
Research in Astron. Astrophys. 2010 Vol. 10 No. 8, 737–744
http://www.raa-journal.org http://www.iop.org/journals/raa

Research in
Astronomy and
Astrophysics

A very bright (i = 16.44) quasar in the ‘redshift desert’
discovered by the Guoshoujing Telescope (LAMOST) ∗

Xue-Bing Wu1, Zhao-Yu Chen1, Zhen-Dong Jia1, Wen-Wen Zuo1, Yong-Heng Zhao2,
A-Li Luo2, Zhong-Rui Bai2, Jian-Jun Chen2, Hao-Tong Zhang2, Hong-Liang Yan2,
Juan-Juan Ren2, Shi-Wei Sun2, Hong Wu2, Yong Zhang3, Ye-Ping Li3, Qi-Shuai Lu3,
You Wang3, Ji-Jun Ni3, Hai Wang3, Xu Kong4 and Shi-Yin Shen5

1 Department of Astronomy, Peking University, Beijing 100871, China; wuxb@bac.pku.edu.cn
2 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
3 National Institute of Astronomical Optics & Technology, Chinese Academy of Science, Nanjing

210042, China
4 Center for Astrophysics, University of Science & Technology of China, Hefei 230026, China
5 Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China

Received 2010 April 13; accepted 2010 May 24

Abstract The redshift range from 2.2 to 3 is known as the ‘redshift desert’ of quasars
because quasars with redshifts in this range have similar optical colors as normal
stars and are thus difficult to find in optical sky surveys. A quasar candidate, SDSS
J085543.40–001517.7, which was selected by a recently proposed criterion involving
near-IR Y − K and optical g − z colors, was identified spectroscopically as a new
quasar with a redshift of 2.427 by the Guoshoujing Telescope (LAMOST) commis-
sioning observation in 2009 December and confirmed by the observation made with
the NAOC/Xinglong 2.16 m telescope in 2010 March. This quasar was not identified
in the SDSS spectroscopic survey. Comparing with other SDSS quasars, we found
that this new quasar, with an i magnitude of 16.44, is apparently the brightest one in
the redshift range from 2.3 to 2.7. From its spectral properties, we derived its central
black hole mass to be (1.4 ∼ 3.9) × 1010 M¯ and its bolometric luminosity to be
3.7 × 1048 erg s−1, which indicates that this new quasar is intrinsically very bright
and belongs to the class of the most luminous quasars in the universe. Our identifica-
tion supports the notion that quasars in the redshift desert can be found by the quasar
selection criterion involving the near-IR colors. More missing quasars are expected
to be uncovered by future LAMOST spectroscopic surveys, which is important to the
study of the cosmological evolution of quasars at redshifts higher than 2.2.
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1 INTRODUCTION

After the discovery of the first quasar (Schmidt 1963), many quasar surveys have been carried out in
the optical band and the number of quasars has increased steadily in the past four decades (Richards
et al. 2009). In particular, a large number of quasars have been discovered in two recent spectroscopic
surveys, namely, the Two-Degree Fields (2dF) survey (Boyle et al. 2000) and the Sloan Digital Sky
Survey (SDSS) (York et al. 2000). 2dF has discovered more than 20 000 quasars (Croom et al. 2004),
and SDSS has identified more than 100 000 quasars (Schneider et al. 2010; Abazajian et al. 2009).
2dF mainly selected lower redshift (z < 2.2) quasars with UV-excess (Smith et al. 2005), while
SDSS adopted a multi-band optical color selection method for quasars by mainly excluding the point
sources in the stellar loci of color-color diagrams (Richards et al. 2002). Some dedicated methods
were also proposed for finding high redshift quasars (Fan et al. 2001a,b; Richards et al. 2002).
However, the efficiency of identifying quasars with redshifts between 2.2 and 3 is obviously low in
SDSS (Schneider et al. 2010), because quasars with such redshifts usually have similar optical colors
as stars and are thus mostly ignored by the SDSS quasar candidate selection algorithm. Therefore,
the redshift range from 2.2 to 3 is often regarded as the ‘redshift desert’ of quasars because of the
difficulty in identifying quasars within this redshift range.

