (ith) data
point,

pi(R) = lim
Nv→∞

1
Nv

Nv∑
j=1,j �=i

H(R − |xi − xj |) , (2)

where Nv is the total number of reconstructed vectors and H is the Heaviside step function. One
then randomly chooses Nc number of centers in the embedded attractor and averages pi(R) over
these randomly selected centers to give the correlation sum

CM (R) =
1

Nc

Nc∑
i

pi(R) . (3)

The correlation dimension D2(M) is then defined to be

D2 ≡ lim
R→0

d(logCM (R))/d(log(R)) , (4)
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Fig. 1 D2 values of the Rossler attractor (with error bars), as a function of M along with the D2

values of 20 surrogates (dashed lines). All computations are done with 10 000 data points.

which is the scaling index of the variation of CM (R) with R as R → 0. In practice, a linear part
in the log CM (R) versus log R plot is identified subjectively, called the scaling region, and its slope
is taken as D2. However, in our computational scheme, this is done algorithmically, as discussed
in detail elsewhere (Harikrishnan et al. 2006), and the scheme computes D2, with associated error
bars, as a function of M . The scheme has also been shown to be suitable for hypothesis testing using
surrogate data.

The rationale behind surrogate analysis is to formulate a null hypothesis that the data have been
generated by a stationary linear stochastic process, and then attempt to reject it by comparing a
suitable measure for the data with appropriate implementations of surrogate data. The method for
the generation of surrogate data was originally proposed by Theiler and coworkers (Theiler et al.
1992) with the Amplitude Adjusted Fourier Transform (AAFT) algorithm. However, Schreiber &
Schmitz (1996, 2000) have proposed another iterative scheme, known as the IAAFT scheme, which
is similar but is reported to be more consistent in representing the null hypothesis (Kugiumtzis 1999)
for a wide class of stochastic processes. In this work, we apply this scheme to generate surrogate
data sets using the TISEAN package (Hegger et al. 1999).

We first apply the D2 analysis to different types of data sets, such as standard chaotic time series,
pure noise and chaotic data with added noise. The time series from the standard Rossler attractor,
with parameter values a = b = 0.2 and c = 7.8, is used as a reference to test all the computational
schemes presented in this work. All computations are done with 10 000 data points and 20 surrogates
for each data set. In Figure 1, D2 of the Rossler attractor and surrogates are computed as a function
of the embedding dimension M , where as in Figure 2, the same is shown for two pure colored noise
data sets with spectral index s = 1.5 and 2.0. As expected, the Rossler data show clear deviation
from the surrogates while for the latter, the null hypothesis cannot be rejected.

Now the real world data are often contaminated with noise and the question that naturally arises
is how much of the noise can suppress the nonlinear component that may be present in the time
series. In order to study the effect of noise on D2 using our scheme, we generate two data sets by
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Fig. 2 Upper panel shows the D2 values of pure colored noise with spectral index s = 1.5 as a
function of M along with the surrogates. The lower panel shows the same for s = 2.0.

Fig. 3 D2 values as a function of M for the Rossler attractor data added with 50% white noise
(s = 0.0) and the same percentage of colored noise (s = 2.0) along with their respective surrogates.
Note that, in the case of colored noise contamination (lower panel), the data values are still below
those of the surrogates.
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adding 50% white and colored noise (with s = 2.0) to the time series from the Rossler attractor.
The result of applying our scheme to these data and their surrogates is shown in Figure 3. It is found
that when white noise is added to the system, D2 of the data increases and for a contamination level
of > 20%, it is difficult to distinguish between the data and the surrogates. However, for colored
noise contamination, the data are distinguishable from the surrogates for an added noise level of
up to 50%. Note that 50% noise here means that the noise amplitude is half that of the data. The
above results indicate that from a D2 analysis, it is difficult to distinguish even a moderate amount
of noise contamination in chaotic data. A better quantitative measure in such a situation is K2, to be
discussed in the next section.

