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Abstract Resonant cyclotron scattering (RCS) in pulsar magnetospheres is consid-
ered. The photon diffusion equation (Kompaneets equation) for RCS is derived. The
photon system is modeled three dimensionally. Numerical calculations show that there
exist not only up scattering but also down scattering of RCS, depending on the param-
eter space. RCS’s possible applications to spectral energy distributions of magnetar
candidates and radio quiet isolated neutron stars (INSs) are pointed out. The opti-
cal/UV excess of INSs may be caused by the down scattering of RCS. The calcula-
tions for RX J1856.5–3754 and RX J0720.4–3125 are presented and compared with
their observational data. In our model, the INSs are proposed to be normal neutron
stars, although the quark star hypothesis is still possible. The low pulsation amplitude
of INSs is a natural consequence in the RCS model.

Key words: radiation mechanism: nonthermal — scattering — stars: neutron —
pulsars: general — pulsars: individual(RX J1856.5–3754, RX J0720.4–3125)

1 INTRODUCTION

Three kinds of pulsar-like objects have greatly increased our knowledge about pulsar magneto-
spheres. They are anomalous X-ray pulsars and soft gamma-ray repeaters (magnetar candidates), ra-
dio quiet isolated neutron stars (INSs) (the magnificent seven), and rotating radio transients (RRATs).
Figure 1 shows their positions on the P − Ṗ diagram. Our conventional picture of pulsar magneto-
spheres is provided by e.g. Goldreich & Julian (1969), Ruderman & Sutherland (1975), and Cheng
et al. (1986) (for a recent review, see Kaspi et al. 2006), which is mainly about the open field line
regions (OFLRs). Few people have begun to realize that there could be interesting physics in the
closed field line regions (CFLRs) of pulsar magnetospheres. For magnetars, it is proposed that there
is a strong and twisted magnetic field around the central star (Thompson et al. 2002; Lyutikov &
Gavriil 2006). INSs are thought to be dead neutron stars, which provide clear specimens for magne-
tospheric and cooling studies (Kaspi et al. 2006; Tong & Peng 2007; Tong et al. 2008). For RRATs,
recent modeling also indicates interesting physics in CFLRs (Luo & Melrose 2007). The most di-
rect evidence comes from observations of the double pulsar system PSR J0737–3039A/B, and there
could also be signatures of interesting physics in CFLRs of normal pulsars (Lyutikov 2008).
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Fig. 1 P − Ṗ diagram of pulsars. Diamonds are for INSs (Haberl 2007; Kaplan & van Kerkwijk
2009). Stars are for RRATs (McLaughlin et al. 2006; McLaughlin et al. 2009). Magnetar (squares)
and radio pulsar (dots) data are from ATNF (http://www.atnf.csiro.au/research/pulsar/psrcat/). The
dot-dashed line is the constant potential line V = 1/3× 1012 V.

The interesting physics in pulsar CFLRs is mainly related to the plasmas there. Roughly speak-
ing, the electron density in magnetar CFLRs is about 4–5 orders higher than the Goldreich-Julian
density (Rea et al. 2008). In the case of RRATs, Luo & Melrose (2007) have proposed the idea of a
“pulsar radiation belt,” like the radiation belt of the earth. Noting the similarities between INSs and
magnetars/RRATs, we suggest that there could also be plasmas in INS CFLRs with number den-
sity much higher than the Goldreich-Julian density (i.e. the electron blanket, see Wang et al. 1998;
Ruderman 2003). We observed three similarities between INSs and magnetars/RRATs:

1. Most of them are long period pulsars with spin periods of about 10 s;
2. They all show a non-atomic blackbody spectrum;
3. They all have large or relatively large spin-down rates (indicating possible higher fields).

With these similarities, we suggest that the physics of these three kinds of objects should be sim-
ilar, and that the very different observational manifestations could have resulted from a different
parameter space and an evolution history.

In this paper, we consider the resonant cyclotron scattering (RCS) process in pulsar magneto-
spheres. In Section 2, a brief description of the RCS process and some basic formulae are given. The
Kompaneets equation for the RCS process is derived in Section 3. Numerical calculations are given
in Section 4. The application to INSs is the topic of Section 5. In the last two sections, discussions
and conclusions are given, respectively.

