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Abstract Non-static inhomogeneous cosmological models are obtained in general
relativity for the case of a plane symmetric massless scalar field with cosmological
constant Λ, when the source of the gravitational field is a viscous fluid. Some physical
and geometrical behaviors of the solutions are also discussed.
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1 INTRODUCTION

General relativity proposed by Einstein (1916) has served as the basis for studies of cosmological
models of the universe. As we know, present cosmology heavily depends on particle physics, where
the role of scalar fields is very important. So, researchers are interested in studying relativistic field
equations with scalar fields as a source of dark energy. They are also interested in studying the nature
of scalar fields (with or without a mass parameter) interacting with a viscous fluid and cosmolog-
ical constant Λ to draw an analogy between physics of the cosmos and experimental results. We
know that plane symmetric solutions have interesting applications in cosmology, astrophysics and
special relativistic hydrodynamics and the viscosity mechanism helps to obtain more realistic mod-
els. The viscosity mechanism has again attracted the attention of researchers because it can account
for the high entropy of the present universe (Weinberg 1971, 1972). High entropy per baryon and
the remarkable degree of isotropy of the cosmic microwave background radiation suggests that one
should analyze dissipative effects in cosmology. Moreover, there are several processes which are
expected to give rise to viscous effects. These are the decoupling of neutrinos during the radiation
era, the decomposition of matter and radiation during the recombination era (Kolb & Turner 1990),
models where massive superstrings decay into massless ones (Myung & Cho 1986), gravitational
string production (Turk 1988; Barrow 1988) and particle creation effects in the grand unification
era. Murphy (1973) showed that introduction of bulk viscosity can avoid the Big Bang singularity.
Hence, one should consider the presence of material distribution other than the perfect fluid to get
realistic models (see Gron 1990 for a review of cosmological models with bulk viscosity).

It is known that Pradhan et al. (1997) have obtained a class of non-static plane symmetric cos-
mological models with bulk viscosity. Recently, Sahu & Mahapatra (2009) have obtained plane
symmetric perfect fluid models in the presence of the cosmological constant in general relativity.
However, to our knowledge, none of the authors have studied the theory of general relativity for a
plane symmetric space-time for the case of a massless scalar field with Λ when the source of the
gravitational field is a viscous fluid. Hence, in the present paper, we have considered this problem of
studying and constructing cosmological models of the universe.
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2 FIELD EQUATIONS

The space-time is described by the metric of the form

ds2 = D2dt2 − A2dx2 − B2
(
dy2 + dz2

)
, (1)

where A, B and D are functions of “x” and “t”.
Einstein’s field equations corresponding to a massless scalar field with a viscous fluid and Λ are

given by

Rij − 1
2
Rgij + Λij = −8π

(
T ν

ij + T m
ij

)
, (2)

where
T ν

ij = (ρ + p)uiuj − pgij , (3)

is the energy-momentum tensor corresponding to a viscous fluid with

p = p − ηui
;i = p − 3ηH, (4)

and

T m
ij = vivj − 1

2
gijνkνk (5)

is the energy-momentum tensor corresponding to a massless scalar field ν satisfying the Klein–
Gordon equation

gijν;ij = 0, (6)

where ρ, p, p, η, ui and H are, respectively, the energy density, isotropic pressure, effective pressure,
bulk viscosity coefficient, four velocity vector of the fluid and Hubble parameter. In general, η is a
function of time and (;) denotes covariant differentiation. Since the bulk viscous pressure represents
only a small correction to the thermal dynamical pressure, the inclusion of a viscous term in the
energy momentum tensor is a reasonable assumption which does not fundamentally change the
dynamics of the cosmic evolution. Using a comoving coordinate system, the set of field equations (2)
for metric (1) reduces to the following forms:

2
BD2

(
B44 − DB1D1

A2
− B4D4

D

)
− 1

B2

(B2
1

A2
− B2

4

D2

)
− Λ

= −8π ·
[
p̄ +

1
2

( ν2
1

A2
+

ν2
4

D2

)]
, (7)

2
B

(
B14 − B1A4

A
− D1B4

D

)
= −8πν1ν4, (8)

