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Abstract Taking transfer orbits of a collinear libration point probe, a lunar probe and
an interplanetary probe as examples, some applications of stable and unstable invariant
manifolds of the restricted three-body problem are discussed. Research shows that
transfer energy is not necessarily conserved when invariant manifolds are used. For
the cases in which the transfer energy is conserved, the cost is a much longer transfer
time.
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1 INTRODUCTION

The Circular Restricted Three-Body Problem (CRTBP) is one of the most commonly used models in
deep space exploration. It describes the motion of a massless small body P pulled by the gravitation
of two massive primaries P1 and P2 which revolve around each other in circular orbits. We usually
describe the motion of the massless small body in a coordinate which rotates with the two primaries,
called the synodic coordinate (Szebehely 1967). The equation of motion of the small body cannot
be solved in explicit analytic forms. There are five equilibrium points called libration points in the
system. Three of them are called collinear libration points, lying on the line connecting the two
primaries. Figure 1 shows the configuration of these three points, where C is the barycenter of the
two primaries P1 and P2.

Fig. 1 Configuration of the three collinear libration points and the two primaries.

The collinear libration points are unstable but with conditionally stable motions around them.
Their dynamics have already been carefully studied (Gómez et al. 2001a,b). Nowadays, these points
are widely used in space missions due to their unique positions and dynamical characteristics.
Generally, two types of applications exist. One type is to put a probe in conditionally stable orbits
around these points (Farquhar & Kamel 1973), such as ISEE-3, SOHO and PLANCK. The other
type is to utilize them as energy saving passages for the probes. This paper concentrates on the sec-
ond type of application. The fundamental tools for this type of application are the associated stable
and unstable invariant manifolds. For both the collinear libration points and the conditionally stable
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orbits around them, there are stable and unstable invariant manifolds associated with them. These
manifolds gradually extend into space, and can be used to guide the collinear libration probe (the
probe which is located around the collinear libration points) as it approaches the Earth (Gómez et
al. 1993). The manifolds can also be used as passages between different libration points in the same
restricted three-body problem (Koon et al. 2000; Gómez et al. 1998) or between libration points in
different restricted three-body problems (Koon et al. 2001; Franco et al. 2004). In these applications,
connecting arcs can be used if the manifolds do not intersect in space (Franco et al. 2004). In the
following, for brevity, when we talk about the invariant manifolds of the point Li, we actually mean
the invariant manifolds associated with the conditionally stable orbits around the point Li.

Different from the traditional patched conic method (Battin 1999) used in the design of inter-
planetary transfer orbits, the patched manifold method (Lo 2002; Gómez et al. 2004) is based on
stable and unstable invariant manifolds of the restricted three-body problem. In some cases, the
transfer orbit designed by the patched manifold method requires less energy than the one designed
by the patched conic method, but usually requires more transfer time. In some cases, the transfer
orbit designed by the patched manifold method requires not only more time but also more energy
than the one designed by the patched conic method.

Taking the transfer orbits of the collinear libration point probe, the lunar probe and the inter-
planetary probe as examples, applications of the invariant manifolds in deep space explorations are
studied. For the results already obtained by previous works, we only briefly sketch them. Instead,
we concentrate on the results which differ from the previous studies. The force models used in the
paper are the CRTBP and the real force model. The real force model in our work includes gravitation
of the Sun, the nine planets (including Pluto) and the Moon. Their positions are given by the JPL
DE405 numerical ephemeris.

2 STABLE AND UNSTABLE INVARIANT MANIFOLDS

In the barycenter synodic coordinate, the dimensionless equation of motion of the small body follows
(Szebehely 1967)

{
r̈ + 2(−ẏ, ẋ, 0)T = (∂Ω/∂r)T ,
Ω = (μ(1 − μ) + x2 + y2)/2 + (1 − μ)/r1 + μ/r2,

(1)

where r1, and r2 are position vectors of the small body from the two primaries. In addition, μ =
m2/(m1 + m2), where m1 and m2 are the masses of the two primaries, and m2 < m1. An integral
of Equation (1), called the Jacobi integral, exists in the form

2Ω − v2 = 2Ω − (ẋ2 + ẏ2 + ż2) = C , (2)

where v is the speed of the small body. Expanding Equation (1) around the collinear libration points
and only collecting the linear terms in the expansion, the linear solution of the motion around these
points can be obtained in the form (Szebehely 1967)⎧⎨

⎩
ξ = C1d

d1t + C2e
−d1t + C3 cos d2t + C4 sind2t ,

η = α1C1d
d1t − α1C2e

−d1t − α2C3 cos d2t + α2C4 sin d2t
ζ = C5 cos d3t + C6 sind3t ,

, (3)

where ρ = (ξ, η, ζ)T indicates the deviation of the small body from the corresponding collinear
libration point. C1 ∼ C6 are constants of motion determined by the initial state of the orbit. When
C1 = C2 = 0, Equation (3) describes a conditionally stable orbit which is denoted as ρ̄. When
C1 = 0 and C2 �= 0, ρ asymptotically approaches ρ̄ with increasing t. These orbits are called
asymptotically stable orbits. When C1 �= 0 and C2 = 0, ρ asymptotically approaches ρ̄ with de-
creasing t. These orbits are called asymptotically unstable orbits. The set of asymptotic stable orbits
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is called the stable invariant manifold and the set of asymptotically unstable orbits is called the
unstable invariant manifold. Dynamically speaking, the conditionally stable orbit ρ̄ is also an invari-
ant manifold. However, without special emphasis, the invariant manifolds in this paper indicate the
stable or the unstable ones.

