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Abstract We present a new method for automatically forecasting tleeimence of
solar flares based on photospheric magnetic measureméetendthod is a cascad-
ing combination of an ordinal logistic regression model arsdipport vector machine
classifier. The predictive variables are three photosphaegnetic parameters, i.e.,
the total unsigned magnetic flux, length of the strong-gmatimagnetic polarity in-
version line, and total magnetic energy dissipation. Thipuiis true or false for the
occurrence of a certain level of flares within 24 hours. Eipental results, from a
sample of 230 active regions between 1996 and 2005, showctheaxies of a 24-
hour flare forecast to be 0.86, 0.72, 0.65 and 0.84 respécfivethe four different
levels. Comparison shows an improvementin the accuracyaéXs flare forecasting.
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1 INTRODUCTION

The sudden and intense release of energy stored in solareti@dields generates solar flares
(Dauphin et al. 2007), which can have a significant impacttenrtear earth space environment
(so called space weather). The development of fully autmnpmbograms to detect (e.g. Qu et al.
2003, 2004) and forecast flares is regarded as one of thettapkscess the large amount of data in
this field accurately and efficiently.

At present, a number of different flare forecasting appreaend systems have been developed
based on photospheric magnetic field observations or stHgspop characteristics. For instance,
“Theophrastus,” a system developed by the Space Weathdictoa Center of NOAA, is mainly
based on the correlation between solar flare production amspst-group classification (Mcintosh
1990). At Big Bear Solar Observatory, Gallagher et al. (3082d the historical average of flare
numbers by the Mclntosh classification to develop a solae fieediction system which estimated
the probabilities for each active region to produce C-, M-Xeclass flares. Barnes et al. (2007)
adopted discriminant analysis to accomplish solar flaredasting within 24 hours using a large
combination of vector magnetic field measurements obtdyeitie University of Hawaii Imaging
Vector Magnetograph. Li et al. (2008) proposed a solar flaredasting method based on support
vector machines in which the sunspot area, the sunspot riegtess, the McIntosh class of the
sunspot group and the 10 cm solar radio flux were chosen asrpogs. Georgoulis & Rust (2007)
defined a new measurement called the effective connectedetiadield, and their experimental
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results, based on 298 active regions during a 10year pefiedlar cycle 23, showed that this
measure was an efficient flare-forecasting criterion. Q@&e&olak (2007) put forward a short-
term solar flare prediction method using machine learnirdysamspot associations, in which the
authors had compared the performance of the proposed mefittodwo other machine learning
algorithms.

Different from the approaches mentioned above, Wheatlaf0%) designed a Bayesian ap-
proach to solar flare prediction in which only the event stafs of flares already observed was used
as predictors, however this approach has not been testethogeadata set.

In this paper, we present a new method for the automatic &stewy of the occurrence of solar
flares over 24 hours following the time when a magnetograredsnded. Our method is a contin-
uation and extension of the method proposed by Song et &9§2@hich has some limitations in
forecasting X-class flares, as it has to use an arbitrariposed threshold. Our method is split into
two cascading steps. In the first step, the logistic regoassiodel is used to map three magnetic
parameters of each active region into four probabilities;gupport vector machine classifier is then
utilized to map the four probabilities onto a binary labeligthis the final output. Experimental re-
sults illustrate how the proposed method performs bettemwhcomes to X-class flare forecasting.

The paper is organized as follows. The definitions of theiptiz@ variables (i.e., three magnetic
parameters) used in this study are introduced in Section@ pfoposed flare forecasting method is
described in Section 3. Experimental results are shown @ticGge4. Finally, a conclusion is drawn
in Section 5.

2 DATA DESCRIPTION
2.1 Predictive Variables

To be consistent with the work of Song et al. (2009), the saredigtive variables are used. The
predictive variables of Song et al. (2009) are composed of

1. Total unsigned magnetic flufy,., which is the integration of pixel intensity over the area of
an active region,

Tﬂux = / |Bz|dwdy7 (1)

whereB, is the pixel intensity of MDI magnetograms.