1
BD2

(
B44 − DB1D1

A2
− B4D4

D

)
− 1

A2B

(
B11 − A1B1

A
− AA4B4

D2

)
+

1
A2D2

(
AA44 − AA4D4

D
− DD11 +

DA1D1

A

)
− Λ

= −8π
[
p +

1
2

(−ν2
1

A2
+

ν2
4

D2

)]
, (9)

2
A2B

(
B11 − A1B1

A
− AA4B4

D2

)
+

1
B2

(B2
1

A2
− B2

4

D2

)
+ Λ

= −8π
[
ρ +

1
2

( ν2
1

A2
+

ν2
4

D2

)]
. (10)
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The Klein-Gordon Equation (6) for metric (1) yields

ν44

D2
+

(A4

A
+

2B4

B
− D4

D

) ν4

D2
+

(A1

A
− 2B1

B
− D1

D

) ν1

A2
− ν11

A2
= 0. (11)

The suffixes 1 and 4 after a field variable indicate partial differentiation with respect to x and
t respectively. As the field equation system is underdetermined, it needs extra conditions to obtain
solutions. Since η does not appear in explicit form, for specification of η,

p = γρ, 0 ≤ γ ≤ 1 , (12)

is considered.

3 SOLUTIONS OF THE FIELD EQUATIONS

As the field equations are highly non-linear, the following physically meaningful explicit solutions
are considered (Patel & Dadhich 1993), i.e.

A = tα(1 + x2)a, B = tβ(1 + x2)b and D = (1 + x2)d, (13)

where α, β, a, b and d are real constants.
To avoid mathematical complexities, ν is only considered to be a function of “t.” Using values

of A, B and D from Equation (13) in Equation (11), we obtain

ν44 +
(α + 2β)ν4

t
= 0. (14)

After integration, Equation (14) yields

ν =
k1t

−(α+2β)+1

−(α + 2β) + 1
+ k2, (15)

where k1 �= 0 and k2 = 0 are constants of integration. In view of Equations (13) and (15),
Equations (7)–(10) yield:[

(3β2 − 2β)
t2(1 + x2)2d

− 4b(2d + b)x2

t2α(1 + x2)2a+2

]
+

4πk2
1

t2(α+2β)(1 + x2)2d
= Λ − 8πp, (16)

β(d − b) + αb = 0, (17){
4b[(3b − 2a− 1)x2 + 1]

t2α(1 + x2)2a+2
− β(2α + β)

t2(1 + x2)2d

}
+

4πk2
1

t2(α+2β)(1 + x2)2d
= −Λ − 8πρ. (18)

Now we obtain two types of solutions, i.e. for Λ = 0 and Λ �= 0.

Case-I: When Λ = 0. Here we find two sub-cases corresponding to Equation (17).
Sub-case-i: When, for example

b = 0 = d and α = β = r. (19)

Using the values from Equation (19), Equations (15), (16) and (18) reduce to

ν =
k1

1 − 3r
· 1
t3r−1

(20)

1
8π

[
(2r − 3r2)

t2
− 4πk2

1

t6r

]
= p, (21)
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and
1
8π

(
3r2

t2
− 4πk2

1

t6r

)
= ρ. (22)

Using Equation (22) in Equation (12), we obtain

p = γ

(
3r2

8πt2
− k2

1

2t6r

)
. (23)

In view of Equations (13), (21) and (23), Equation (4) yields

η =
t

3r

[
3r2(γ + 1) − 2r

8πt2
+

k2
1(1 − γ)
2t6r

]
, (24)

and
H =

r

t
. (25)

Thus geometry of the space time (1) can be written as

ds2 = dt2 − t2r(1 + x2)2adx2 − t2r(dy2 + dz2). (26)

It is interesting to see that for a = 0, model (26) reduces to an Einstein–deSitter universe.

Sub-case-ii: When
b = 0 = d and α = −2β + 1. (27)

After substitution of the value of “α” from Equation (27) in Equation (14), we obtain

ν44 +
ν4

t
= 0. (28)

On integration, Equation (28) reduces to

ν = k3 ln t + k4, (29)

where k3 �= 0 and k4 = 0 are constants of integration. Using Equation (27) in Equations (16) and
(18), we get

p = ρ =
β(2 − 3β)

8πt2
− k2

1

2t2
. (30)

Using Equation (30) in Equation (12), we obtain

p = γ

[
(2 − 3β)β

8πt2
− k2

1

2t2

]
. (31)