Considering higher order expansions of Equation (1), the conditionally stable orbit ρ̄ and its as-
sociated stable and unstable invariant manifolds still exist, with a form much more complicated than
Equation (3). Regarding computations of these elements, readers are lead to Gómez et al. (2001a,b)
for details.

When the small body is restricted to move in the x − y plane, the CRTBP is reduced to the
Planar Circular Restricted Three-Body Problem (PCRTBP). Since the PCRTBP is a two dimensional
system, Poincaré sections can be employed to study its dynamical properties (Koon et al. 2001).

Figure 2 shows the invariant manifolds of the PCRTBP with mass parameters of the Sun-Earth
system. The right frame is the local magnification of the left one. Usually, four Poincaré sections
U1 ∼ U4 are used, as indicated in Figure 2. The Poincaré sections of the invariant manifolds are
homogeneous with regard to circles (Llibre et al. 1985). The left frame of Figure 3 shows the first
section of U2 for the stable and unstable invariant manifolds of the point L2. The right frame shows
the first section of U2 for the stable invariant manifold of the point L1 and the first section of U2

for the unstable invariant manifold of the point L2. The curves S and U in these frames indicate
the stable and unstable invariant manifolds respectively. The points inside the curves S or U are the
orbits which can pass the corresponding collinear libration point, while the points outside are the
orbits which cannot. The intersection points of the two curves are the orbits which automatically
evolve from the unstable manifold to the stable one (under the condition that the energies of the two
manifolds are the same). For the intersection case, if the stable and unstable invariant manifolds are
associated with the same collinear libration point, the intersection point indicates a homoclinic orbit.
Otherwise, it indicates a heteroclinic orbit (Koon et al. 2000). For the points inside both curves S and
U , they indicate the orbits which first pass the collinear libration point corresponding to the unstable
manifold and then pass the collinear libration point corresponding to the stable manifold. Readers
are referred to Koon et al. (2000) for more details of these sections. For the three-dimensional case,
Poincaré sections cannot be directly used due to the Arnold diffusion. There is some research on this
problem. Please see Gómez et al. (2004).

Fig. 2 Stable and unstable invariant manifolds of the collinear libration points in the Sun-Earth
restricted three-body problem. Here “adim” in the labels indicates that the length unit is the mean
distance between the Sun and the Earth.
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Fig. 3 Poincaré sections of the stable and unstable invariant manifolds of the section U2 where
“ydot” in the labels are actually ẏ. In addition, “adim” in the abscissa indicates that the length unit
is the mean distance between the Sun and the Earth, and “adim” in the ordinate indicates that the
velocity unit is 29784.7365615637 m s−1.

Fig. 4 Left: the nominal orbit of the probe; Middle: the stable invariant manifold associated with the
nominal orbit; Right: a chosen transfer orbit. The length unit of all three figures is the mean distance
between the Sun and the Earth.

The heteroclinic orbits can be used as automatic transfer orbits between different collinear li-
bration points. They have already been used in the GENESIS mission (Lo et al. 1998). We will not
discuss such applications in the paper. The results in Figures 2 and 3 are all about the points L1

and L2. For the point L3, its instability is very mild, and its associated stable and unstable invariant
manifolds require a prohibitively long time to escape the proximity of the point L3 and cannot ap-
proach the two primaries. Usually, we do not consider using the invariant manifolds associated with
the point L3.

3 COLLINEAR LIBRATION POINT PROBE

These probes should stay around the collinear libration points for a long time. Usually, the condi-
tionally stable orbits (Lissajous orbits or Quasi-Halo orbits) around the collinear libration points are
used as nominal orbits for these probes. The stable invariant manifolds associated with these nominal
orbits can be used to guide the probes.



On Some Applications of Invariant Manifolds 107

3.1 The Sun-Earth+Moon System

For the conditionally stable orbits with large energy around the points L1 or L2 in the Sun-
Earth+Moon system, their stable manifolds can approach the Earth. If these manifolds intersect a
parking Low Earth Orbit (LEO), a maneuver at the intersection point can send the probe from the
LEO to the stable invariant manifolds. Then the probe automatically evolves into the nominal orbit.
We usually choose the asymptotic stable orbit satisfying the following conditions to be the transfer
orbit.

re · ṙe = 0, re − ae = hLEO , (4)

where re and ṙe are the position and speed vectors of the probe from the Earth, ae is the equatorial
radius of the Earth and hLEO is the height of the circular parking LEO. Of course, other restrictions
may exist when designing a transfer orbit. Nevertheless, to simplify the problem, we only consider
the restrictions of Equation (4).

