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Abstract We present a new method for automatically forecasting the occurrence of
solar flares based on photospheric magnetic measurements. The method is a cascad-
ing combination of an ordinal logistic regression model anda support vector machine
classifier. The predictive variables are three photospheric magnetic parameters, i.e.,
the total unsigned magnetic flux, length of the strong-gradient magnetic polarity in-
version line, and total magnetic energy dissipation. The output is true or false for the
occurrence of a certain level of flares within 24 hours. Experimental results, from a
sample of 230 active regions between 1996 and 2005, show the accuracies of a 24-
hour flare forecast to be 0.86, 0.72, 0.65 and 0.84 respectively for the four different
levels. Comparison shows an improvement in the accuracy of X-class flare forecasting.
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1 INTRODUCTION

The sudden and intense release of energy stored in solar magnetic fields generates solar flares
(Dauphin et al. 2007), which can have a significant impact on the near earth space environment
(so called space weather). The development of fully automatic programs to detect (e.g. Qu et al.
2003, 2004) and forecast flares is regarded as one of the tasksto process the large amount of data in
this field accurately and efficiently.

At present, a number of different flare forecasting approaches and systems have been developed
based on photospheric magnetic field observations or sunspot-group characteristics. For instance,
“Theophrastus,” a system developed by the Space Weather Prediction Center of NOAA, is mainly
based on the correlation between solar flare production and sunspot-group classification (McIntosh
1990). At Big Bear Solar Observatory, Gallagher et al. (2002) used the historical average of flare
numbers by the McIntosh classification to develop a solar flare prediction system which estimated
the probabilities for each active region to produce C-, M-, or X-class flares. Barnes et al. (2007)
adopted discriminant analysis to accomplish solar flare forecasting within 24 hours using a large
combination of vector magnetic field measurements obtainedby the University of Hawaii Imaging
Vector Magnetograph. Li et al. (2008) proposed a solar flare forecasting method based on support
vector machines in which the sunspot area, the sunspot magnetic class, the McIntosh class of the
sunspot group and the 10 cm solar radio flux were chosen as precursors. Georgoulis & Rust (2007)
defined a new measurement called the effective connected magnetic field, and their experimental
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results, based on 298 active regions during a 10 year period of solar cycle 23, showed that this
measure was an efficient flare-forecasting criterion. Qahwaji & Colak (2007) put forward a short-
term solar flare prediction method using machine learning and sunspot associations, in which the
authors had compared the performance of the proposed methodwith two other machine learning
algorithms.

Different from the approaches mentioned above, Wheatland (2005) designed a Bayesian ap-
proach to solar flare prediction in which only the event statistics of flares already observed was used
as predictors, however this approach has not been tested on alarge data set.

In this paper, we present a new method for the automatic forecasting of the occurrence of solar
flares over 24 hours following the time when a magnetogram is recorded. Our method is a contin-
uation and extension of the method proposed by Song et al. (2009), which has some limitations in
forecasting X-class flares, as it has to use an arbitrarily imposed threshold. Our method is split into
two cascading steps. In the first step, the logistic regression model is used to map three magnetic
parameters of each active region into four probabilities; the support vector machine classifier is then
utilized to map the four probabilities onto a binary label which is the final output. Experimental re-
sults illustrate how the proposed method performs better when it comes to X-class flare forecasting.

The paper is organized as follows. The definitions of the predictive variables (i.e., three magnetic
parameters) used in this study are introduced in Section 2. The proposed flare forecasting method is
described in Section 3. Experimental results are shown in Section 4. Finally, a conclusion is drawn
in Section 5.

2 DATA DESCRIPTION

2.1 Predictive Variables

To be consistent with the work of Song et al. (2009), the same predictive variables are used. The
predictive variables of Song et al. (2009) are composed of

1. Total unsigned magnetic flux,Tflux, which is the integration of pixel intensity over the area of
an active region,

Tflux =

∫∫

|Bz|dxdy, (1)

whereBz is the pixel intensity of MDI magnetograms.
2. Length of the strong-gradient magnetic polarity inversion line, Lgpi, which was first studied

by Falconer et al. (2003) as a measure to predict coronal massejections. Jing et al. (2006)
illustrated the correlation betweenLgpi and flare productivity of active regions. As illustrated in
Song et al. (2009),Lgpi is the total number of pixels on which the gradient|∇⊥Bz | is greater
than a threshold, which is 50 G Mm−1 as chosen by Song et al. (2009). The definition of|∇⊥Bz|
is as follows (Song et al. 2009):

|∇⊥Bz | =

[

(

dBz

dx

)2

+

(

dBz

dy

)2
]1/2

. (2)

3. Total magnetic energy dissipation,Ediss, proposed by Abramenko et al. (2003), was also studied
by (Jing et al. 2006; Song et al. 2009) in exploring its correlation between flare productivity of
active regions. According to Abramenko et al. (2003),

Ediss =

∫∫

4

[

(

dBz

dx

)2

+

(

dBz

dy

)2
]

+ 2

(

dBz

dx
+

dBz

dy

)2

dxdy, (3)

where the integration is performed over the area of an activeregion.