2. Length of the strong-gradient magnetic polarity invemsiine, L., which was first studied
by Falconer et al. (2003) as a measure to predict coronal gjassons. Jing et al. (2006)
illustrated the correlation betwedn,; and flare productivity of active regions. As illustrated in
Song et al. (2009)L,,; is the total number of pixels on which the gradiéwt, B. | is greater
than a threshold, which is 50 G Mm as chosen by Song et al. (2009). The definitiofNof B, |

is as follows (Song et al. 2009):
dB. 2+ dB.\>
dx dy

3. Total magnetic energy dissipatidiy;ss, proposed by Abramenko et al. (2003), was also studied
by (Jing et al. 2006; Song et al. 2009) in exploring its catieh between flare productivity of
active regions. According to Abramenko et al. (2003),

2 2 2
Edissz//él ( ) +<de) +2(dBZ+dBZ) dxdy, (3)
Yy

dx dy
where the integration is performed over the area of an actiy®n.

1/2

IV.iB.|= )

dB.
dx
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Table 1 Mean Value and Standard Deviation of Predictive Parameters

Active ~ Number of Lgpi ThHux FEgiss

Region Active (Mm) (1022 Mx) (108 erg cm™—3)

Level Regions Mean Dev. Mean Dev. Mean Dev.
3 34 118.74 79.88 7.02 3.15 1538 7.76
2 68 64.28 46.79 503 272 10.58 5.59
1 65 62.12 46.61 495 286 10.47 5.88
0 63 1084 1519 172 119 3.67 2.58

We chose these parameters mainly because: (1) all threeecderived from the line-of-sight
magnetograms; and (2) all three moderately correlate \withflare productivity of active regions
and show their forecasting utility in the previous study mgkt al. (2006) and Song et al. (2009).

2.2 Data Collection

The three magnetic parameters introduced above were ddriv@a the magnetograms produced by
the Michelson Doppler Imager (MDI), which is an instrumenboard the Solar and Heliospheric
Observatory (SOHO).

Our study uses the same dataset as was used by Song et al), (2B&® focuses on active
regions between 1996 and 2005. It covers almost the entae ogcle 23 which peaked in 2001. A
total of 230 sample active regions were selected using ti@img criteria: (1) the center location
of an active region is close to the solar disk center (withitd degrees in longitude ant40 degrees
in latitude); (2) the MDI full disk magnetograms are aval&gl§3) since an active region may appear
on the solar surface for a few days, it is treated as a diffex@mple on different dates; (4) the first
magnetogram of the 15 magnetograms taken by MDI each dayseah

2.3 Correlation between Magnetic Parameters and Flare Prodctivity

Using the same criteria as (Song et al. 2009), active regitnsategorized into four levels according
to the most powerful flare produced: an active region is dladsas level O if it is flaring-quiet or
only produces A and/or B class flares; an active region issiflad as level 1 if it produces at least
one C-class flare but no M- or X- class flares; Level 2 corredpda those active regions which
produce at least one M-class flare but no X-class flares; L3zwelresponds to those active regions
which produce at least one X class flare.

Based on the 230 active regions in our dataset (see Appemddgdan discern the correlations
between magnetic parameters and flare productivity, whielsammarized in Table 1.

From Table 1, we notice that the mean value of the length ofstheng-gradient magnetic
polarity inversion line of the 34 level 3 active regions is8124, which is much larger than that of
the 68 level 2 active regions (64.28). The mean value of thgtkeof the strong-gradient magnetic
polarity inversion line of 68 level 2 active regions is 64.28ich is slightly larger than that of the 65
level 1 active regions (62.12). The mean value of the lenftheostrong-gradient magnetic polarity
inversion line of 63 level 0 active regions is 10.84, whichmach less than that of other levels of
active regions. For total unsigned magnetic flux and totajmetic energy dissipation, the same kind
of trend follows. However, since the fluctuations are larglenpst half of the mean values), it is
impossible to do precise flare forecasting based on thosereders.