2 RESONANT CYCLOTRON SCATTERING

Near the neutron star surface, RCS of photons is more important than Compton scattering (Ruderman
2003). It has the following three points:
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1. Given a magnetic field, the scattering occurs only at a specific frequency and vice versa. Given
a frequency, the scattering occurs only at a specific location in the pulsar magnetosphere. At the
resonant frequency, the cross section is about 8 orders larger than the Thomson cross section for
a typical magnetic field of 1012 G.

2. The momentum is conserved only along the z-direction (direction of the magnetic field). The
field may absorb or contribute to perpendicular momentum.

3. The particle distribution is strongly affected by the field. The perpendicular motion is suppressed
while particles can move freely along field lines. Therefore the electron distribution is 1D.

The soft X-ray spectrum of magnetars may be the result of RCS of surface thermal emission (Rea et
al. 2008). There are three ways of dealing with scattering problems (including resonant scattering).
One is solving the radiation transfer equation directly (e.g. Lyutikov & Gavriil 2006), the second is
doing Monte Carlo simulations (Fernandez & Thompson 2007; Nobili et al. 2008), and the third is
introducing a photon diffusion equation (Kompaneets equation) as in the Compton scattering case
(e.g. Rybicki & Lightman 1979). However, the Kompaneets equation for RCS has not yet been
developed. Considering its importance in magnetar soft X-ray emission, we present a Kompaneets
equation method for the RCS process in this paper. Also, improved approximations are employed.
We find that it may account for the optical/UV excess of INSs.

The previous solution provided by Lyutikov & Gavriil (2006) has three problems which should
be improved. The three problems are:

1. It is a one dimensional treatment. Photons can only propagate forward or backward. All the
calculations and arguments there are valid only in the 1D case. This will cause two additional
problems.

2. The angular dependence of the RCS cross section is smeared out. The rigorous expression is
Equation (3) which we will discuss in the following.

3. The down scattering of photons is dropped. In the 1D case, the phase space volume is propor-
tional to p, while in the 3D case it is proportional to p3. Noting that photons are bosons, the key
difference between the 3D and 1D cases is that there is no Bose-Einstein condensation in the
latter case (Pathria 2003). The down scattering is Bose-Einstein condensation of photons in the
low energy state (Liu et al. 2004; Sunyaev & Titarchuk 1980), therefore it cannot be handled in
the 1D case. Then it is not surprising that the authors found a net up scattering of transmitted
flux. Their approximations are the important aspect in this case. We try to provide a 3D treatment
of the photon system in this paper.

Before proceeding to the details of the derivation, some basic formulae should first be given
(You et al. 1997). The cyclotron frequency of electrons in a given magnetic field is

νB =
1
2π

eB(r)
mec

, (1)

ωB =
eB(r)
mec

, (2)

where νB is the local cyclotron frequency, ωB is the angular frequency ωB = 2πνB , e is the electron
charge (absolute value), B(r) is the local magnetic field, r is the distance from the point to the center
of the star, me is the electron rest mass, and c is the speed of light. When ν = νB , where ν is the
photon frequency, RCS occurs. The differential cross section is

dσRCS =
3rec

32
(1 + cos2 θ)(1 + cos2 θ′)φ(ν − νB)dΩ′ , (3)

where re is the classical electron radius, θ is the angle between the incoming photon and the local
magnetic field, θ′ denotes the angle of the outgoing photon, dΩ′ is the solid angle of the outgoing
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photon, and φ(ν − νB) is the Lorentz line profile function, which acts like a Dirac delta function

φ(ν − νB) =
Γ/4π2

(ν − νB)2 + (Γ/4π)2
. (4)

Note that Γ is the natural width

Γ =
4e2ω2

B

3mec3
. (5)

The Lorentz line profile function has the normalization condition

∫ +∞

−∞
φ(ν − νB)dν = 1 . (6)