In order to get a quantification of the differences in the discriminating measure between the data
and the surrogates, we use the normalized mean sigma deviation (nmsd), recently proposed by us
(Harikrishnan et al. 2006). For D2, this is computed using the expression

nmsd2 =
1

Mmax − 1

Mmax∑
M=2

(D2(M) − 〈Dsurr
2 (M)〉

σsurr
SD (M)

)2

, (5)

where Mmax is the maximum embedding dimension for which the analysis is undertaken,
〈Dsurr

2 (M)〉 is the average of Dsurr
2 (M) and σsurr

SD (M) is the standard deviation of Dsurr
2 (M). We

have earlier shown that a value of nmsd < 3.0 implies either white or colored noise domination in
the data and the null hypothesis cannot be rejected (see for example Harikrishnan et al. 2006). It is
found that for the Rossler attractor data shown in Figure 1, the nmsd = 36.1 and for the two with
pure colored noise in Figure 2, the nmsd = 0.68 and 2.0 for s = 1.5 and 2.0 respectively. For data
contaminated by noise in Figure 3, the values are 1.8 for white noise and 3.5 for colored noise.

2.2 Correlation Entropy

The use of K2 has been limited compared to D2 for the analysis of time series data. However,
in cases where time series involve colored noise, K2 is a more effective discriminating measure
compared to D2 (Redaelli et al. 2002). While D2 is a geometric measure of the underlying chaotic
attractor, K2 is a dynamic measure representing the rate at which information needs to be created
as the chaotic attractor evolves in time (Ott 1993). The standard method for the computation of K2

is also the delay embedding technique. Since K2 measures the rate at which the trajectory segments
are increased as M increases, it can be related to the correlation sum CM (R) by the expression

CM (R) ∝ e−MK2Δt, (6)

where Δt is the time step between successive values in the time series. From above, a formal ex-
pression for K2 can be written as

K2Δt = lim
R→0

lim
M→∞

lim
N→∞

(− log CM (R)/M) . (7)

Alternately, K2 can also be obtained as

K2Δt ≡ lim
R→0

lim
M→∞

lim
N→∞

log(CM (R)/CM+1(R)). (8)

Our nonsubjective scheme has been extended for the computation of K2 as well (Harikrishnan et al.
2009a) and we apply that scheme in this work.

Figure 4 shows K2 for the Rossler attractor as a function of M computed from the time series
using our scheme. To show the effect of noise on K2, we generate four different time series by
adding 50% and 100% white as well as colored noise to the Rossler attractor data. The result of
applying our scheme to these data sets is shown in Figure 5. It is clear that while the saturated K2
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Fig. 4 K2 values of the Rossler attractor as a function of M computed using our scheme. The values
are computed per second and converge very close to the standard value 1.04 ± 0.08.

Fig. 5 Variation of K2 with M for data sets obtained by adding different amounts of white and
colored noise to the Rossler attractor data. The upper panel shows the result of addition of (a) 50%
and (b) 100% white noise, while the lower panel shows the results with (c) 50% and (d) 100%
colored noise with s = 2.0. It is clear that while K2 increases with the addition of white noise,
K2 → 0 as the percentage of colored noise increases.
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value increases with the white noise addition, the effect of colored noise is quite the opposite. With
the increase in colored noise, the saturated value of K2 → 0.

Our scheme can be used for surrogate analysis with K2 as the discriminating measure as well
and nmsd can be computed using a similar expression as Equation (5). We have recently applied
this (Harikrishnan et al. 2009a) to the Rossler attractor data with different percentages of white
and colored noise added. For 50% white noise contamination, nmsd with K2 as the discriminating
measure is found to be 4.3, while for the same percentage of colored noise, the value is 2.2. Thus,
while the white noise contamination can be easily identified through D2 analysis, the presence of
colored noise can be better inferred by computing K2.

2.3 Singular Value Decomposition

The singular value decomposition (SVD) is another important technique used in nonlinear time
series analysis, first proposed by Broomhead & King (1986) and for a recent review, see Athanasiu
& Pavlos (2001). The method makes use of a trajectory matrix constructed from the experimental
time series with the rows of the matrix constituting the state vectors in the embedding space. It is
then diagonalized to find the dominant eigenvalues and eigenvectors which are used to represent the
dynamics. The number of dominant eigenvalues determines the minimum number of dimensions
required to unfold the complete dynamics and the corresponding eigenvectors give the projections
of the reconstructed attractors. With such an SVD projection (also called a BK projection), one can
visualize the qualitative nature of the reconstructed attractors. Here we use the standard TISEAN
algorithm (Hegger et al. 1999) for the computation of BK projections.