Figure 4 shows a conditionally stable orbit (a Quasi-Halo orbit) around the point L1 in the real
force model (left frame), its associated stable invariant manifolds (middle frame) and the chosen
transfer orbit (right frame). Here hLEO = 200 km. The maneuver at the LEO is 3196.53m s−1 and
the transfer time is 232.6 d. If lunar gravity assist can be used, more transfer energy can be saved
(Liu et al. 2007).

Such transfer orbits usually require a very long transfer time (about 200∼300d). In addition, the
stable invariant manifolds cannot approach the Earth if the energy of the nominal orbit is small. A
two-maneuver strategy was proposed (Hou & Liu 2008). The two maneuvers are done in the parking
LEO and in the nominal orbit respectively. With this strategy, transfer to the nominal orbit using
small energy is possible and the transfer orbit requires much less time at the cost of slightly more
energy.

3.2 The Earth-Moon System

We first consider the probes around the point L1. For the PCRTBP of the Earth-Moon system, the
stable invariant manifolds of the point L1 cannot approach the Earth very closely (Koon et al. 2000).
For the three-dimensional case and the real force model, a similar phenomenon happens, although
it cannot be proven theoretically. Studies show that for energy “openings” close to CL1 (where CL1

is the Jacobi constant of the point L1), the minimum distance between the stable manifolds and the
Earth is about one tenth of the mean distance between the Earth and the Moon, i.e. about 38 000 km.
As a result, for LEOs with height less than 38 000 km-ae, it is not possible for the stable invariant
manifolds to intersect them. A connecting arc is necessary, as shown in Figure 5. P is on the parking
LEO and Q is on the stable invariant manifold. Denote the maneuver at P as Δv1 and the maneuver
at Q as Δv2. Varying P, Q and the energy of the nominal orbit (i.e. the energy of the stable invariant
manifold), the minimum of Δv1 + Δv2 can be obtained. The left frame of Figure 6 shows such an
optimized transfer orbit to a Halo orbit around the point L1 in the CRTBP model. For clarity, only
the x− y projection is given. The connecting arc PQ lasts 3.67 d and the asymptotic stable arc lasts
91.44 d. Here, Δv1 = 3109.13m s−1, Δv2 = 420.95m s−1 and hLEO = 200 km. The minimum
energy of a direct transfer orbit to the nominal orbit is about the same value (Alessi et al. 2010).

For the probe around the point L2, the heteroclinic orbit between the conditionally stable orbits
around the points L1 and L2 can be used. The transfer energy is approximately the same as the case
of the point L1. The right frame of Figure 6 shows such an optimized transfer orbit to a Halo orbit
around the point L2 in the CRTBP model. The connecting arc PQ lasts 3.49 d and the asymptotic
stable arc lasts 99.62 d. Here Δv1 = 3105.36m s−1, Δv2 = 451.23 m s−1, and hLEO = 200 km.

The minimum energies of the transfer orbits given here are similar to the ones in Alessi et al.
(2010), but much larger than the ones given in Franco et al. (2004). From the analysis for the lunar
probe below, we speculate that the results of Franco et al. (2004) should be doubted.
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Fig. 5 An illustration depicting the connecting arc and the stable invariant manifold of the point L1

in the Earth-Moon system.

Fig. 6 Left: A transfer orbit to a Halo orbit around the point L1 in the Earth-Moon system (x − y
projection); Right: A transfer orbit to a Halo orbit around the point L2 in the Earth-Moon system
(x − y projection). Here “adim” in the labels indicates that the length unit is the mean distance
between the Earth and the Moon.

A note should be made here. Although the stable invariant manifolds of the point L1 in the Earth-
Moon system cannot approach the Earth very closely, they can approach the Moon very closely
(similar to the right frame of Figure 2 for the Sun-Earth system). As a result, if the second maneuver
of the connecting arc is around the Moon, the minimum transfer energy can be saved compared with
the results above (Lo & Chung 2002). Readers can refer to the reference for more details.

3.3 The Optimization Scheme

For the transfer orbit in Figure 4 of the Sun-Earth+Moon system, optimization is not needed. The
minimum distance of different asymptotic stable orbits on the stable invariant manifold can be ob-
tained from the first equation of Equation (4). We simply choose the one which satisfies the second
equation of Equation (4) as the transfer orbit.