Performing the angular integral gives the total cross section

σRCS =
1
2
πrec(1 + cos2 θ)φ(ν − νB) , (7)

which depends on frequency.
In the case of pulsars, a dipole magnetic field is always a good approximation. The magnetic

field at radius r is

B(r) = Bp

(
R

r

)3

, (8)

where Bp is the magnetic field at the surface of the neutron star, and R is the neutron star radius.
Given a photon frequency ν, the radius at which RCS occurs is

rRCS =
(νBp

ν

)1/3

R , (9)

where νBp is the cyclotron frequency at the star’s surface νBp = 1
2π

eBp

mec (only photons with frequen-
cies smaller than νBp

will encounter RCS). For photons in the soft X-ray band 1 keV < hν < 10 keV
(where h is Planck’s constant), we are only considering a specific frequency range ν1 < ν < ν2. The
scattering occurs in a finite space range r2 < r < r1, where r2 is the scattering radius corresponding
to frequency ν2, and r1 corresponds to frequency ν1. We assume that there is a bulk of electrons
filling the space between r2 and r1. Beyond r1, there may also be a bulk of electrons, but it is less
related to the observations in the frequency range ν1 to ν2. Finally, we introduce the optical depth of
RCS

τRCS =
∫

NeσRCSdr = τ0(1 + cos2 θ) , (10)

where Ne is the electron number density (assuming homogeneity),

τ0 =
πe2NerRCS

6mec ν
. (11)

The optical depth also depends on frequency ∝ 1/ν4/3. In the following sections, all optical depths
are referred to by their value at the lower frequency boundary, i.e. optical depth at ν1. During the
integration of Equation (10), the spatial dependence of the magnetic field (Eq. (8)) is taken into
consideration. This will be used in the numerical calculation section.
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3 KOMPANEETS EQUATION FOR RESONANT CYCLOTRON SCATTERING

We formulate our derivation to be analogous to that of the Kompaneets equation for Compton scat-
tering (e.g. Rybicki & Lightman 1979; You 1998; Padmanabhan 2000).

Denote the initial and final state of the scattering as (pz, ν, n) and (p′z, ν′, n′), respectively,
where pz is the initial electron momentum in the z-direction, ν the initial photon frequency, n the
propagation direction of the incoming photon, and a prime denotes the corresponding quantity of
the outgoing particles. In a strong magnetic field, electron motions which are perpendicular to the
magnetic field are trapped into Landau energy levels. Almost all the electrons are in the ground state
(You et al. 1997). Thus, we only consider photons in the ground state before and after the scattering
(Herold 1979). According to energy-momentum conservation in the non-relativistic case, we have

hν +
p2

z

2me
= hν′ +

p′2z
2me

, (12)
(

hν

c
cos θ

)
+ pz =

(
hν′

c
cos θ′

)
+ p′z . (13)

It seems that we are dealing with a 1D distribution of electrons.
From the conservation of energy and momentum, we can calculate the frequency change after

and before the scattering ∆ = h(ν′ − ν)/kTe, with k being Boltzmann’s constant, and Te the
temperature of the electron system. Since we are dealing with non-relativistic electrons k Te ¿
mec

2, and we consider typical photons in the X-ray band hν ∼ 1 keV ¿ mec
2, the frequency

change is very small ∆ ¿ 1. Therefore only considering the first order terms of ∆, we have

∆ = − xpz

mec
(cos θ − cos θ′) , (14)

where x is the dimensionless frequency x = hν/kTe. The above expression is accurate to an order of
O( hν

mec2
hν

k Te
), which is negligible in the case of magnetars and INSs. The validity of using the method

based on the Kompaneets equation in the nonrelativistic case is well established (e.g. eq. (7.53) in
Rybicki & Lightman 1979).

Let n(ν) denote the occupation number per photon state of frequency ν. We denote the transition
probability from an initial state (pz, ν, n) to a final state (p′z, ν′, n′) as dW . Note that because the
transition probability is a microscopic quantity, we always have dW ′ = dW . Since electrons move
freely along the z-direction, we describe the electron system as a 1D Maxwellian distribution. The
number of electrons with momentum in the range pz − pz + dpz is f(pz)dpz , with

f(pz) = Ne(2πmekTe)−1/2e−p2
z/2mekTe . (15)

The evolution of the photon spectrum is described by the Boltzmann equation (Rybicki & Lightman
1979) (

∂n

∂t

)