For example, the SVD projection for the Rossler attractor is shown in Figure 6 (upper panel). To
show the effect of colored noise on the SVD projection, we also show in Figure 6 (lower panel) the
BK projection for the Rossler attractor with 50% added colored noise and a spectral index s = 2.0.
It is evident that even such a large amount of colored noise does not completely destroy the attractor.

Fig. 6 SVD plot of the pure Rossler attractor (upper panel) along with a plot of the attractor obtained
by adding 50% colored noise (s = 2.0) to the Rossler attractor time series (lower panel).
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2.4 Multifractal Spectrum

The interest of the multifractal formalism in connection with dynamical systems rests on the fact
that it provides us with a very efficient method to determine the existence of strange attractors
and allows a statistical description of these sets. A strange or chaotic attractor normally possess a
multifractal structure as a result of the stretching and folding of the trajectories in different directions
in phase space. Hence they can be characterized by a spectrum of dimensions D(q) (Hentschel &
Procaccia 1983), where the index q can vary from −∞ to +∞. The clustered regions of the attractor
are characterized by D(q) values with q > 0 and rarefied regions by D(q) with q < 0, with D(0)
giving the simple fractal dimension of the set.

A more convenient method to represent the global scaling properties of the attractor is by a
spectrum of singularities characterising the probability measure on the strange attractor. For this,
one considers a covering of the attractor with boxes (of edge length ε) and assign a probability
measure pi(ε) for the ith box. One can then define a local scaling exponent αi (called the singularity
strength) corresponding to the ith box as

αi = lim
ε→0

log pi(ε)
log ε

. (9)

Thus αi measures how fast the number of points within the ith box decreases as ε is reduced. It
therefore measures the strength of the singularity as ε → 0.

For a multifractal, αi can take any value within a range (αmin, αmax). Suppose we now count
the number of boxes Nαi having the same singularity measure αi, for a given ε. Then the variation
of Nαi(ε) with ε defines the fractal dimension f(αi) of the set with the same singularity strength αi.
Plotting f(αi) versus αi gives the singularity spectrum.

But in practice, one is mainly interested in the range of values of αi and the smooth profile of
the singularity spectrum, by taking αi as a continuous parameter α, varying smoothly from αmin

to αmax. If we now count the number of boxes Nα(ε) corresponding to an infinitesimal range of α
around αi within α and α + dα, then the variation of Nα(ε) with ε can be written as

Nα(ε) ∝ ε−f(α) , (10)

where the exponent f(α) represents the fractal dimension of subsets with singularity strength α. The
graph of f(α) as a function of α is called the f(α) spectrum which characterizes the global scaling
properties of the fractal set as a function of the local scaling exponents α. The transformation from
D(q) to f(α) can be shown to be a Legendre transformation; for details, see Halsey et al. (1986) and
Atmanspacher et al. (1989b).

To compute the f(α) spectrum from a time series, we first consider the generalized correlation
sum given by

Cq
M (R) =

[ 1
Nc

Nc∑
i

( 1
Nv

Nv∑
j=1,j �=i

H(R − |xi − xj|)
)q−1]1/(q−1)

, (11)

where the Heaviside function H counts how many pairs of points at (xi, xj) are situated within a
distance R. The spectrum of dimensions are then determined by the relation

D(q) ≡ lim
R→0

d (log Cq
M (R))

d (log (R))
. (12)

The average value of Dq with error bar is then calculated from the scaling region by taking different
values of R, by extending the numerical procedure discussed above for computing D2.
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In order to determine the f(α) spectrum, we make use of the computational scheme recently
proposed by us and applied to several practical time series (Harikrishnan et al. 2009b). The scheme
uses an analytical fit for the f(α) function (involving a set of independent parameters) and calculates
the corresponding Dq curve using the Legendre transformation equations. This curve is then fitted to
the spectrum of Dq values computed from the time series. The best fit curve is found by changing the
parameters of the f(α) fit, which is then used to compute the final f(α) spectrum. The algorithmic
details of the scheme are presented elsewhere (Harikrishnan et al. 2009b). The multifractal approach
has recently been employed in the analysis of several practical time series, an example being the
temporal variations of the geomagnetic field (Hongre et al. 1999).