For the orbits in Figure 6 in the Earth-Moon system, optimization is done like this. Take the halo
orbit around the point L1 as an example. We first divide the halo orbit into N parts. The time interval
of each part is the same. Denote the nodal points on the halo orbit as i = 1 ∼ N . For each nodal
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Fig. 7 Left: the curve of Δv1+Δv2 with respect to different points Q in one asymptotic orbit; Right:
distribution of Δv1 + Δv2 with respect to the distances of different points Q from the Earth. Here
“adim” in the label of the right figure indicates that the length unit is the mean distance between the
Earth and the Moon.

point, we compute the corresponding asymptotically stable orbit and integrate it backwards to the
point Q. Then we compute the speed corrections at the points P (denoted as Δv1) and Q (denoted
as Δv2). To simplify the computations, the point Q is transferred from the synodic frame to the
sidereal frame. The connecting arc PQ is taken as a part of an ellipse whose perigee and apogee are
the points P and Q respectively. Then Δv1 and Δv2 can be computed immediately for each point
Q on the stable invariant manifold. For clarity, we pick one asymptotic orbit as an example to show
the curve of Δv1 + Δv2, as shown in Figure 7. The abscissa of the left figure is the integration time
of the asymptotic orbit. The abscissa of the right figure is the minimum distance of the point Q from
the Earth. Clearly, the minimum values of energy correspond to the points Q which are furthest from
the Earth.

It is unnecessary for N to be very large. A modest number (say 100) is enough. Suppose the
minimum energy corresponds to a point Q on one asymptotic stable orbit which is associated with
the nodal point J on the halo orbit. Then we divide the parts of the halo orbit from the nodal point
J − 1 to J + 1 into N smaller parts and do the optimization process again. The process stops when
the step of the nodal points is smaller than a threshold. By doing this, we can gradually approach
the optimized value. For the transfer orbits to the halo orbit around the point L2, the optimization
process is the same, but those cases are restricted to the asymptotic orbits which can approach the
Earth through the heteroclinic connections with the point L1.

Since the true connecting arc PQ, of course, is not part of a fixed ellipse, the optimal transfer or-
bit found by the above scheme is not the true optimal transfer orbit in the real force model. However,
the deviation between the two is very small because the two-body problem is a good approximation
for the arc PQ. The deviation of the total energy is usually within 10m s−1.

4 LUNAR PROBE

The traditional Hohmann transfer orbit of a lunar probe requires about 2∼5 d, with two maneuvers
in the parking LEO and in the nominal orbit respectively. The second maneuver of such a transfer
orbit is necessary because the orbit is hyperbolic when the probe enters the gravitational sphere of
the Moon. However, the transfer orbit designed by the patched manifold method is elliptic when the
probe enters the Moon’s gravitational sphere. As a result, the second maneuver is unnecessary.
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4.1 Through the L1 Point

As stated in the above section, the orbits inside the Poincaré sections of the stable invariant mani-
folds can pass the corresponding collinear libration point. Such orbits are called transferable orbits.
They are the orbits used to guide the lunar probe. Since all the transferable orbits are enveloped
by the invariant manifolds, they cannot approach the Earth very closely. Similar to Figure 5, a con-
necting arc is necessary. The difference is that Q is in the transferable orbits instead of the stable
invariant manifold. Varying the positions of P, Q and the stable invariant manifold, a transfer orbit
with minimum energy can be found.

Figure 8 shows such an optimized transfer orbit in the CRTBP model. The connecting arc PQ
requires 3.33 d. From Q to the point L1 requires 362.85d. Here Δv1 = 3102.11m s−1, Δv2 =
393.93 m s−1 and hLEO = 200 km. The right frame shows the trajectory of the probe after passing
through the point L1, lasting about one year.

Fig. 8 A transfer orbit to the Moon through the L1 point where “adim” in the labels indicates that
the length unit is the mean distance between the Earth and the Moon.

We can estimate the minimum energy needed for such transfer orbits. Viewed from an Earth
centered sidereal coordinate, the stable invariant manifolds are actually precessing ellipses with very
large eccentricities. Studies show that the transfer energy is close to minimum when Q is at the
apogee of these ellipses (Alessi et al. 2010), a conclusion in accordance with Figures 6 and 7. Since
the height of the LEO is fixed, the transfer energy is determined by the perigee and apogee of the
ellipses. The ellipses are precessing, thus the perigee and apogee are not fixed. Studies show that the
apogee is around eight tenths of the mean distance between the Earth and the Moon. Variations of
the exact values will not affect the total energy very much. The transfer energy is mainly determined
by the perigee. Obviously, the energy is smaller for a smaller perigee. As stated above, the minimum
value of the perigee is about one tenth of the mean distance between the Earth and the Moon. If the
height of the LEO is hLEO =200 km, then the minimum energy needed is around Δv = Δv1 +
Δv2 =3162.07+320.95=3465.03 (m s−1). This value is close to the one in Figure 8 but much larger
than the one in Franco et al. (2004). It is not quite possible to transfer an orbit with energy much less
than this value. As a result, we speculate that the results in Franco et al. (2004) should be doubted.
Similarly, the results of a transfer to the conditionally stable orbit around the points L1 and L2 should
also be doubted.