RCS

=
∫

dpz

∫
dW [f(p′z)n

′(1 + n)− f(pz)n(1 + n′)] , (16)

where a subscript RCS means the change of occupation number caused by RCS; n and n′ are abbre-
viated forms of n(ν) and n(ν′), respectively. For non-relativistic electrons, the frequency change is
small, with ∆ ¿ 1, so we can expand Equation (16) to terms of ∆2 and neglect higher order terms.
The change of photon occupation number becomes

(
∂n

∂t

)

RCS

=
[
∂n

∂x
+ n(1 + n)

] ∫
dpz

∫
dWf(pz)∆

+
[
1
2

∂2n

∂x2
+

∂n

∂x
(1 + n) +

1
2
n(1 + n)

] ∫
dpz

∫
dWf(pz)∆2 . (17)
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We denote the two integrals by

I1 =
∫

dpz

∫
dWf(pz)∆ , (18)

I2 =
∫

dpz

∫
dWf(pz)∆2 , (19)

and then Equation (17) becomes
(

∂n

∂t

)

RCS

=
[
∂n

∂x
+ n(1 + n)

]
I1

+
[
1
2

∂2n

∂x2
+

∂n

∂x
(1 + n) +

1
2
n(1 + n)

]
I2 . (20)

Using the property of conservation of photon number can greatly simplify the subsequent calcula-
tions.

The number of photons is conserved during the scattering process. Thus, we have the continuity
equation of n(x) in frequency space

∂n

∂t
= −∇ · j , (21)

where j is the photon flux in frequency space. Assuming n(x) is isotropic (the validity of the
isotropic assumption will be discussed in the appendix), we have

∂n

∂t
= − 1

x2

∂

∂x
(x2j) . (22)

A comparison between Equations (22) and (20) shows that the flux j must have the form (Rybicki
& Lightman 1979)

j(x) = g(x)
[
∂n

∂x
+ n(1 + n)

]
. (23)

Note that in equilibrium conditions, n(x) = (ex − 1)−1, ∂n
∂x = −n(1 + n), and we have no “photon

flux” in frequency space, with j = 0. This is a necessary condition. The same condition can be used
to check the validity of other forms of the diffusion equation (e.g. Liu et al. 2004). Substituting the
above equation into Equation (22), we have

∂n

∂t
= − 1

x2

∂

∂x

{
x2g(x)

[
∂n

∂x
+ n(1 + n)

]}
. (24)

A comparison between the coefficient of ∂2n
∂x2 in Equations (24) and (20) gives g(x)

g(x) = −1
2
I2 . (25)

Finally, the Kompaneets equation for RCS has the form

∂n

∂t
=

1
x2

∂

∂x

{
x2 1

2
I2

[
∂n

∂x
+ n(1 + n)

]}
. (26)

We only need to calculate the integral I2.
Substituting the equation of frequency change Equation (14) into the definition of the integral

I2 in Equation (19) and first performing the integral of momentum pz , we obtain

I2 =
∫

dWx2Ne
kTe

mec2
(cos θ − cos θ′)2 . (27)
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The transition probability is directly related to cross section

dW = cdσRCS (28)

= c
3rec

32
(1 + cos2 θ)(1 + cos2 θ′)φ(ν − νB)dΩ′ .

Since we are dealing with non-relativistic electrons, the cross section can be approximated by its
value in the electron rest frame. Performing the integral over dΩ′, we have

I2 = 2x2NeσRCS c
kTe

mec2
gθ , (29)

where gθ is an angle dependent factor gθ = 1
5 + 1

2 cos θ2. Finally, the Kompaneets equation for
RCS is (

∂n

∂t

)

RCS

=
kTe

mec2

1
x2

∂

∂x

{
x4NeσRCS c gθ

[
∂n

∂x
+ n(1 + n)

]}
. (30)

The cross section σRCS now depends on frequency, therefore it cannot be taken out of the curly
brackets. Except for this difference and an angle dependent factor gθ, it is the same as the
Kompaneets equation for Compton scattering.

4 NUMERICAL CALCULATIONS

Before we make numerical calculations of Equation (30), two integrations should be performed.
Performing a space integral on both sides of Equation (30), which employs the concept of optical
depth as in Equation (10), we obtain the Kompaneets equation that can be used in the case of pulsars

(
∂n

∂t

)

RCS

=
kTe

mec2

1
x2

∂

∂x

{
x4 τRCS

r1 − r2
c gθ

[
∂n

∂x
+ n(1 + n)

]}
. (31)

The expresssion r1−r2 in the denominator is the range of integration. It is also the range of cyclotron
scattering corresponding to the frequency range ν1 to ν2. The space integration must be employed
in order to eliminate the Dirac delta function in the RCS cross section.