To illustrate our scheme, it is first used to compute the f(α) spectrum of the Rossler attractor.
The spectrum of generalized dimensions Dq is computed from the time series taking the embedding
dimension M = 3. Attempting to compute the f(α) spectrum directly from the Dq values leads to
an incomplete f(α) spectrum. This is mainly due to the fact that the errors in the calculation of Dq

makes the Legendre transformation numerically impractical because of the reversal of slopes. Hence,
our scheme uses a different procedure. The f(α) function is a single valued function defined between
the limits of αmin and αmax. Since the derivative f ′(α) = df(α)/dα = q is also single valued, it
follows that f(α) has a single extremum (i.e. a maximum). Moreover, f(αmin) = f(αmax) = 0 and
f ′(αmin) and f ′(αmax) tend to ∞ and −∞ respectively. A simple function which can satisfy all the
above necessary conditions is

f(α) = A(α − αmin)γ1(αmax − α)γ2 , (13)

where A, γ1, γ2, αmin and αmax are a set of parameters characterizing a particular f(α) curve. The
Dq curve can be computed from this f(α) fit using the inverse Legendre transformation equations
for a given set of parameters. It is then fitted to the Dq spectrum computed from the time series. The
statistically best Dq fit curve is found by adjusting the parameters of the f(α) function, which is
then used to compute the final f(α) spectrum. The Dq spectrum and its best fit curve for the Rossler
attractor are shown in Figure 7 and the f(α) spectrum computed from the best fit curve is shown in
Figure 8. Having discussed the various measures and schemes for computing them, we now turn to
the analysis of the black hole system GRS1915+105.

3 ANALYSIS OF THE BLACK HOLE SYSTEM GRS1915+105

In this section, we apply all the techniques discussed above to analyze the X-ray light curves from
the black hole binary GRS1915+105. The temporal properties of the system have been classified into
12 different spectroscopic classes by Belloni et al. (2000) based on the RXTE data. Here we have
chosen representative data sets for each class. The light-curve for an observation was obtained from
the standard products1, which provide a 0.125 s time resolution summed over all energy channels.
Standard product light curves have been generated using a pipeline which considers standard filtering
criteria and use reliable data from the instruments. While standard products may not have an optimal
spectral response matrix or a backgroundmodel, they are more than adequate for light curve analysis,
especially for bright sources, like GRS 1915+105, where the background is not important.

The analysis requires continuous data without gaps. For each class, we have extracted two sets
of continuous segments for the analysis. The light curves have been generated after rebinning to a
time resolution of 0.5 s, resulting in ∼ 5200 to 6400 continuous data points for each segment. Light
curves with finer time resolutions are more Poisson noise dominated, while larger binning gives less
data points. Table 1 gives the observation ID, class, number of data points, etc., of all the light curves
used in the analysis. In the last column, we also provide the temporal behavior of the light curve that
resulted from our analysis. More details regarding the data, such as average count, expected Poisson
noise variation, etc., are given elsewhere (Misra et al. 2004).

1 http://heasarc.gsfc.nasa.gov/docs/xte/recipes/stdprod guide.html
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Fig. 7 Upper panel shows the Dq spectrum of the Rossler attractor with error bars, computed from
the time series of 10 000 data points. To show the accuracy of the fitting, the Dq values (points) are
again shown in the lower panel without error bars along with the best fit curve (continuous line)
computed using our numerical scheme.

Fig. 8 f(α) spectrum of the Rossler attractor computed from the best fit Dq curve shown in the
previous figure.

Figure 9 shows all the 12 light curves used in the analysis, which are labeled by 12 different
symbols representing the 12 temporal states of the black hole system. We show only one set of light
curves since the second set looks identical for all the states. The system appears to flip from one state
to another randomly in time. The classification of Belloni et al. (2000) is based on a detailed analysis
of all the light curves from RXTE data using various linear tools. However, it is difficult to differen-
tiate the subtle temporal features between the light curves with the help of the linear tools, such as
the power spectrum. For example, in Figure 10, we show the power spectrum for four representative
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Fig. 9 Light curves from the 12 temporal states of the black hole system GRS1915+105. Only a part
of the generated light curve is shown for clarity.