Compared with the Hohmann transfer method, transfer through the L1 point requires less energy
if no requirements are made on the nominal orbit. However, if the nominal orbit of such a transfer
orbit is required to be the same as the Hohmann transfer, the conclusion is different. Suppose the
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height of the parking LEO is 200 km and the height of the nominal orbit around the Moon is 100 km.
The energy of a typical Hohmann transfer orbit is about 4000m s−1. For the transfer orbit through
the L1 point, a third maneuver Δv3 is required to insert the probe into the nominal orbit. Usually,
the orbit is highly elliptic (very close to 1) when the probe enters the Moon’s gravitational sphere.
Approximately, we can take it as a parabolic orbit. Suppose the height of the perilune is 100 km, then
the maneuver Δv3 to insert the probe into the nominal orbit is about 676.51m s−1. The minimum
total energy needed is around Δv = Δv1 + Δv2 + Δv3 =4141.54m s−1, which is a value larger
than that of the Hohmann transfer orbit. Since transfer through the L1 point requires more energy
and time than the Hohmann transfer, it is not an ideal way to guide the lunar probe.

4.2 Through the L2 Point

Generally, the stable invariant manifolds of the point L2 in the CRTBP can only approach the Earth
by passing through the point L1. However, in the real force model, due to the Sun’s perturbations,
the probe can first go beyond the point L2 of the Earth-Moon system via the stable and unstable
invariant manifolds of the Sun-Earth system and then enter the Moon’s gravitational region via the
stable invariant manifolds of the point L2 of the Earth-Moon system. The left frame of Figure 9 is
an illustration depicting the mechanism. The right frame shows such a transfer orbit in the Earth
centered sidereal coordinate (x − y projection). The starting epoch is MJD=54457.00. The transfer
time is 102.04 d. The first maneuver at the parking LEO is 3200.07m s−1, and the second maneuver
at the nominal orbit is 647.63m s−1. The heights of the LEO and the nominal orbits are both 200 km.

Fig. 9 Left: An illustration depicting the intersection between the stable invariant manifold of the
Earth-Moon system and the stable and unstable invariant manifolds of the Sun- Earth system. Right:
An example WSB transfer orbit, with the circle indicating the Moon’s orbit. “AU” in the left frame
indicates the length unit to be the astronomical unit, and “Ae” in the right frame indicates the length
unit to be the equatorial radius of the Earth.

Such transfer orbits were first obtained by Belbruno (Belbruno 1987). Then Koon et al. explained
their dynamics (Koon et al. 2001). These orbits are often referred to as lunar ballistic trajectories
or Weak Stability Boundary (WSB) trajectories. Regarding the ways to find such orbits, readers
can refer to Circi & Teofilatto (2001). Generally, such transfer orbits require less energy than the
Hohmann transfer orbits, but with a much longer transfer time. They can only be used in missions
with no requirements for the transfer time.
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Fig. 10 Illustrations depicting the optimization scheme. Left is for the planar case. Right is for the
three dimensional case.

4.3 The Optimization Scheme

Compared with the optimization problem in Subsection 3.3, there are two differences in the opti-
mization of the transfer orbits of the lunar probe through the L1 point. First, the energy of the stable
manifold is not fixed because no specific requirements are made on the conditionally stable orbits
around the point L1. Second, the orbits we are studying are in fact the transferrable orbits enveloped
by the stable invariant manifolds, which can pass the point L1. Optimization can be done as follows.
First, we fix the energy of the conditionally stable orbit around the point L1 and compute the transfer
orbits. Then the energy of the conditionally stable orbit is varied to find the global optimal transfer
orbit.

In our optimization process, however, we did not compute the conditionally stable orbits. Since
all the transfer orbits should pass the point L1, they can be computed like this. Taking the planar
case as an example, for a Jacobi constant C slightly smaller than C1, the opening neck (the region
between the two forbidden regions in Fig. 10) around the point L1 is small (Szebehely 1967). Denote
the intersection point of the transfer orbit with the η axis as S. The speed at the point S has angle θ
with respect to the η axis. We then integrate forwards and backwards from the point S. If the probe
is captured by the Earth when integrating backwards and captured by the Moon when integrating
forwards, then this indicates a transfer orbit has been found. Varying the η coordinate of the point
S and its speed direction angle θ, and varying the Jacobi constant C, we can find the transfer orbit
with the minimum transfer energy.

Denote the smallest Jacobi constant we studied as Cmin. First, we divide the interval [Cmin, C1]
into N1 parts. For each Jacobi constant Ci = Cmin + (C1 − Cmin) × i/N1, the ηmax in Figure 10
can be obtained. For the coordinate η of the point S, we divide the interval [−ηmax, ηmax] into N2

parts, and for the angle θ, we divide the interval [0◦, 360◦] into N3 parts. First, we fix the values of
N2 and N3 (say 100). For a modest value of N1 (say 100), the optimal transfer orbit can be obtained.
Suppose this process happens for the Jacobi constant CJ . Then we divide the interval CJ−1 to CJ+1