There is an angular factor in the RCS optical depth τRCS, and we denote it as fθ = 1 + cos2 θ.
To simplify the calculations, we use the average value of fθ and gθ

fθ =
4
3

, (32)

gθ =
2
5

. (33)

Here gθ = fθgθ/fθ. From Equation (30) till now, we have performed two integrations. One is an in-
tegration over the space range, the other is averaging over the incoming angle. These two integrations
are introduced in order to simplify the numerical calculations.

The Kompaneets equation for RCS is a pure initial value nonlinear partial differential equation.
Solving the pure initial value problem follows the same routine as the mixed initial value and bound-
ary value problem. In the case of the Kompaneets equation for RCS, we have to be careful since we
are working in a semi-infinite domain, which is 0 < ν < ∞. In the real case, we are only interested
in a finite frequency range (e.g. in the cases of magnetars, INSs). Therefore boundary conditions are
needed.

The Kompaneets equation for RCS describes the diffusion of photons in frequency space. It is
related to the specific intensity as

Iν(t) =
2hν3

c2
n(ν, t) . (34)
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For a blackbody spectrum, the initial condition is1

n(x, t = 0) =
1

exp( x
Trad/Te

)− 1
. (35)

Since we only consider pure scattering between electrons and photons, the number of photons is
conserved. The choice of boundary conditions must guarantee this requirement. One guess is that
there are no photons going in or out of the specified frequency range. Mathematically this is

∂n(x, t)
∂x

+ n(x, t)[1 + n(x, t)] = 0, when x = x1, x2 for all t . (36)

Compare this expression to Equation (23) (Ross et al. 1978). During the numerical calculations, a
simplified version is used2

∂n(x, t)
∂x

= 0, when x = x1, x2 for all t . (37)

In obtaining the final RCS modified spectrum, we use the random walk approximation. A photon
entering the lower boundary r2 escapes the outer boundary r1 after an average diffusion time scale

tdif = τRCS(ν1)(r1 − r2)/c . (38)

In the random walk approximation, n(x, tdif) is the final output.
Figures 2 and 3 are the numerical results for the up scattering and down scattering case, respec-

tively. Figure 2 shows the result for typical parameters of magnetars. During the calculations, the
magnetic field and stellar radius are chosen as typical values of B = 4.4×1014 G and R = 106 cm. It
can reproduce a stiffened blackbody spectrum, therefore it may be applied to interpreting a magnetar
soft X-ray spectrum. Figure 3 shows the calculation for typical parameters of INSs with B = 1013 G
and R = 106 cm. It produces a spectrum with optical/UV excess. Therefore it may account for the
optical/UV excess of INSs.

The luminosity of photons3 (number of photons per unit time passing a fixed surface) is pro-
portional to

∫ x2

x1
x2n(x, t) dx. We can calculate this integral before and after the scattering to check

whether the number of photons is conserved during the calculations. In the down scattering case, the
specified frequency range spans about three orders of magnitude. The number of photons changes
by less than five percent before and after the scattering. While in the up scattering case, the speci-
fied frequency range only spans one order of magnitude. If we insert boundary conditions at x1 and
x2, the number of photons is not conserved. It is because the specified frequency range is not wide
enough. Therefore, we insert boundary conditions “far away” from the specified frequency range, at
x1/10 and 15 x2. The number of photons changes by less than one thousandth.

1 We are considering a spherical shell of electrons, extending from r2 to r1. When the radiation reaches the lower bound-
ary r2, this is taken as t = 0. At r2, it is already several radii away from the neutron star surface. The gravity there is already
very weak. Therefore, the general relativistic effect is negligible when the radiation propagates from r2 to r1.