Fig. 10 Power spectrum for the X-ray light curves from GRS 1915+105 in four representative states.
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Table 1 Details of the light curves from GRS 1915+105, in all the 12 spectral classes, used for the
analysis. For each class, light curves from two Observation IDs have been analyzed, as indicated.
The second column gives the number of continuous data points after rebinning. The last column
indicates the temporal behavior of the class as obtained from our analysis.

Obs. ID No. of Data Points Class Temporal Behavior

10408–01–10–00 6146
20402–01–46–00 5504 β Deterministic Nonlinear

20402–01–45–00 6156
10408–01–15–00 5764 θ Deterministic Nonlinear

20402–01–03–00 6244
20402–01–31–00 5876 ρ Deterministic Nonlinear

10408–01–40–00 6024
10408–01–41–00 5312 ν Deterministic Nonlinear

20187–02–01–00 6010
20402–01–22–00 5220 α Deterministic Nonlinear

20402–01–33–00 6240
20402–01–35–00 6244 κ Deterministic Nonlinear + Colored Noise

20402–01–37–00 6080
20402–01–36–00 5648 λ Deterministic Nonlinear + Colored Noise

10408–01–08–00 5688
10408–01–34–00 5756 μ Deterministic Nonlinear + Colored Noise

10408–01–17–00 6010
20402–01–41–00 5466 δ White Noise

20402–01–56–00 6324
20402–01–39–00 6180 γ White Noise

10408–01–12–00 6286
10408–01–09–00 5580 φ White Noise

10408–01–22–00 6022
20402–01–04–00 5382 χ White Noise

states whose temporal properties are different as compared to our analysis (see Table 1). While β
and ν are candidates for deterministic nonlinear behavior, κ is possibly a mixture of nonlinearity
and colored noise and γ is purely stochastic. However, these distinctions are barely evident from
the power spectral variations, though the γ state appears more like white noise, in agreement with
our results. This, once again, emphasizes the importance of methods based on nonlinear time series
analysis for a better understanding of the temporal properties of the light curves.

Recently, we applied a surrogate analysis to all these light curves and showed that more than
half of these 12 states deviated from purely stochastic behavior (Misra et al. 2006). Here we com-
bine the results of computations of D2, K2 and SVD analysis to get a better understanding regarding
the nature of these light curves. We have done the surrogate analysis with D2 and K2 and the SVD
analysis separately for the two sets of light curves. However, here we only show plots from repre-
sentative light curves from one set since the plots from the second set are similar and the results are
qualitatively the same. Figures 11 and 12 show the results of the surrogate analysis, with D2 as the
discriminating measure, on eight different states. Of the states shown in these figures, it is clear that
only two states (γ, φ) show purely stochastic behavior.

Figure 13 presents the results of the computation of K2 for six of the above eight states. Since
colored noise is also expected in the black hole data, the surrogate analysis has been performed with
K2 as the discriminating measure on all the 12 states. The results are shown in Figure 14 for four of
these states. While the behavior of β, θ and γ are consistent with earlier analysis, the behavior of κ
suggests that it is contaminated by colored noise.
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Fig. 11 Surrogate analysis with D2 as a discriminating measure for the light curves from four states
of GRS1915+105. Note that only the γ state is consistent with noise.

Fig. 12 Same as the previous figure, but with four other states. Again, only one state (φ) shows
random behavior.

To get a quantitative measure, we now compute nmsd using both D2 and K2 as discriminating
measures for all the 12 states from the two sets of light curves and the results are shown in Table 2.
A careful inspection of the Table reveals the following results. The values of nmsd in the two cases
suggest that the temporal properties of the light curves in the two sets are almost identical. Out
of the 12 states, four (δ, γ, φ, χ) are completely stochastic or white noise. Of the remaining eight
states, three (κ, λ, μ) are contaminated by colored noise and the rest (β, θ, α, ν, ρ) show signatures
of deterministic nonlinear behavior in their temporal variations. It is generally expected that all the
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Fig. 13 Variation of K2 as a function of M for the light curves from six different states of
GRS1915+105. While the K2 values of four states converge much like a low dimensional chaotic
system, K2 for the κ state continues to decrease as M increases, indicating colored noise contami-
nation. Though K2 for the γ state converges, its value is much higher and closer to that of the white
noise.