In addition, the low efficiency of finding quasars with redshifts between 2.2 and 3 has led to
an obvious incompleteness in the quasar sample in this redshift range and serious problems in con-
structing the luminosity function for quasars. More importantly, many studies have shown that quasar
activity actually peaks in the redshift range 2 < z < 3 (see Richards et al. 2006; Jiang et al. 2006).
Therefore, uncovering the missing quasars with redshifts between 2.2 and 3 has become an important
task in quasar study.

Although they have similar optical colors as stars, quasars in the redshift desert are usually
more luminous than normal stars in the infrared K-band because the fluxes of normal stars decrease
rapidly in the near-IR bands while quasar SEDs are relatively flat (Warren et al. 2000). An impor-
tant way of finding these missing quasars has been suggested by using the infrared K-band excess
based on the UKIRT (UK Infrared Telescope) Infrared Deep Sky Survey (UKIDSS) (Warren et al.
2000; Hewett et al. 2006; Maddox et al. 2008). Combining the UKIDSS YJHK and SDSS ugriz
magnitudes, some criteria to separate quasars from stars have previously been proposed. Maddox et
al. (2008) suggested a selection criterion of z < 4 for quasar candidates in the g − J vs. J − K
diagram. Chiu et al. (2007) investigated the different color-color diagrams in optical and near-IR
bands with a sample of 2837 SDSS-UKIDSS quasars, and found that the g − r vs. u − g diagram
and the H − K vs. J − H diagram are more effective in separating quasars from stars than other
diagrams. They also proposed to use the Y − K vs. u − z diagram to select low redshift (z < 3)
quasars. Recently, based on an SDSS-UKIDSS sample of 8498 quasars, Wu & Jia (2010) proposed
to use the Y −K vs. g− z diagram to select z < 4 quasars and use the J −K vs. i− Y diagram to
select z < 5 quasars. Although with these two criteria we can recover 8447 of 8498 SDSS-UKIDSS
quasars (with a percentage of 99.4%), we still need to demonstrate whether we can efficiently dis-
cover new quasars, especially those in the redshift desert, by applying our criterion to select quasar
candidates in the SDSS spectroscopically surveyed area.

The Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST, now called the
Guoshoujing Telescope) is a 4-meter reflecting Schmidt telescope with a 20 square degree field of
view (FOV) and 4000 fibers in the focal plane (Su et al. 1998), located at the NAOC/Xinglong station.
After finishing its main construction in 2008, LAMOST has entered the commissioning phase since
2009. Some test observations have been done in the winter of 2009. Although LAMOST has not
reached its full capability in the commissioning phase, these observations have already led to the
discovery of some new quasars, including a bright quasar with a redshift of 2.427, which is the first
quasar discovered by LAMOST in the ‘redshift desert’.
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2 TARGET SELECTION AND OBSERVATION

In order to test whether our newly proposed quasar selection criterion in the Y −K vs. g−z diagram
is efficient in identifying quasars, we selected many candidates in several sky fields which overlapped
between the UKIDSS and SDSS survey areas with RA from 0 to 9 hours for the LAMOST commis-
sioning observations in the winter of 2009. Although LAMOST encountered many problems during
these commissioning observations, we were still able to identify some new quasars including the one
reported here.

SDSS J085543.40–001517.7 is a relatively bright source among our quasar candidates. After the
correction of Galactic extinction using the map of Schlegel et al. (1998), its SDSS ugriz magnitudes
(in the AB system) are 17.67, 16.87, 16.62, 16.44, and 16.20, respectively and its UKIDSS YJHK
magnitudes (in the Vega system) are 15.61, 15.24, 14.60, and 13.84, respectively. The offset between
its SDSS and UKIDSS positions is 0.05′′.

Figure 1 shows its SDSS finding chart (obtained from http://cas.sdss.org/dr7/en/tools/chart
/chart.asp). Obviously, SDSS J085543.40–001517.7 is a bright point source, surrounded by several
other fainter sources with offsets from 8′′ to 20′′. In Figure 2, we show the location of this source in
three optical color-color diagrams and the Y −K vs. g − z diagram, in comparison with the 8996
SDSS-UKIDSS stars (Wu & Jia 2010). Note that in the Y −K vs. g− z diagram, the magnitudes of
g and z have been converted to the magnitudes in the Vega system by using the scalings (Hewett et
al. 2006): g = g(AB) + 0.103 and z = z(AB)− 0.533. It is clear that SDSS J085543.40–001517.7

Fig. 1 Finding chart of SDSS J085543.40–001517.7. The size is 200′′×200′′.
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is located in the stellar locus in three optical color-color diagrams, but is well separated from stars in
the Y −K vs. g − z diagram and satisfies the selection criterion, Y −K > 0.46× (g − z) + 0.53,
proposed by Wu & Jia (2010).