Automated Flare Forecasting Using A Statistical Learning Technique 787

Table 1 Mean Value and Standard Deviation of Predictive Parameters

Active Number of Lgpi Tflux Ediss

Region Active (Mm) (1022Mx) (108 erg cm−3)

Level Regions Mean Dev. Mean Dev. Mean Dev.

3 34 118.74 79.88 7.02 3.15 15.38 7.76
2 68 64.28 46.79 5.03 2.72 10.58 5.59
1 65 62.12 46.61 4.95 2.86 10.47 5.88
0 63 10.84 15.19 1.72 1.19 3.67 2.58

We chose these parameters mainly because: (1) all three can be derived from the line-of-sight
magnetograms; and (2) all three moderately correlate with the flare productivity of active regions
and show their forecasting utility in the previous study by Jing et al. (2006) and Song et al. (2009).

2.2 Data Collection

The three magnetic parameters introduced above were derived from the magnetograms produced by
the Michelson Doppler Imager (MDI), which is an instrument onboard the Solar and Heliospheric
Observatory (SOHO).

Our study uses the same dataset as was used by Song et al. (2009), which focuses on active
regions between 1996 and 2005. It covers almost the entire solar cycle 23 which peaked in 2001. A
total of 230 sample active regions were selected using the following criteria: (1) the center location
of an active region is close to the solar disk center (within±40 degrees in longitude and±40 degrees
in latitude); (2) the MDI full disk magnetograms are available; (3) since an active region may appear
on the solar surface for a few days, it is treated as a different sample on different dates; (4) the first
magnetogram of the 15 magnetograms taken by MDI each day is chosen.

2.3 Correlation between Magnetic Parameters and Flare Productivity

Using the same criteria as (Song et al. 2009), active regionsare categorized into four levels according
to the most powerful flare produced: an active region is classified as level 0 if it is flaring-quiet or
only produces A and/or B class flares; an active region is classified as level 1 if it produces at least
one C-class flare but no M- or X- class flares; Level 2 corresponds to those active regions which
produce at least one M-class flare but no X-class flares; Level3 corresponds to those active regions
which produce at least one X class flare.

Based on the 230 active regions in our dataset (see Appendix), we can discern the correlations
between magnetic parameters and flare productivity, which are summarized in Table 1.

From Table 1, we notice that the mean value of the length of thestrong-gradient magnetic
polarity inversion line of the 34 level 3 active regions is 118.74, which is much larger than that of
the 68 level 2 active regions (64.28). The mean value of the length of the strong-gradient magnetic
polarity inversion line of 68 level 2 active regions is 64.28, which is slightly larger than that of the 65
level 1 active regions (62.12). The mean value of the length of the strong-gradient magnetic polarity
inversion line of 63 level 0 active regions is 10.84, which ismuch less than that of other levels of
active regions. For total unsigned magnetic flux and total magnetic energy dissipation, the same kind
of trend follows. However, since the fluctuations are large (almost half of the mean values), it is
impossible to do precise flare forecasting based on those parameters.

Based on the correlations described above, we combine statistical and machine learning methods
to perform flare forecasting.
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3 FORECASTING METHOD

In previous studies, there are mainly two types of flare forecasting methods. The first type is based on
pattern recognition, such as a Support Vector Machine-based (SVM-based) method (Li et al. 2008).
During this kind of analysis, some predictive parameters ofa given active region are extracted, and
then the predictive parameters are fed into a trained classifier. The output of the classifier (usually a
label indicating which class of flare is likely to occur) is the final forecasting result. The disadvantage
of this type is that the output is only a label, which does not provide information on how much
confidence can be placed on each forecast. For example (see Fig. 1), both sample A and sample B
will be classified as the same class, but intuitively we should be more confident that B belongs to
this class than A, since A is on the boundary. However, since the output is only a label, we do not
get this crucial information.