Fig. 14 Surrogate analysis of the light curves from four states of the black hole system with K2 as
the discriminating measure. Note that while data and the surrogates can be distinguished for β and
θ, κ and γ behave much like colored noise and white noise respectively.
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Fig. 15 Plot of the attractors underlying four states of the black hole system reconstructed via SVD
analysis. Except for the φ state, which behaves similar to white noise, all the others indicate the
presence of underlying attractors, with the most interesting being the ρ state.

Table 2 Values of nmsd computed for all the 12 GRS states from the two sets
of light curves with D2 and K2 as discriminating measures.

GRS state nmsd (D2) nmsd (D2) nmsd (K2) nmsd (K2)
set 1 set 2 set 1 set 2

β 7.04 9.32 13.74 11.44
θ 10.63 8.59 11.20 10.86
α 8.18 6.71 8.92 6.89
ν 5.94 6.04 6.87 6.35
ρ 11.25 10.83 14.28 12.08
κ 4.64 4.77 3.22 3.54
λ 6.66 6.22 4.57 4.67
μ 4.86 4.90 3.98 3.82
δ 2.32 3.13 1.34 1.68
γ 0.88 1.03 1.83 1.43
φ 0.96 0.92 2.12 1.74
χ 0.78 0.73 1.67 1.38

states contain some amount of white noise whose percentage may vary. For example, in the case
of the state α, the saturated values of D2 and K2 improve significantly as the resolution time is
increased from 0.5 s to 1 s. This clearly indicates the presence of Poisson white noise in the data.
However, the surrogate analysis with both D2 and K2 confirms that the null hypothesis can be
rejected for the light curve in the α state.

We next perform an SVD analysis on all the states which clearly show the qualitative nature
of the underlying attractors. The plots of attractors for selected states are shown in Figure 15. The
most interesting plot is for the ρ state which shows a typical limit cycle type attractor. Also, note
that the SVD plot for κ has a nontrivial appearance, even though the surrogate analysis suggested
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Fig. 16 Spectrum of generalized dimensions with error bars (upper panel) for the ν state corre-
sponding to embedded dimension M = 3. The lower panel shows the Dq values without error bars
and the best fit curve.

the presence of colored noise. This is also true in the case of the other two identical states, λ and
μ. Thus these three states could be a mixture of deterministic nonlinearity and colored noise. Thus,
based on our results, the 12 states can be divided into three broader classes from the point of view of
their temporal properties. It turns out that some of these states, which are spectroscopically different,
behave identically in terms of their nonlinear dynamical characteristics. This may be an indication
of some common features in the mechanism of production of light curves from these states. The
temporal behavior of each state as obtained from our analysis is indicated in the last column in
Table 1. Since the behavior is identical for two different observation IDs in all cases, it may be
concluded that the results presented here are not dependent on sample selection and are applicable
for all the light curves classified by Belloni et al. (2000).

Finally, we show the results of multifractal analysis of all the light curves except the four which
show purely stochastic behavior and hence the f(α) spectrum is irrelevant. Our non subjective
scheme for computing the Dq and f(α) spectrum, discussed in Section 2.4, provides us with a
set of parameters that can be used to compare the fractal properties between different states as re-
flected in the light curves. To show the details of the computations, we first take a typical state. In
Figure 16, we show the Dq spectrum for the ν state along with the best fit curve from which the f(α)
is computed as given in Figure 17. This is repeated for the other states as well and the results for
four other states are shown in Figure 18. The multifractal nature of the attractors is evident from the
figures. Since the computation is done under fixed conditions prescribed by the algorithmic scheme,
the associated parameters characterizing the spectra can give a better representation for comparison
between various states. Our results indicate that the spectra and the associated parameters are typ-
ically different for each state and do not show any clear trend among members that display strong
deterministic nonlinear behavior. This can be inferred from Figure 18 for the case of different ranges
of scales. Thus, it turns out that there are subtle differences between the states belonging to the same
dynamic class with respect to multifractal scaling as well, apart from linear spectral characteristics,
based on which the 12 states are divided.
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Fig. 17 Multifractal spectrum for the ν state computed from the best fit curve for Dq shown in the
previous figure.