The spectroscopy of SDSS J085543.40–001517.7 was obtained by LAMOST during the com-
missioning observations on 2009 December 18, with a spectral resolution of R ∼1000 and an
exposure time of 30 minutes. The spectrum was processed using a preliminary version of the
LAMOST spectral pipeline. In the left panel of Figure 3, we show the LAMOST spectrum of SDSS
J085543.40–001517.7 (some sky light emissions were not well subtracted). From the spectrum, we
can clearly observe at least four strong emission lines, namely Lyα λ1216, Si IV λ1400, C IV λ1549
and C III] λ1909. With these four lines we derived an average redshift of z = 2.427 for this new
quasar. Three weak emission lines, N V λ1240, O I λ1304 and C II λ1335, can be also seen between
the Lyα and Si IV lines. The complicated feature around 5900 Å is due to the problem of combining
the LAMOST blue and red spectra, which overlap with each other from 5700 Å to 6000 Å. In this
figure, we also compare the LAMOST spectrum with the scaled SDSS composite quasar spectrum
(Vanden Berk et al. 2001). It is clear that both match well with each other, except in the red end.

On 2010 March 9, we also used the NAOC/Xinglong 2.16 m telescope to do spectroscopy of this
new quasar. Because the seeing condition was bad (4′′–5′′), we took two 40-minute exposures of this
quasar and obtained the median spectrum, which is shown in the right panel of Figure 3 in compar-
ison with the scaled SDSS composite quasar spectrum. Although its signal to noise ratio is lower
than the LAMOST spectrum, four strong emission lines can still be clearly observed. Moreover, its
continuum shape matches the SDSS composite quasar spectrum better than the LAMOST spectrum,
especially in the red end.

3 PROPERTIES OF SDSS J085543.40–001517.7

With the i magnitude of 16.44 and redshift of 2.427, SDSS J085543.40–001517.7 is undoubtedly a
very bright quasar. We compared it with other SDSS quasars in the redshift range from 2 to 3.2 and
found the new quasar is indeed very bright. In Figure 4, we show the location of the new quasar in
the magnitude-redshift diagram in comparison with other SDSS quasars, as well as the histogram of
the redshift distribution of SDSS quasars. The redshift distribution clearly shows the presence of the
‘redshift desert’ in the redshift range from 2.2 to 3. The new quasar is apparently the brightest one in
the redshift range from 2.3 to 2.7. Its absolute i magnitude is –30.0 if the cosmological parameters
H0=70 km s−1 Mpc−1, ΩM = 0.3 and ΩΛ = 0.7 are adopted. This quasar clearly belongs to the
class of the most luminous quasars in the universe.

We also searched the counterparts of SDSS J085543.40–001517.7 in other wavelength bands.
From the VLA/FIRST radio catalog (White et al. 1997), we did not find any radio counterpart within
20′′ from its SDSS position. The closest radio source is 121.5′′ away. Therefore, this quasar is a
radio-quiet one, which is also another reason why it was missed by the SDSS spectroscopy. We
also searched the ROSAT X-ray source catalog (Voges et al. 1999) and did not find any counterpart
within 1′. The closest X-ray source is 23′ away. From the GALEX catalog (Morrissey et al. 2007)
we failed to find any ultraviolet counterpart within 5′′. One GALEX source is 27′′ away (in the
south-western direction) from the optical position of SDSS J085543.40–001517.7, and is clearly the
counterpart of another fainter extended source in the SDSS image. Therefore, we believe that SDSS
J085543.40–001517.7 is faint in radio, UV and X-ray bands, although it is very luminous in optical
and near-IR bands.