Now using Equations (13), (30) and (31) in Equation (4) yields

η = (γ − 1)
[
(2β − 3β2)

8πt
− k2

1

2t

]
. (32)

Therefore, the model of the universe described by the space time (1) is

ds2 = dt2 − t−4β+2(1 + x2)2adx2 − t2β(dy2 + dz2). (33)

As in Sub-case-i, here also for a = 0 and β = 1/3, model (33) reduces to an Einstein–deSitter
Universe.
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Case-II: For Λ �= 0, it is difficult to determine solutions. So we only consider the vacuum case,
i.e.

p = ρ = 0, (34)

where γ = 0 is taken in Equation (12). Applying Equation (34) in Equation (18), we get

Λ =
β(2α + β)

t2(1 + x2)2d
− 4b[(3b − 2a − 1)x2 + 1]

t2α(1 + x2)2a+2
− 4πk2

1

t2(α+2β)(1 + x2)2d
. (35)

Using Equation (35), Equation (16) reduces to

p =
1
8π

{
2β(α − β + 1)
t2(1 + x2)2d

+
4b[(2a − 2b + 2d + 1)x2 − 1]

t2α(1 + x2)2a+2
− 8πk2

1

t2(α+2β)(1 + x2)2d

}
. (36)

As in Case-I, here are also two sub-cases, i.e.

Sub-case-i: When, for example

b = 0 = d and α = β = r, (37)

Equations (35), (36) and (4) reduce to

Λ =
3r2

t2
− 4πk2

1

t6r
, p =

1
8π

(
2r

t2
− 8πk2

1

t6r

)
, (38)

and

η =
( −1

12πt
+

k2
1

3rt6r−1

)
, (39)

respectively, where ν and H are the same as found in Sub-case-i of Case-I. Thus the vacuum model
of metric (1) is given by Equation (26).

Sub-case-ii: When
b = 0 = d and α = −2β + 1. (40)

Equations (35), (36) and (4) reduce to

Λ =
β(2 − 3β) − 4πk2

1

t2
, p =

β(2 − 3β) − 4πk2
1

4πt2
, (41)

and

η =
[
β(3β − 2) + 4πk2

1

4πt

]
, (42)

respectively.
In this case also, ν and H are the same as found in Sub-case-ii of Case-I and the vacuum model

of the metric (1) can be written by Equation (33).

4 SOME PHYSICAL AND GEOMETRIC PROPERTIES OF THE MODELS

The physical parameters, such as p, p, ρ, Λ and η, which are involved in models (26) and (33), are
given in the preceding section.
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4.1 Energy Conditions for a Viscous Fluid

In Case-I of model (26), the strong energy condition

ρ + 3p =
3r(1 − r)

4πt2
− 2k2

1

t6r
≥ 0 (43)

is satisfied when r �= 0, 1. Weak and dominant energy conditions given by

ρ =
3r2

8πt2
− k2

1

t6r
≥ 0, ρ + p =

r

4πt2
− k2

1

t6r
≥ 0 (44)

are satisfied when r �= 0 and r ≥ 1/3. However in Case-II, strong and dominant energy conditions
are satisfied for r �= 0.

Similarly in Case-I of model (33), we have

ρ + 3p =
(2 − 3β)β

2πt2
− k2

1

2t2
≥ 0, ρ =

(2 − 3β)β
8πt2

− k2
1

2t2
≥ 0 (45)

and

ρ + p =
(2 − 3β)β

4πt2
− k2

1

2t2
≥ 0, (46)

which are only possible when β �= 0 or 2/3. These conditions also hold in Case-II.
In model (26) of Case-I, if t → 0 then ρ and p are both undetermined and ρ, p → 0 as t → ∞.

However, in model (33), p = ρ → ∞ as t → 0 and p = ρ → 0 as t → ∞. Thus, these results show
the presence of the Big Bang singularity at the initial epoch.

4.2 Bulk Viscous Coefficient η

In both models of Case-I, it is found that η → 0 when t → ∞ provided r �= 0 in model (26) and
η → ∞ when t → 0 provided γ �= 1 in model (33). However in models of Case-II, η → 0 when
t → ∞ and η → ∞ when t → 0. Thus, the above results indicate the presence of the Big Bang
singularity.