Based on the correlations described above, we combinstatatiand machine learning methods
to perform flare forecasting.
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3 FORECASTING METHOD

In previous studies, there are mainly two types of flare fasting methods. The first type is based on
pattern recognition, such as a Support Vector Machineebg®éM-based) method (Li et al. 2008).
During this kind of analysis, some predictive parametera given active region are extracted, and
then the predictive parameters are fed into a trained diissihe output of the classifier (usually a
label indicating which class of flare is likely to occur) igtfinal forecasting result. The disadvantage
of this type is that the output is only a label, which does nmoivi@le information on how much
confidence can be placed on each forecast. For example @e®)Hboth sample A and sample B
will be classified as the same class, but intuitively we stidnd more confident that B belongs to
this class than A, since A is on the boundary. However, siheeotitput is only a label, we do not
get this crucial information.

The second type is based on probability analysis, such @sabidgistic regression (Song et al.
2009). During this kind of analysis, some predictive partarsof a given active region are extracted,
and then those predictive parameters are fed into a traia¢idteal model, and the output of the
model is the probability that a flare event will occur. Of caeirusing a threshold value (generally
0.5), we can turn the probability into a binary forecast. ldwer, it is not an easy job to choose a
good threshold value, and the de facto standard threshdili€Onot always the best, as illustrated
in Song et al. (2009), where the authors chose 0.25 as th&hthicefor X-class flare prediction.

In this paper, the proposed method is split into two steps E$g. 2). In the first step, we adopt
ordinal logistic regression to map the input (three préxdicparameters of a given active region)
to four outputs (the probabilities of the given active reglmelonging to each of the four levels).
Secondly, the four outputs are fed into a support vector imaglthe output of the support vector
machine tells us whether the given active region belongsédevel or not.

X5

X

Fig. 1 Anillustration of the support vector machine classifier.
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Fig. 2 The working flow of the proposed forecasting system.
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Generally, the first step is enough for a flare forecastingesysThe purpose of the second
step is three fold. First, it is hard to assess the performafdhe first step since the outputs are
probabilities instead of a definite answer. Secondly, usemsetimes want a definite answer instead
of a probability. Thirdly, the outputs of the second step lbarused to compare with other research
whose outputs are only binary labels.

3.1 Probability Prediction Using Ordinal Logistic Regresson

Used for Bernoulli-distributed dependent variables, dtigiregression is a generalized linear model
that uses the logit as its link function (McCullagh & Neld€&8B). One common application of lo-
gistic regression is to estimate the probability of the ocence of an event from predictive variables.
Ordinal logistic regression is used to map predictive \@es into probabilities of the occurrence
of flares by Song et al. (2009). The comparison made by Sonly @0®9) shows that their fore-
casting results are better than those of the Solar Data Aisaenter and NOAA's Space Weather
Prediction Center, which illustrates the usefulness oifi@ldogistic regression in flaring probability
estimation.

Suppose that the data in a dataset belong tategories and (D = g) is the probability that
an event which belongs to categaryvould occur given predictive variablé§, then, according to
Kleinbaum & Klein (2002),

P(D=g)=P(D=>g)—P(D>g+1),

P(DZQ):Wv (4)
g=1,2,3,.. L.

Given a training dataset composed of predictive variabhesrasponse category pairs, the pa-
rametersy,, g = 1,2,3,..,L and 3 in the above equation can be calculated using the method of
estimation called maximum likelihood (Hosmer & Lemeshow@p

The application of ordinal logistic regression to flare fasting is as follows:

1. Training: The training data contain several samplesh sample is composed of three photo-
spheric magnetic features of an active region and the ldtbkayiven active region.

2. Forecasting: Using the ordinal logistic regression nhdde a given active region, at first, we
figure out its three photospheric magnetic features, andftwed these three variables into the
model. The output of the model contains four elements, wharespond to the probabilities
that the given active region belongs to level 0, 1, 2, or 3.

3.2 Binary Forecasting Using Support Vector Machines

An SVM is a supervised learning method used for classifiogfBoser et al. 1992), whose principle
is to minimize the structural risk (Vapnik 1995). An SVM si¢o find a plane in an n-dimensional
space that separates input data into two classes. The tageéistance from the plane to the two
different classes of data points in thelimensional space, the smaller the classification errortgs
& Vapnik 1995).