The second type is based on probability analysis, such as ordinal logistic regression (Song et al.
2009). During this kind of analysis, some predictive parameters of a given active region are extracted,
and then those predictive parameters are fed into a trained statistical model, and the output of the
model is the probability that a flare event will occur. Of course, using a threshold value (generally
0.5), we can turn the probability into a binary forecast. However, it is not an easy job to choose a
good threshold value, and the de facto standard threshold (0.5) is not always the best, as illustrated
in Song et al. (2009), where the authors chose 0.25 as the threshold for X-class flare prediction.

In this paper, the proposed method is split into two steps (see Fig. 2). In the first step, we adopt
ordinal logistic regression to map the input (three predictive parameters of a given active region)
to four outputs (the probabilities of the given active region belonging to each of the four levels).
Secondly, the four outputs are fed into a support vector machine; the output of the support vector
machine tells us whether the given active region belongs to one level or not.

B A w

wx - b = 0
wx - b =  -1

wx - b = 1

x1

x2

Fig. 1 An illustration of the support vector machine classifier.

Fig. 2 The working flow of the proposed forecasting system.
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Generally, the first step is enough for a flare forecasting system. The purpose of the second
step is three fold. First, it is hard to assess the performance of the first step since the outputs are
probabilities instead of a definite answer. Secondly, userssometimes want a definite answer instead
of a probability. Thirdly, the outputs of the second step canbe used to compare with other research
whose outputs are only binary labels.

3.1 Probability Prediction Using Ordinal Logistic Regression

Used for Bernoulli-distributed dependent variables, logistic regression is a generalized linear model
that uses the logit as its link function (McCullagh & Nelder 1989). One common application of lo-
gistic regression is to estimate the probability of the occurrence of an event from predictive variables.
Ordinal logistic regression is used to map predictive variables into probabilities of the occurrence
of flares by Song et al. (2009). The comparison made by Song et al. (2009) shows that their fore-
casting results are better than those of the Solar Data Analysis Center and NOAA’s Space Weather
Prediction Center, which illustrates the usefulness of ordinal logistic regression in flaring probability
estimation.

Suppose that the data in a dataset belong toL categories andP (D = g) is the probability that
an event which belongs to categoryg would occur given predictive variablesX, then, according to
Kleinbaum & Klein (2002),

P (D = g) = P (D ≥ g) − P (D ≥ g + 1),

P (D ≥ g) =
1

1 + e−(αg+βTX)
,

g = 1, 2, 3, ..., L.

(4)

Given a training dataset composed of predictive variables and response category pairs, the pa-
rametersαg, g = 1, 2, 3, .., L andβ in the above equation can be calculated using the method of
estimation called maximum likelihood (Hosmer & Lemeshow 2000).

The application of ordinal logistic regression to flare forecasting is as follows:

1. Training: The training data contain several samples; each sample is composed of three photo-
spheric magnetic features of an active region and the level of the given active region.

2. Forecasting: Using the ordinal logistic regression model, for a given active region, at first, we
figure out its three photospheric magnetic features, and then feed these three variables into the
model. The output of the model contains four elements, whichcorrespond to the probabilities
that the given active region belongs to level 0, 1, 2, or 3.

3.2 Binary Forecasting Using Support Vector Machines

An SVM is a supervised learning method used for classification (Boser et al. 1992), whose principle
is to minimize the structural risk (Vapnik 1995). An SVM tries to find a plane in an n-dimensional
space that separates input data into two classes. The largerthe distance from the plane to the two
different classes of data points in then-dimensional space, the smaller the classification error (Cortes
& Vapnik 1995).

Given training vectorsxi ∈ Rd, i = 1, 2, ..., n in two classes labeled by a vectory ∈ Rn where
yi = {−1, 1}, i = 1, 2, ..., n. The training of a support vector machine is equivalent to solving the
following optimization problem (Fan et al. 2005):

min
α

(

1

2
α

T Qα − eT
α

)

,

yT α = 0,
0 ≤ αi ≤ C, i = 1, 2, ..., n

(5)
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Table 2 A Sample Contingency Table

Observation Positive Observation Negative

Forecasting Positive a b

Forecasting Negative c d

wheree is the vector of all ones,C > 0 is the upper bound,Q is ann by n positive semi-definite
matrix,Qij = yiyjK(xi,xj) , andK(xi,xj) ≡ (γxT

i yj + ζ)d is the kernel function. The decision
function is:

f(x) =

n
∑

i=1

yiαiK(xi,x) + b. (6)

The prediction of any test datax is sgn (f(x)) ∈ {−1, 1}.
For flare forecasting, the training and forecasting procedures of a support vector machine are as

follows:

1. Training: The training data contain several samples; each sample is composed of four probabil-
ities (the output of ordinal logistic regression) and one label (–1 or 1). If a given active region
indeed belongs to one level, the label is 1; otherwise, the label is –1.