into N1 parts again to renew the optimization process. When the step of the Jacobi constant is smaller
than a threshold (say 10−8), we fix the Jacobi constant. Suppose, for this fixed Jacobi constant, the
optimal transfer orbit happens for ηK = −ηmax + 2Kηmax/N2 and θL = 360◦L/N3. We divide
the interval [ηK−1, ηK+1] into N2 parts and the interval [θL−1, θL+1] into N3 parts to iterate the
optimization process. The whole optimization process stops when the steps of η and θ are smaller
than a threshold.
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Similar to the case in Subsection 3.3, the point Q is transferred from the synodic frame to the
sidereal frame and the connecting arc PQ is taken as a part of a fixed ellipse to save computation
time. When the optimal value is found, the arc PQ is numerically refined to obtain the true transfer
orbit. For the three-dimensional case, a similar optimization process can be applied, as shown in
the right frame of Figure 10. However, the process is more complicated because of two additional
components ζ and ζ̇. The results in Figure 9 correspond to the planar case.

For the WSB transfer orbit, there are already many studies which have been published, so there
is no need to discuss it further in this paper.

5 INTERPLANETARY PROBE

The traditional method to design an interplanetary trajectory is the patched conic method (Battin
1999). The trajectory can be computed by patching many conic sections together. Take the Mars
probe as an example. The transfer trajectory from the Earth can be taken as three conic sections
patched together: the geocentric hyperbolic arc, the areocentric hyperbolic arc and the heliocentric
Lambert arc. These conics are first patched together geometrically and then numerically refined to
obtain a true transfer orbit in the real force model.

Different from the patched conic method, the patched manifold method is based on stable and
unstable invariant manifolds of the CRTBP. Take those paths departing from the Earth as an example.
When the nominal planet is within the orbit of the Earth, the probe first escapes from the Earth via
the unstable invariant manifolds of the point L1 in the Sun-Earth system and then approaches the
nominal planet via the stable invariant manifolds of the point L2 in the Sun-nominal planet system.
When the nominal planet is outside the Earth’s orbit, the probe first escapes from the Earth via
the unstable invariant manifolds of the point L2 in the Sun-Earth system and then approaches the
nominal planet via the stable invariant manifolds of the point L1 in the Sun-nominal planet system.
According to the calculation of intersections between the two invariant manifolds, we study the
problem in two cases and compare the result with the orbit designed by the patched conic method.

5.1 The Case of No Intersections

For the CRTBPs composed of the Sun and the terrestrial planets, their invariant manifolds cannot
intersect (Lo 2002). As a result, a connecting arc is necessary to fulfill the transfer between the two
manifolds. Taking a Mars probe from the Earth as an example, the connecting arc links the unstable
invariant manifold of the point L2 in the Sun-Earth system with the stable invariant manifolds of the
point L1 in the Sun-Mars system. There are totally four maneuvers in the transfer orbit: At the epoch
T1, the first maneuver Δv1 sends the probe from the parking LEO to the unstable invariant manifold
of the Sun-Earth system; At the epoch T2, the second maneuver Δv2 at one end of the connecting
arc (denoted as P ) sends the probe to the connecting arc; At the epoch T3, the third maneuver Δv3

at the other end of the connecting arc (denoted as Q) sends the probe to the stable invariant manifold
of the Sun-Mars system; At the epoch T4, the last maneuver Δv4 inserts the probe into the nominal
orbit. The configuration of the two restricted three-body problems and their invariant manifolds are
shown in the left frame of Figure 11. The angle θ is the angle between the Sun-Earth system at the
epoch T2 and the Sun-Mars system at the epoch T3.

Assume the orbits of the Earth and Mars are coplanar circular orbits. The initial phase angle can
be given by the ephemeris. Four steps are taken to find such transfer orbits:

(1) Compute the unstable invariant manifold of the point L2 in the Sun-Earth system and compute
the stable invariant manifold of the point L1 in the Sun-Mars system.

(2) Pick two ends of the connecting arc PQ at the two invariant manifolds. Set the epoch T2 at P
and the epoch T3 at Q, then the angle θ in Figure 11 can be obtained. Neglecting the gravitation
of the Earth and Mars, the heliocentric Lambert arc PQ is solved.
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(3) According to the restrictions of the parking LEO, the Earth leg, which connects the point P
with the parking LEO, is solved. Similarly, the Mars leg, which connects the point Q with the
nominal orbit, is solved. Along with the heliocentric arc PQ, the four maneuversΔv1, Δv2, Δv3

and Δv4 can be obtained.
(4) Vary the invariant manifolds and the positions of P and Q on the manifolds and the epochs T2

and T3 to find the minimum of Δv1 + Δv2 + Δv3 + Δv4. Numerically refine this orbit to find
the true transfer orbit in the real force model.

The right frame of Figure 11 shows such an optimized transfer orbit in the heliocentric celestial
frame. The height of the parking LEO is 200 km and the height of the nominal orbit is 500 km. The
four maneuvers are Δv1=3211.93, Δv2=2659.78, Δv3 =2334.01 and Δv4 =1399.92m s−1. The
Earth leg requires 248.39d, the heliocentric Lambert arc requires 350.00d and the Mars leg requires
331.10d. The epoch T2 is MJD=55847.5.