Given training vectors; € R%,i = 1,2, ...,n in two classes labeled by a vector= R™ where
yi = {—1,1},i = 1,2, ...,n. The training of a support vector machine is equivalent teisg the
following optimization problem (Fan et al. 2005):

1
min <§aTQa — eTa) ,

yla=0,

0<a; <C,i=1,2,...n

(5)
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Table 2 A Sample Contingency Table

Observation Positive Observation Negative
Forecasting Positive a b
Forecasting Negative c d

wheree is the vector of all oneg}’ > 0 is the upper boundQ is ann by n positive semi-definite
matrix, Q;; = yiy; K (xi,%x;) , andK (x;,x,) = (vx!'y; + ¢)? is the kernel function. The decision
function is:

Fx) = yioiK (xi,x) +b. (6)
1=1

The prediction of any test datais sgn (f(x)) € {—1, 1}.
For flare forecasting, the training and forecasting prooesiaf a support vector machine are as
follows:

1. Training: The training data contain several samples) sample is composed of four probabil-
ities (the output of ordinal logistic regression) and orteelg—1 or 1). If a given active region
indeed belongs to one level, the label is 1; otherwise, thellig —1.

2. Forecasting: Given an active region, at first, we figureitsuhree photospheric magnetic fea-
tures. Then we feed these three variables into the ordigatlo model to generate the output
which contains four probabilities. Finally, we feed the fpuobabilities into the support vector
machine trained above. If the output of the support vectachime is 1, the estimation is that
the given active region belongs to one level; otherwisep@sinot.

4 EXPERIMENTAL RESULTS

The proposed flare forecasting method is implemented in MX8(Moler 2004), which contains
a procedure to fit a logistic regression model. The impleatért also utilizes LIBSVM (Chang &
Lin 2001), which is a software package for support vectossifecation. The parameters adopted
for LIBSVM are as follows: nu-Support Vector Classificatiohpolynomial kernelK (x;,x;) =
(0.01x1y;)3.

We use four different trained SVM classifiers to perform pesforecasting for four different
levels. The outputs of the first step (four probabilities)l éime corresponding labels are sent to the
four SVM classifiers to train them in the second step. Thaingi procedures are almost the same
for the four SVM classifiers except that different labels ased, i.e., when training a levelSVM
classifier, the four probabilities and a label which indésatvhether the given sample belongs to
level-n are fed into the SVM classifier, whete= 0, 1, 2 or 3. Alternatively, we can use a multi-
class SVM classifier. In that way, only one multi-class SVMsslifier is needed instead of four
different binary SVM classifiers. We plan to implement theltintlass SVM classifier version of the
forecasting method in the future.

Leave-one-out cross-validation is used to assess thegticedperformance. For 230 samples,
during each test case, 229 samples are used for traininghamdmaining one is used for testing. If
the predicted resultis the same as the observation, it ify®therwise, it is negative. The process
is repeated 230 times. Different samples are used for trgiand testing each time.

To assess the performance of the proposed method, sevenmereasts are used, which are
correctness, true positive, true negative, weighted @ites positive accuracy, negative accuracy, and
weighted accuracy. All these seven measurements can hedé&mm the contingency table of the
experiment. For a given contingency table like Table 2, we derive the seven measurements as
follows:
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correctness: (a +d)/(a + b+ ¢+ d);

true positive= a/(a + b);

true negative= d/(c + d);

weighted truerate- a/(a +b) * (a+c¢)/(a+b+c+d)+d/(c+d)* (b+d)/(a+b+c+d);
positive accuracy: a/(a + c);

negative accuraeyd/(b + d);

weighted accuracy a/(a+c¢)* (a+c¢)/(a+b+c+d)+d/(b+d)*(b+d)/(a+b+c+d).