2. Forecasting: Given an active region, at first, we figure outits three photospheric magnetic fea-
tures. Then we feed these three variables into the ordinal logistic model to generate the output
which contains four probabilities. Finally, we feed the four probabilities into the support vector
machine trained above. If the output of the support vector machine is 1, the estimation is that
the given active region belongs to one level; otherwise, it does not.

4 EXPERIMENTAL RESULTS

The proposed flare forecasting method is implemented in MATLAB (Moler 2004), which contains
a procedure to fit a logistic regression model. The implementation also utilizes LIBSVM (Chang &
Lin 2001), which is a software package for support vector classification. The parameters adopted
for LIBSVM are as follows: nu-Support Vector Classificationof polynomial kernelK(xi,xj) ≡
(0.01xT

i yj)
3.

We use four different trained SVM classifiers to perform yes/no forecasting for four different
levels. The outputs of the first step (four probabilities) and the corresponding labels are sent to the
four SVM classifiers to train them in the second step. The training procedures are almost the same
for the four SVM classifiers except that different labels areused, i.e., when training a level-n SVM
classifier, the four probabilities and a label which indicates whether the given sample belongs to
level-n are fed into the SVM classifier, wheren = 0, 1, 2 or 3. Alternatively, we can use a multi-
class SVM classifier. In that way, only one multi-class SVM classifier is needed instead of four
different binary SVM classifiers. We plan to implement the multi-class SVM classifier version of the
forecasting method in the future.

Leave-one-out cross-validation is used to assess the prediction performance. For 230 samples,
during each test case, 229 samples are used for training, andthe remaining one is used for testing. If
the predicted result is the same as the observation, it is positive; otherwise, it is negative. The process
is repeated 230 times. Different samples are used for training and testing each time.

To assess the performance of the proposed method, seven measurements are used, which are
correctness, true positive, true negative, weighted true rate, positive accuracy, negative accuracy, and
weighted accuracy. All these seven measurements can be derived from the contingency table of the
experiment. For a given contingency table like Table 2, we can derive the seven measurements as
follows:
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1. correctness= (a + d)/(a + b + c + d);
2. true positive= a/(a + b);
3. true negative= d/(c + d);
4. weighted true rate= a/(a + b) ∗ (a + c)/(a + b+ c + d) + d/(c + d) ∗ (b + d)/(a + b + c + d);
5. positive accuracy= a/(a + c);
6. negative accuracy= d/(b + d);
7. weighted accuracy= a/(a + c) ∗ (a + c)/(a + b + c+ d)+ d/(b + d) ∗ (b+ d)/(a + b+ c + d).

To compare the performance of the proposed method with the Logistic-Regression-based
method (Song et al. 2009) and SVM-based method (Li et al. 2008), we do the experiments on the
same dataset and the experimental results are illustrated in Figures 3, 4, 5 and 6. These four figures
contain not only the contingency tables of each experiment,but also bar charts to illustrate the seven
measures derived from contingency tables to help us comparethe performances of the three differ-
ent flare forecasting methods. Please note, among the seven measures, positive accuracy is the most
important measure in flare forecasting in that a miss (forecasting no flare, but flares occur) is worse
than a false alarm (forecasting the occurrence of a flare, butit does not happen). The higher the value
of positive accuracy, the less events are missed.O b s e r v a t i o n P o s i t i v e O b s e r v a t i o n N e g a t i v eF o r e c a s t i n g P o s i t i v e 5 2 2 8F o r e c a s t i n g N e g a t i v e 1 1 1 3 9( a ) C o n t i n g e n c y t a b l e o f l o g i s t i c � r e g r e s s i o n � b a s e d m e t h o dO b s e r v a t i o n P o s i t i v e O b s e r v a t i o n N e g a t i v eF o r e c a s t i n g P o s i t i v e 4 6 1 6F o r e c a s t i n g N e g a t i v e 1 7 1 5 1( b ) C o n t i n g e n c y t a b l e o f S V M � b a s e d m e t h o dO b s e r v a t i o n P o s i t i v e O b s e r v a t i o n N e g a t i v eF o r e c a s t i n g P o s i t i v e 4 5 1 4F o r e c a s t i n g N e g a t i v e 1 8 1 5 3( c ) C o n t i n g e n c y t a b l e o f t h e p r o p o s e d m e t h o d

( d ) C o m p a r i s o n o f m e t h o d sCorrectness 
True 
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True Rate
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Accuracy
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Accuracy

Weighted 
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LR 0.83 0.65 0.93 0.85 0.83 0.83 0.83

SVM 0.85 0.74 0.89 0.85 0.73 0.9 0.85

LR+SVM 0.86 0.76 0.89 0.86 0.72 0.92 0.86
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Fig. 3 Experiment on level zero.
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Fig. 4 Experiment on level one.