4.3 Expansion Scalar θ

The expansion scalar for models in both Case-I and Case-II are found to be θ = 3r
t and θ = 1

t ,
respectively. It is evident from the above that θ → 0 as t → ∞ and θ → ∞ as t → 0. Hence
models start expanding with a Big Bang at t = 0. Also, expansion in both models decreases as time
increases. However, expansion stops at infinite future or for the case r = 0.

4.4 Hubble Parameter H

The Hubble parameter H values in both models of Case-I and Case-II are found to be H = r
t and

H = 1
3t , respectively. Thus, it is observed that H is a function of t and we conclude that models are

not steady-state.

4.5 Shear Scalar σ

The anisotropy (Raychoudhuri 1955) defined by

σ2 =
1
12

[(
g11,4

g11
− g22,4

g22

)2

+
(

g22,4

g22
− g33,4

g33

)2

+
(

g33,4

g33
− g11,4

g11

)2
]

(47)



Inhomogeneous Cosmological Models in the Presence of Massless Scalar Fields 669

for models (26) and (33) of Case-I and Case-II are found to be σ = 0 and σ =
√

2
3

(
1−3β

t

)
,

respectively.
The model (26) clearly approaches a state of isotropy as σ = 0 and lim t→∞ σ

θ = 0, but the
model (33) does not approach a state of isotropy as σ �= 0 and lim t→∞ σ

θ �= 0. Thus in the case
of the second model, the anisotropy exists throughout the evolution. Since lim t→0σ

2 = ∞ and
limt→0σ

2 = 0 (subject to restriction β �= 1
3 ), the shape of the universe only changes uniformly in

the Y and Z directions. However, the rate of change of shape of the universe becomes slower with
the increase of time. It is clear that there exists a real physical singularity in the model at t = 0 and
the present upper limit for σ

θ = 10−3, obtained from indirect arguments, is related to the isotropy of
primordial black body radiation (Collins et al. 1980). In Case-I, we see that σ

θ = 0, which satisfies
the inequality, but in Case-II, we observe that σ

θ < 10−3, provided β > 1
3− 1

2 ×10−6. Hence models
found here can be applied to all stages of the evolution of the universe.

4.6 Einstein Space

A space-time is said to be an Einstein space if it holds the property R ij = R
4 gij . Here, the space-time

in this paper does not satisfy the above property and hence is not an Einstein space.

4.7 Massless Scalar Field ν

The massless scalar field ν for models (26) and (33) in both Case-I and Case-II are found respectively
to be ν = k1

1−3r · 1
t3r−1 and ν = k3 ln t.

From above it is evident that ν is a function of cosmic time. In model (26), it is seen that ν is
not defined at r = 1

3 . However, for r < 1
3 , ν is an increasing function of time and for r > 1

3 , ν is
a decreasing function of time. Also, we see that as t → 0, ν → ∞ and as t → ∞, ν → a which
is constant, but in model (33), |ν| → ∞ as t → 0 and ν → ∞ as t → ∞. These results show the
presence of the Big Bang singularity.

The energy density associated with ν is given by (Anderson 1967) ε = 1
2 (ν2

4 + m2ν2), with

m = 0. Thus from Equations (15) and (29), we have ε = k2
1

2t2k and ε = k2
3

2t2 . From the above results,
it is observed that energy density ε of massless scalar field ν decreases with time (in both models)
at a faster rate than ν. For a physically acceptable mesonic field, we have ε > 0, which leads to the
situation where k1 and k3 are both +ve or both −ve, which are real constants.

4.8 The Parameter γ

For realistic situations, it is required that ρ ≥ p ≥ 0, which yields restrictions on the parameter γ,
i.e. 0 ≤ γ ≤ 1. Thus in Sub-case-i of Case-I, it is found that when γ = 0, 1 and 1/3 the model (26)
reduces to a dust universe, a stiff fluid universe and a radiating universe, respectively. Similarly, in
Sub-case-ii of Case-I, we see that when γ = 0 and 1/3 the model (33) reduces to, respectively, a
dust dominated universe and a radiating universe. When γ = 1 then p = ρ and η = 0. However in
Case-II, we obtain the vacuum models.