Compared with the transfer orbit designed by the patched conic method (with minimum energy
around 5735.00m s−1 and transfer time around 300 d), a transfer orbit designed by the patched conic
method requires more energy and more time. Of course, transfer orbits with less transfer energy than
that of the Figure 11 might exist, but generally the conclusion is the same: they require more energy
and time than the best transfer orbit designed by the patched conic method. This phenomenon can be
explained. The invariant manifolds of the Sun-Earth system and the Sun-Mars system are actually
precessing ellipses in a heliocentric sidereal coordinate. Denote their semi-major axes as a1 and a2.
Generally, a1 > aEarth and a2 < aMars. As a result, Δv2+Δv3 is smaller than the total energy of the
transfer orbit designed by the patched conic method. However, sending the probe from the parking
LEO to the unstable invariant manifold and inserting the probe to the nominal orbit from the stable
invariant manifold require two additional maneuvers Δv1 and Δv4. The sum of Δv1, Δv2, Δv3 and
Δv4 is larger than that of the transfer orbit designed by the patched conic method. In order to make
Δv1 and Δv4 as small as possible, the heights of the parking orbits and the nominal orbits should
be very large. That explains why the numerical examples in Franco et al. (2004) all have very high
parking orbits and nominal orbits. Considering the energy needed to lift the height of the Earth
parking orbit and lower the height of the nominal orbit, we do not recommend sending the probe via
the invariant manifolds. The discussions and conclusions are not only valid for the Mars probe, but
also valid for all the transfer orbits between the terrestrial planets.

5.2 The Case of Intersections

For the CRTBPs composed of the Sun and the Jovian planets, their invariant manifolds can intersect
in space (Lo 2002). Take the transfer of a probe from Jupiter to Saturn as an example. The invariant
manifolds are shown in the left frame of Figure 12. Since we are dealing with two different restricted
three-body problems, the Poincaré sections of the two manifolds are given in a heliocentric sidereal
coordinate. The Jacobi constant of the unstable invariant manifold is C1 = 3.02, and the Jacobi
constant of the stable invariant manifold is C2 = 3.01. θ1 = 5π/6 and θ2 = 5π/6.

Figure 13 shows the Poincare section of the two manifolds. The units in Figure 13 are dimension-
less units in the Sun-Jupiter system. In Figure 13, Rd = Ṙ is the radial speed and Rv = |Ṙ−ṘR/R|
is the transverse speed.

We tried to search for the points which simultaneously satisfy RUnstable = RStable, RUnstable
d =

RStable
d and RUnstable

v = RStable
v for different Poincaré sections (even for very large θ1 and θ2..) and

different invariant manifolds, but with no results. Seemingly no orbit can transfer from the unstable
invariant manifolds of the Sun-Jupiter system automatically to the stable invariant manifolds of the
Sun-Saturn system. As a result, a maneuver is needed at the intersection point to help carry out
the transfer. There are totally three maneuvers in the transfer. The first maneuver Δv1 sends the
probe from the low Jupiter parking orbit to the unstable invariant manifold; The second maneuver
Δv2 sends the probe from the unstable invariant manifold of the Sun-Jupiter system to the stable
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Fig. 11 Left: The configuration of the Sun-Earth system and the Sun-Mars system; Right: A Mars
transfer orbit from the Earth utilizing the invariant manifolds (x− y projection). Here “adim” in the
labels indicates that the length unit is the astronomical unit.

Fig. 12 Left: the configuration of the Sun-Jupiter system and the Sun-Saturn system and their invari-
ant manifolds. Right: A transfer orbit from Jupiter to Saturn utilizing the invariant manifolds (x− y
projection). “AU” in the labels indicates that the length unit is the astronomical unit.

invariant manifold of the Sun-Saturn system; The third maneuver Δv3 inserts the probe into the
nominal low Saturn orbit. Of course, automatic transfer orbits may exist and we are simply unable
to find them. However, even if these orbits do exist, they require a very long transfer time which is
not ideal for practical use. In the paper, we only concentrate on the case Δv2 �= 0.

We choose the intersection point satisfying

RUnstable = RStable, min[(RUnstable
d − RStable

d )2 + (RUnstable
v − RStable

v )2] (5)

as the transfer orbit candidate and numerically refine it to obtain the true transfer orbit in the real
force model. Considering the facts that the orbits of Jupiter and Saturn are not coplanar and not circu-
lar, the orbit satisfying Equation (5) is not the true transfer orbit with minimum energy. Nevertheless,
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Fig. 13 Poincaré sections of the two invariant manifolds. The sections are given in a heliocentric
sidereal coordinate. Here “adim” in the abscissa indicates that the length unit is the mean distance
between the Sun and Jupiter. Rd in the labels are in fact Ṙ, and “adim” in the ordinate indicates that
the velocity unit is 13063.4618377826 m s−1.

the energy of the transfer orbit designed by the algorithm above is close to the minimum value. The
right frame of Figure 12 shows the transfer orbit. The height of the parking orbit is 500 000 km
and the height of the nominal orbit is 400 000 km. Here Δv1 = 6063.43, Δv2 = 1346.53, and
Δv3 = 4036.00m s−1. The total speed is 11445.96m s−1. The time of the Jupiter leg is 7106.93d
and the time of the Saturn leg is 8719.87d. The epoch at the intersection point is MJD=59152.50.
Compared with the best transfer orbit designed by the patched conic method (with minimum energy
around 10 100.00m s−1 and transfer time around 4200 d), the orbit in Figure 12 also requires more
transfer time and energy. As stated above, the orbits satisfying Δv2 → 0 might exist, but the energy
saved is limited and the transfer time will be much longer than the one in Figure 12.