Fig. 18 f(α) spectrum for the light curves corresponding to four states of the black hole system
computed using our scheme with M = 3. Note that the GRS state has been labeled alpha in order
to avoid confusion with the scaling index α.

4 DISCUSSION AND CONCLUSIONS

Identifying nontrivial structures in real world systems is considered to be a challenging task as it
requires a succession of tests using various quantitative measures. Even though a large number of
potential systems from various fields have been analyzed so far, the results remain inconclusive
in many cases. Here we present an example of a very interesting astrophysical system, which we
analyze using several important quantifiers of low dimensional chaos. By using the time series from
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a standard chaotic system - the Rossler attractor - we first test the computational schemes used for
the analysis. These schemes are then applied to the light curves from the black hole system. We
find that out of the 12 spectroscopic states, only four are purely stochastic. The remaining show
signatures of deterministic nonlinearity, with three of them contaminated by colored noise. All these
eight states are found to have D2 < 4, so that their complex temporal behavior can be approximated
by three or four coupled ordinary differential equations. Based on our results, the 12 states can be
broadly classified into three from a dynamical perspective: purely stochastic with D2 → ∞, affected
by colored noise and those which are potential candidates for low dimensional (D2 < 4) chaotic
behavior.

It should be noted that Belloni et al. (2000) classified the light curves into 12 states based on
their count rate, variability and spectral characteristics. In other words, this is a classification based
on linear characteristics of the light curves. Ours is not a classification as in the strict sense of
Belloni et al. (2000). We only show that some of the light curves which appear different based on
their variability and spectral properties can be grouped together when viewed from a dynamical
perspective.

Our results could be significant in many ways. First of all, this is the first real evidence of a possi-
ble multifractal attractor in the time series of a black hole system. The fact that the light curves from
many of the temporal states have underlying strange-attractor-like behavior increases the possibility
that the temporal variability in the time scales within these states are governed by some inherently
nonlinear processes with a few degrees of freedom. In other words, the complex nonlinear partial
differential equations that are known to govern the hydrodynamic flow can be approximated by a set
of ordinary differential equations and hence can be more easily studied and understood. Moreover,
the result that some of the states which are spectroscopically different, but have approximately the
same nonlinear characteristics, is interesting from certain dynamical aspects, such as the mechanism
of production of light curves. It is well known that GRS1915+105 is a unique black hole system with
many temporal states which vary over a wide range of time scales. Many of the questions regarding
this variability and the exact mechanism of production of light curves still remain unanswered.

Another question is regarding the structure of variability between the 12 spectroscopic states.
It has been suggested that all the observed light curves could be interpreted in terms of three basic
states (a hard state and two softer states) and a sequence of transitions between them (Belloni et
al. 2000). This could, in principle, give rise to a much larger variety of light curves. However, the
system chooses only a handful of these sequences. This possibly suggests that the structure of time
variability is not random, but controlled by some physical parameter which must be connected to
the basic properties of the accretion disk. The presence of deterministic nonlinear behavior in the
system further substantiates this idea.

Interestingly, the system appears to be in the χ state for most of the time which is identified as
purely stochastic in our analysis. We have also analyzed many samples of the long time average of the
light curves from the system and found that they show purely random behavior. Thus, one possibility
is that the states other than the χ state may well be short-time flips due to some changes taking place
within the system. However, many of these short-time states acquire much less noise, which reveals,
for example, the underlying nonlinear character. Thus, an interesting question is whether the states
such as β and θ have a different underlying mechanism of production of light curves compared to
the χ state; or, is it the case that the excessive amount of white noise in that state is what suppresses
the nonlinear properties? The question whether the different states are temporal manifestations of a
single underlying mechanism or are they dynamically different, will be vital for a proper modeling
of this fascinating astrophysical object.
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