Figures 3, 4, 5 and 6 show the forecasting results for levels zero, one, two and three respectively,
e.g., for level zero forecasting, all these 230 active regions in our dataset are classified into two
groups according to whether they belong to level zero, and then the forecasting models are trained,
and then tested.

Predicting the occurrence of X-class flares is the most important task of flare forecasting. As
we can see from panel (a) in Figure 6, the Logistic-Regression-based method does not work well
for forecasting X-class flares. Only 1 of the 34 X-class flaresis forecasted correctly. At the same
time, the SVM-based method and our proposed method can correctly forecast 7 of the 34 X-class
flares, which is an improvement over the Logistic-Regression-based method. From Figure 5, we also
notice that our proposed method outperforms the other two methods on level two (M-class flares)
forecasting.

The experimental results also show that our proposed flare forecasting method outperforms the
SVM-based method on level one and level three forecasting. However, our proposed method is
surpassed by the SVM-based method on level two forecasting,but the difference is tiny. The perfor-
mances of these two methods on level zero forecasting are almost the same.
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Fig. 5 Experiment on level two.

5 CONCLUSIONS

In this paper, we propose a solar flare prediction method based on ordinal logistic regression and a
support vector machine. For 230 active regions between 1996and 2005, their magnetic parameters
(Lgpi, TFlux, Ediss) measured from SOHO MDI magnetograms are extracted and usedfor training.
Our results can be summarized as follows:

1. The proposed method is a valid flare forecasting method, which performs almost equally well
with the SVM-based method.

2. Although comparison shows that the positive accuracy of the proposed method is better than
that of the Logistic-Regression-based method on X-class flare forecasting, the true positive rate
(0.44) and positive accuracy (0.21) are still very low, which means we may fail to predict some
occurrences of the X-class flares.

3. Since the proposed method is split into two cascading steps, one extra advantage of the proposed
method over the SVM-based method is that we know the confidence of the forecasting results.
For example, when both of these two methods classify one active region into level three, we
can derive the confidence level by examining the output of thefirst step. Since the output of
the first step (the output of logistic regression) contains four probabilities (the four probabilities
that a given active region belongs to the four levels), the higher the fourth probability, the more
confidence we can have about the forecast results of X-class flares (corresponding to level three).
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Fig. 6 Experiment on level three.

So far, our prediction model is limited to those magnetic parameters obtained only through SOHO
MDI magnetograms. There are several other physical parameters (such as magnetic free-energy,
electric current and helicity injections) that we are currently investigating, and from which we an-
ticipate that the performance of our method can be improved.Similar to some other machine learn-
ing techniques, our method is scalable with regard to accepting new parameters. In the future, af-
ter deriving several new magnetic parameters from vector magnetograms from the Solar Dynamic
Observatory andHinode, the new values should help us to improve the performance of the pro-
posed forecasting method. In addition, we plan to incorporate measures such as sunspot structure
change (Chen et al. 2007) and topology of solar magnetic fields (Zhao et al. 2008) to improve the
performance of the proposed forecasting method.
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Appendix A: HISTOGRAMS OF THE DATA SET USED IN THE EXPERIMENT

Figures A.1, A.2 and A.3 illustrate the histograms of the length of the strong gradient inversion line,
total unsigned flux and energy dissipation. Please note the values are scaled to 0 and 1, and the unit
is shown below each graph. The height of a bar denotes the number of samples whose corresponding
parameters are within some range. Within each range, different colored bars are used to differentiate
the samples into different levels.

Fig. A.1 Histogram of the second parameter for the four different levels.

Fig. A.2 Histogram of the third parameter for the four different levels.
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For example, the height of the blue bar in Figure A.3 within range 0 and 0.1 is 39, which means
there are 39 level 0 samples whose energy dissipation is within the range 0 and3.78×108 erg cm−3.
As we can see, the blue bars (which correspond to level 0 samples) are mainly distributed in the
lower ranges, and their heights decrease as the values increase. The red bars (which correspond to
level 3 samples) can reach higher ranges, which coincide with our observations that samples with
higher values of these parameters are more likely to produceX-class flares.
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