2 Take the equilibrium condition, for example, n(ν) = 1

ehν/kTrad−1
. At the upper frequency boundary hν2 À kTrad,

n ¿ 1, the third type of boundary condition is reduced to the second type. At the lower boundary hν1 ≤ kTrad, this is a poor
approximation. However, the number of low energy photons is proportional to x2n(x)dx ∝ x2 ¿ 1, which is also a small
amount. Therefore, we employ the simplified version of boundary conditions. The validity of this simplified approximation
is discussed at the end of this section.

3 luminosity=flux× area=π Iν
hν

(
R
r

)2
4πr2, then integrate over the specified frequency range.
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(keV)

Fig. 2 Modified blackbody spectrum due to resonant cyclotron scattering (up scattering case) for
typical parameters of magnetars. The initial blackbody temperature is 0.2 keV, the electron tem-
perature is 10 keV. The solid line is the initial blackbody spectrum. The dashed line is the RCS
modified spectrum with an optical depth τRCS(ν1) = 2. The specified frequency range is (ν1, ν2) =
(1 keV, 10 keV). The model parameters are (x1, x2) = (0.1, 1), (r2, r1) = (8.0, 17)× 106 cm.

(keV)

0. 0. 0.0.00 0.00.00

Fig. 3 Modified blackbody spectrum due to resonant cyclotron scattering (down scattering case)
for typical parameters of isolated neutron stars. The initial blackbody temperature is 70 eV, the
electron temperature is 26 eV. The solid line is the initial blackbody spectrum. The dashed line
is the RCS modified spectrum with an optical depth τRCS(ν1) = 1000. The specified frequency
range is (ν1, ν2) = (1.5 eV, 2 keV). The model parameters are (x1, x2) = (0.058, 77), (r2, r1) =
(3.9, 42)× 106 cm.

5 APPLICATION TO ISOLATED NEUTRON STARS

ROSAT discovered seven radio quiet INSs (Kaspi et al. 2006; Trümper 2005; for recent reviews
see Haberl 2007; van Kerkwijk & Kaplan 2007). They all show featureless blackbody spectra, with
low pulsation amplitude, and high X-ray to optical flux ratio. Their spectral energy distributions
show that many of them have an optical/UV excess with a factor of several times (Burwitz et al.
2001; Burwitz et al. 2003; Motch et al. 2003; Ho et al. 2007; van Kerkwijk & Kaplan 2007). Table 1
shows double blackbody fits of RX J1856.5–3754 (J1856 for short) and RX J0720.4–3125 (J0720 for
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Table 1 Double Blackbody Fit to INS Spectral Energy Distributions

kTX RX kTO RO distance
(eV) (km) (eV) (km) (pc)

J1856 63 5.9 26 24.3 161

J0720 85.7 5.7 35.4 23.5 330

Notes: TX is the high temperature component (X-ray), and TO is the low temperature
component (optical/UV), seen at infinity. RX and RO are the corresponding emission
radii, seen at infinity. Here all numbers are only estimated values, and no error bars are
given, which are taken from van Kerkwijk & Kaplan (2007).
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Fig. 4 Spectral energy distributions of J1856. The squares are observational points (only central
values are included). The solid line is a single blackbody fit to the X-ray data whose parameters are
given in Table 1. (It is not the initial blackbody spectrum in our model, and the parameters are listed
in Table 2.) The dashed line is the RCS modified blackbody spectrum whose model parameters are
given in Table 2. The specified frequency range and model parameters are the same as those in Fig. 3.
All observational data are from van Kerkwijk & Kaplan (2007).

short). In interpreting their optical/UV excess, the emission radius is either too small or too big for a
reasonable star radius. Several theoretical models have been proposed (Motch et al. 2003; Ho et al.
2007; Trümper 2005). Considering the discrepancy between current theory and observations, we try
to provide an alternative one, in which the optical/UV excess of INSs may be due to magnetospheric
processes, i.e. due to down scattering of RCS when the surface emission is passing through the pulsar
magnetosphere.

Figures 4 and 5 show the RCS modified blackbody spectra in the cases of J1856 and J0720,
respectively. These can account for the optical/UV excess in J1856 and J0720 quite well. We as-
sume that the initial spectrum is a blackbody. When passing through the pulsar magnetosphere, it
is modified by the RCS process. Therefore, the final observed spectrum is a modified blackbody,
with an optical/UV excess due to down scattering of RCS. Four parameters are needed: the initial
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Fig. 5 Spectral energy distributions of J0720 similar to Fig. 4. The optical/UV data of J0720 is more
likely to be nonthermal. The specified frequency range is the same as that in Fig. 3. The model
parameters are (x1, x2) = (0.042, 56), (r2, r1) = (3.9, 42) × 106 cm. (The space range is the
same as that in Fig. 3, since it is only determined by the specified frequency range, see Eq. (9)). All
observational data are from van Kerkwijk & Kaplan (2007).