4.9 Acceleration and Vorticity Tensor

The velocity field from geodesic motion is given by acceleration u̇ μ. In both models, there is no
acceleration satisfying u̇μ = 0. Thus, the mesonic viscous fluid flow is geodesic in nature. Further,
vorticity tensor ωij becomes zero in each case of both models. Hence the rotation ω turns out to be
zero for each case and for the models which are not rotating.
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4.10 Spatial Volume

The spatial volumes V = (−g)1/2 for models (26) and (33) in both Case-I and Case-II are found to
be V = t3r(1+x2)a and V = t(1+x2)a, respectively. In both cases, it is seen that V → 0 as t → 0
and V → ±∞ as t → ±∞. Thus, the result shows expansion of the universe with time. Also, these
model universes start expanding with zero volume and blow up at infinite past and at infinite future.

4.11 Dark Energy

The real nature of dark energy is a matter of speculation. It is known to be very homogeneous, not
very dense and is not known to interact through any of the fundamental forces other than gravity.
Before dark energy, there was the notion of the cosmological constant represented by the Greek
symbol Lambda. It was a feature of the original equations of Einstein’s general relativity and caused
the universe to be static. Later evidence supported the fact that the universe was indeed expanding
and the cosmological constant was believed to be zero. Evidence in the late 1990s has begun to
support the idea that the universe is not only expanding, but that the expansion rate is actually
accelerating due to the presence of dark energy.

Dark energy is an additional energy that penetrates all of space and tends to increase the rate of
expansion of the universe (Peebles & Ratra 2003). There are two proposed forms for dark energy,
i.e. the cosmological constant Λ (lambda) and scalar fields such as quintessence (a scalar field with
gravitational interactions called quintessence). The cosmological constant is a constant energy den-
sity filling space homogeneously (Carroll 2001). Quintessence is a dynamic quantity whose energy
density can vary in time and space. Contributions from scalar fields, which are constant in space, are
usually also included in the cosmological constant. The cosmological constant is physically equiva-
lent to vacuum energy and scalar fields, which do change in space, and can be difficult to distinguish
from a cosmological constant because the change may be extremely slow.

The latest 2005 Supernova Legacy Survey reveals that the average behavior (i.e. equation of
state) of dark energy behaves like Einstein’s cosmological constant to a precision of 10% (Astier et al.
2006). The existence of dark energy, in whatever form, is needed to reconcile the measured geometry
of space with the total amount of matter in the universe. Measurements of the cosmic microwave
background (CMB) account for anisotropies and the most recent WMAP satellite indicates that the
universe is very close to being flat. For the shape of the universe to be flat, the mass/energy density
of the universe must be equal to a certain critical density. The total amount of matter in the universe
(including baryons and dark matter), as measured by the CMB, accounts for only about 30% of
the critical density. This implies the existence of an additional form of energy to account for the
remaining 70% (Spergel et al. 2006). The most recent WMAP observations are consistent with a
universe made up of 74% dark energy, 22% dark matter, and 4% ordinary matter (Hinshaw 2008).

5 CONCLUSIONS

Two distinct classes of solutions to the problem of a plane symmetric non-static massless scalar field
in general relativity with a viscous fluid and a cosmological constant have been obtained. In Case-I,
it is found that the cosmological constant is zero and the massless scalar field is time-dependent,
whereas in Case-II, both of them are time-dependent. The Hubble’s parameter is found to be time-
dependent in both the models. Also, it is observed that the cosmological constant and massless scalar
field are not mutually dependent, but both are divergent at t = 0 and convergent at t = ∞.

Earlier, it was an assumption that the effect of bulk viscosity is to introduce a change in the per-
fect fluid models and the bulk viscosity exhibits essential influence on the character of the solution.
However, it is observed from the models obtained in Section 3 that Murphy’s conclusion (Murphy
1973) about the absence of the Big Bang singularity in the models with bulk viscous fluid at infinite
past or at the initial epoch is, in general, not true.
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It is seen that models are found to expand in nature and that the model universes start expanding
with zero volume and blow up at infinite past and at infinite future. Also, the models start expanding
with a Big Bang at the initial epoch and the expansion stops at the infinite future. Further, it is
observed that the first model is isotropic and the second model is anisotropic, but both models are
non-rotating and mesonic fluid flow is geodesic. Again, in the case of the second model, the shape
of the universe changes uniformly in the Y and Z directions, but the rate of change becomes slow as
time increases. Moreover, the space-time considered here is not an Einstein space and models found
can be applied to all the stages of the evolution of the universe.
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