From the spectral properties, we can estimate the black hole mass and bolometric luminosity of
this new quasar. After doing the redshift correction, Galactic extinction correction using the redden-
ing map of Schlegel et al. (1998), continuum fitting and Fe II subtraction using the template from
Vestergaard & Wilkes (2001), we measured the C IV line width (FWHM, the Full Width at Half
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Fig. 2 Location of SDSS J085543.40–001517.7 (blue triangle) in three optical color-color diagrams
(a,b,c) and the Y − K vs. g − z diagram (d), which can be found by comparing with the 8996
SDSS-UKIDSS stars. Black and red dots represent the normal and later type stars, respectively. The
dashed line shows the z < 4 quasar selection criterion proposed by Wu & Jia (2010).

Fig. 3 Left panel: LAMOST spectrum of SDSS J085543.40–001517.7. Right panel: The spectrum
of SDSS J085543.40–001517.7 taken by the NAOC/Xinglong 2.16 m telescope. The scaled SDSS
composite quasar spectrum (highlighted in the red color) is shown for comparison.



742 X. B. Wu et al.

Fig. 4 Location of SDSS J085543.40–001517.7 (star) in the magnitude-redshift diagram in com-
parison with the SDSS DR7 quasars in the redshift range from 2 to 3.2. The redshift distribution of
SDSS quasars is also shown in the upper panel, in which the redshift desert (with redshifts from 2.2
to 3) is clearly presented.

Maximum) and the rest frame 1350 Å continuum flux from the spectrum. Because we did not do the
absolute flux calibration of the LAMOST spectrum of SDSS J085543.40–001517.7, we used the ul-
traviolet continuum window 1320 Å–1330 Å to calibrate the LAMOST spectrum with the spectrum
taken by the 2.16 m telescope. The C IV FWHM values measured from LAMOST and the 2.16 m
spectrum are 8520 km s−1and 11040 km s−1, respectively. Due to the lower signal to noise ratio
of the 2.16 m spectrum (see the right panel of Fig. 3), we took the C IV FWHM value from the
LAMOST spectrum in the following calculation. The black hole mass estimation was done with two
similar formulae proposed by Kong et al. (2006) and Vestergaard & Peterson (2006), both involving
the C IV line width and the 1350 Å continuum luminosity. The first one gives MBH = 1.4×1010 M¯
and the latter one gives MBH = 3.9 × 1010 M¯. Using a scaling between the 1350 Å luminosity
and bolometric luminosity, Lbol = 4.62 L1350, given by Vestergaard (2004) based on the SED of
radio-quiet quasars (Elvis et al. 1994), we estimated the bolometric luminosity of this new quasar as
3.7×1048 erg s−1, which is about (0.5 ∼ 1.4) times the Eddington luminosity if the above estimated
black hole mass is adopted. Obviously, this quasar is intrinsically very bright, and is accreting matter
with an accretion rate around the Eddington limit.
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4 DISCUSSION

Quasars with redshifts in the range from 2.2 to 3 are very important for studying their cosmolog-
ical evolution, and the relation between quasar activity and star formation activity which peaks at
redshifts between 1 and 2 (Madau et al. 1998). However, because these quasars have similar optical
colors as normal stars, it is very difficult to find them in previous quasar surveys. The low efficiency
of finding quasars in the ‘redshift desert’ has led to the obvious incompleteness of the quasar sample
in this redshift range and serious problems in constructing the luminosity function for quasars around
the redshift peak (between 2 and 3) of quasar activity (Richards et al. 2006; Jiang et al. 2006).

In this paper, we have presented a case study to find a very bright new quasar in the redshift
desert by the LAMOST commissioning observation. The spectroscopic identification of an i = 16.44
source, SDSS J085543.40–001517.7, as a z = 2.427 quasar gives us confidence to discover more
missing quasars in the future LAMOST quasar survey. This discovery also supports the idea that,
by combining the UKIDSS near-IR colors with the SDSS optical colors, we are able to efficiently
uncover the missing quasars. In the winter of 2009, LAMOST has made test observations on several
sky fields and we are now searching for more quasars from the spectra taken in these fields. The
discovery of more new quasars in these fields will be reported in future works. We hope that in the
next few months, great progress will be made in improving the capability of LAMOST spectroscopy
and the spectral processing pipeline. As long as LAMOST can reach its design capability after the
commissioning phase, we expect to find several hundred-thousand quasars in the LAMOST quasar
survey. This will form the largest quasar sample in the world and will play a leading role in quasar
study over the next decade.
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