Nouou,rwhE

To compare the performance of the proposed method with thgistio-Regression-based
method (Song et al. 2009) and SVM-based method (Li et al. R@@8 do the experiments on the
same dataset and the experimental results are illustratéigures 3, 4, 5 and 6. These four figures
contain not only the contingency tables of each experinieriialso bar charts to illustrate the seven
measures derived from contingency tables to help us contpangerformances of the three differ-
ent flare forecasting methods. Please note, among the sea&sunes, positive accuracy is the most
important measure in flare forecasting in that a miss (fatog no flare, but flares occur) is worse
than a false alarm (forecasting the occurrence of a flaret 8aes not happen). The higher the value
of positive accuracy, the less events are missed.

Observation Positive

Observation Negative

Forecasting Positive

52

28

Forecasting Negative

11

139

(a) Contingency table of logistic-regression-based method

Observation Positive

Observation Negative

Forecasting Positive

46

16

Forecasting Negative

17

151

(b) Contingency table of SVM-based method

Observation Positive

Observation Negative

Forecasting Positive

45

14

Forecasting Negative

18

153

(c) Contingency table of the proposed method

Correctness Tlfu'e Tru§ Weighted Positive Negative Weighted

Positive Negative | True Rate | Accuracy | Accuracy | Accuracy
ELR 0.83 0.65 0.93 0.85 0.83 0.83 0.83
oSvM 0.85 0.74 0.89 0.85 0.73 0.9 0.85
BLR+SVM 0.86 0.76 0.89 0.86 0.72 0.92 0.86

(d) Comparison of methods

Fig. 3 Experiment on level zero.
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Observation Positive

Observation Negative

Forecasting Positive

17

7

Forecasting Negative

48

158

(a) Contingency table of logistic-regression-based method

Observation Positive

Observation Negative

Forecasting Positive

12

16

Forecasting Negative

53

149

(b) Contingency table of SVM-based method

Observation Positive

Observation Negative

Forecasting Positive 9 8
Forecasting Negative 56 157
(c) Contingency table of the proposed method
1.2
1
0.8
0.6
0.4
0.2
0
True True Weighted Positive Negative Weighted
Correctness e .
Positive Negative True Rate Accuracy Accuracy Accuracy
H LR 0.76 0.71 0.77 0.75 0.26 0.96 0.76
SVM 0.7 0.43 0.74 0.65 0.18 0.9 0.7
B LR+SVM 0.72 0.53 0.74 0.67 0.14 0.95 0.72

(d) Comparison of methods

Fig. 4 Experiment on level one.

Figures 3, 4, 5 and 6 show the forecasting results for lewals, bne, two and three respectively,
e.g., for level zero forecasting, all these 230 active negim our dataset are classified into two
groups according to whether they belong to level zero, aed the forecasting models are trained,
and then tested.

Predicting the occurrence of X-class flares is the most itapbtask of flare forecasting. As
we can see from panel (a) in Figure 6, the Logistic-Regressased method does not work well
for forecasting X-class flares. Only 1 of the 34 X-class flaseforecasted correctly. At the same
time, the SVM-based method and our proposed method canctigrferecast 7 of the 34 X-class
flares, which is an improvement over the Logistic-Regressiased method. From Figure 5, we also
notice that our proposed method outperforms the other twihades on level two (M-class flares)
forecasting.

The experimental results also show that our proposed flaeedisting method outperforms the
SVM-based method on level one and level three forecastimgveder, our proposed method is
surpassed by the SVM-based method on level two forecastinighe difference is tiny. The perfor-
mances of these two methods on level zero forecasting amesatine same.
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Observation Positive

Observation Negative

Forecasting Positive

10

2

Forecasting Negative

58

160

(a) Contingency table of logistic-regression-based method

Observation Positive

Observation Negative

Forecasting Positive

9

14

Forecasting Negative

59

148

(b) Contingency table of SVM-based method

Observation Positive

Observation Negative

Forecasting Positive 15 27
Forecasting Negative 53 135
(c) Contingency table of the proposed method
12
1
0.8
0.6
0.4
0.2
Correctness | True Positive Trut? Weighted Positive Negative Weighted
Negative True Rate Accuracy Accuracy Accuracy
ELR 0.74 0.83 0.73 0.76 0.15 0.98 0.74
SVM 0.68 0.39 0.72 0.62 0.13 0.91 0.68
H LR+SVM 0.65 0.35 0.72 0.61 0.22 0.83 0.65

(d) Comparison of methods

Fig.5 Experiment on level two.