5.3 The Optimization Scheme

For the Mars probe, the optimization process is fulfilled like this. First we parameterize the two
invariant manifolds. For each manifold, three parameters Ci, si and θi(i = 1, 2) are needed. Ci

indicates the energy of the manifold, si indicates the exact asymptotic orbit on the manifold and θi

indicates the geometrical position of the point P or Q on the manifold. Two additional parameters
T2 and T3 are needed to fix the angle θ in Figure 11. So there are totally eight parameters in the
optimization process. Even if the search region of each parameter is divided into 10 parts, there
are 108 nodal points to be calculated. At each nodal point, we have to numerically integrate and
refine the transfer orbit in the real force model to obtain Δv1, Δv2, Δv3 and Δv4. Obviously, the
computation time is prohibitively large.

Studies show that the total energy is mainly affected by Δv2 + Δv3. As a result, to save the
computation time, we did not compute the Earth leg and the Mars leg which consume most of the
computation time. In addition, for the heliocentric arc, the two-body Lambert problem is used to
obtain an approximation of Δv2 + Δv3. We take the minimum of Δv2 + Δv3 to be the candidate of
the optimized transfer orbit and numerically refine it to obtain the true transfer orbit. Although the
refined orbit is not the true optimal transfer orbit, it should be close to it. For an unstable manifold
with energy C1=3.00048668563031and a stable manifold with energy C2=3.00010342287611,with
θ1 and θ2 varying from 0◦ to 180◦, and the interval between the two epoches T2 and T3 varying from
100d to 400 d, Figure 14 shows the time history of Δv2 + Δv3 with respect to the epoch T2. For
each invariant manifold, 20 asymptotic orbits are computed. The intervals of the angles θ1 and θ2 are
divided into 180 parts. The step of the epoches T2 and T3 are 10 d. Similar to the Hohmann transfer



On Some Applications of Invariant Manifolds 117

Fig. 14 Variation curve of Δv2 + Δv3 with respect to the epoch T2.

orbit, an approximate 2-year launch window exists. Similar to the above cases, we can narrow the
steps of the nodal points in the optimal transfer orbit to obtain a better result.

For the Saturn probe approaching from Jupiter, the optimization was not done. We choose the
intersection point satisfying Equation (5) as the candidate of the transfer orbit. Generally, for in-
variant manifolds with larger energy and larger θ1 and θ2 values, the energy of the transfer orbit
satisfying Equation (5) is smaller. However, much longer transfer times are needed due to larger θ1

and θ2 values.
A note should be made. The intersection point satisfying Equation (5) should be numerically

refined to obtain the true transfer orbit in the real force model. Since the orbits of Saturn and Jupiter
are elliptic and not in the same plane, the optimized transfer orbit in the two patched restricted
three-body model is not the optimized transfer orbit in the real force model.

6 CONCLUSIONS

Taking the transfer orbits of the collinear libration point probe, the lunar probe and the interplanetary
probe as examples, applications of the invariant manifolds in deep space explorations are discussed.
Research shows that utilizing the invariant manifolds is not guaranteed to save energy, but will
always cost more energy.

For the collinear libration point probe in the Sun-Earth system, the energy can be saved at the
cost of more transfer time. A two maneuver strategy can save the transfer time greatly at the cost
of slightly more energy. For the Earth-Moon system, the energy is about the same when utilizing
the invariant manifolds as compared to sending the probe directly to the nominal orbit around the
collinear libration points.

For the lunar probe with the same restrictions on the parking LEO and the nominal orbit, uti-
lizing the stable invariant manifold of the point L1 requires more transfer time and energy than the
traditional Hohmann transfer orbit, thus it is not an ideal way to send the lunar probe. Utilizing
the stable invariant manifolds of the point L2 along with the invariant manifolds of the Sun-Earth
system, the transfer energy can be saved, but at the cost of more transfer time.

For the interplanetary probe, in the case of no intersections between the invariant manifolds of
the two restricted three-body problems, the transfer orbit designed by the patched manifold method
requires more transfer time and energy than the one designed by the patched conic section method,
and thus is not ideal for practical use. For the case of intersections, the transfer energy might be
saved if Δv2 → 0, but at the cost of more transfer time.

Different optimization methods may give better results than the ones given in the paper, but the
conclusions above still apply.
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