5 CONCLUSIONS

In this paper, we propose a solar flare prediction methoddaserdinal logistic regression and a
support vector machine. For 230 active regions between a88&005, their magnetic parameters
(Lgpi, TF1ux, Eaiss) measured from SOHO MDI magnetograms are extracted andfosgaining.
Our results can be summarized as follows:

1. The proposed method is a valid flare forecasting methoahyterforms almost equally well
with the SVM-based method.

2. Although comparison shows that the positive accurachefpgroposed method is better than
that of the Logistic-Regression-based method on X-class ftaecasting, the true positive rate
(0.44) and positive accuracy (0.21) are still very low, Wwhineans we may fail to predict some
occurrences of the X-class flares.

3. Since the proposed method is split into two cascadingstae extra advantage of the proposed
method over the SVM-based method is that we know the confalehthe forecasting results.
For example, when both of these two methods classify ongeantigion into level three, we
can derive the confidence level by examining the output offitlse step. Since the output of
the first step (the output of logistic regression) contams probabilities (the four probabilities
that a given active region belongs to the four levels), tighéi the fourth probability, the more
confidence we can have about the forecast results of X-classflcorresponding to level three).
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Observation Positive

Observation Negative

Forecasting Positive

1

0

Forecasting Negative

33

196

(a) Contingency table of logistic-regression-based method

Observation Positive

Observation Negative

Forecasting Positive

7

12

Forecasting Negative

27

184

(b) Contingency table of SVM-based method

Observation Positive

Observation Negative

Forecasting Positive

7

9

Forecasting Negative

27

187

(c) Contingency table of the proposed method

12

0.8

0.6

0.4

0.2

True True Weighted Positive Negative Weighted
Correctness . .
Positive Negative True Rate Accuracy Accuracy Accuracy
H IR 0.86 1 0.86 0.88 0.03 1 0.86
SVM 0.83 0.37 0.87 0.8 0.21 0.94 0.83
W LR+SVM 0.84 0.44 0.87 0.81 0.21 0.95 0.84

(d) Comparison of methods

Fig. 6 Experiment on level three.

So far, our prediction model is limited to those magnetiapagters obtained only through SOHO
MDI magnetograms. There are several other physical pammétuch as magnetic free-energy,
electric current and helicity injections) that we are cathginvestigating, and from which we an-
ticipate that the performance of our method can be impraSadilar to some other machine learn-
ing techniques, our method is scalable with regard to actgpew parameters. In the future, af-
ter deriving several new magnetic parameters from vectagneimgrams from the Solar Dynamic
Observatory andHinode, the new values should help us to improve the performancaefto-
posed forecasting method. In addition, we plan to incorfgon@easures such as sunspot structure
change (Chen et al. 2007) and topology of solar magneticsfig@tiao et al. 2008) to improve the
performance of the proposed forecasting method.
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Appendix A: HISTOGRAMS OF THE DATA SET USED IN THE EXPERIMENT

Figures A.1, A.2 and A.3 illustrate the histograms of thegkbrof the strong gradient inversion line,
total unsigned flux and energy dissipation. Please noteahes are scaled to 0 and 1, and the unit
is shown below each graph. The height of a bar denotes theenwhbamples whose corresponding
parameters are within some range. Within each range, €iffeolored bars are used to differentiate
the samples into different levels.
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For example, the height of the blue bar in Figure A.3 withing@a0 and 0.1 is 39, which means
there are 39 level 0 samples whose energy dissipation igwith range 0 and.78 x 10 erg cn 3.
As we can see, the blue bars (which correspond to level O smnate mainly distributed in the
lower ranges, and their heights decrease as the valuesiggcréhe red bars (which correspond to
level 3 samples) can reach higher ranges, which coincide evit observations that samples with
higher values of these parameters are more likely to proXudass flares.
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