Table 2 RCS Fit to INS Spectral Energy Distributions

kTrad kTe Ne norm nH

(eV) (eV) (1012 cm−3) (1020 cm−2)

J1856 61 26 1.8 π(10 km/161pc)2 1.6

J0720 80 35.4 1.8 π(10 km/330pc)2 2.8

Notes: Trad is the initial blackbody temperature, and Te is the temperature of the electron
system, seen at infinity. Ne is the electron number density, and “norm” is the solid angle
of the source seen by the observer. The equivalent hydrogen column density nH is the
result of the wabs model.

blackbody temperature, the temperature of the electron system, the electron number density (assum-
ing homogeneity), and a normalization constant. We point out that our model has the same number
of free parameters as the double blackbody fit (two temperatures and two normalization constants).
The RCS model parameters are given in Table 2.

During the fitting process, the magnetic field and stellar radius are chosen to have typical values
of 1013 G and 10 km, respectively (e.g. Haberl 2007). In the case of J1856, the initial blackbody tem-
perature is chosen to be slightly lower than the high temperature component of the double blackbody
fit. The temperature of the electron system is chosen as the low temperature component of the double
blackbody fit and kept fixed during the fitting process. The electron number density is assumed to
be homogenous. The corresponding optical depth is about 1000. The normalization constant is the
solid angle of the source seen by the observer. The photoelectric absorption cross section is from
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Morrison & McCammon (1983) (the wabs model). The hydrogen column density is consistent with
previous studies (Burwitz et al. 2003; Ho et al. 2007).

The case of J0720 is similar. This may in part reflect the similarities between these two INSs.
The optical/UV excess of INSs in our model is due to magnetospheric processes. This means that,
in our model, the central star can be a normal neutron star, although other possibilities, e.g. a quark
star, cannot be ruled out (Xu 2002, 2003; for a review, see Xu 2009).

In our model of the INSs, the blackbody spectrum is from the whole stellar surface. When
passing through the CFLRs of the pulsar magnetosphere, the photons are down scattered by the
RCS process. It will cause a decrease of high energy photons. This can account for the observed
optical/UV excess. At the same time, since the X-ray emission is from the whole stellar surface, it
can also naturally explain the low pulsation amplitude.

6 DISCUSSION

We consider the RCS process in this paper. Previous work of Ruderman (2003) mainly has a qualita-
tive consideration, while our paper is a quantitative one and detailed comparison with observational
data is also presented. Lyutikov & Gavriil (2006) consider the RCS process by solving the radiation
transfer equation directly. We point out the differences between our paper and theirs.

1. An improved approximation is used. The photon system is modeled three dimensionally in our
paper.

2. A different method is employed. While Lyutikov & Gavriil solved the radiation transfer equa-
tion directly, we employed the Kompaneets equation method. They are independent methods.
The Kompaneets equation method is much simpler both analytically (compared to solving the
radiation transfer equation directly; this is why we can employ better approximations) and nu-
merically (compared to doing Monte Carlo simulations).

3. Different applications are considered. Previous researchers on RCS mainly focus on its applica-
tion to magnetars. We point out that it may also play an important role in the radio quiet INS
case. Therefore, a magnetospheric model is presented for the optical/UV excess of INSs.

4. Our calculations show that there exist not only up scattering but also down scattering of the RCS
process.

Further Monte Carlo simulations may tell us more about the down scattering of RCS if there
exists real down scattering of RCS. The approximation of a 1D treatment (Lyutikov & Gavriil 2006)
may result in a negative point of down scattering of RCS. Our derivation is in the 3D case (for the
photon system). The key difference is the phase space volume (in the 1D case ∝ p, in the 3D case
∝ p3). In Equation (16), we note that a factor (1 + n) appears. This is a pure second quantization
effect. The photons are aligned to condense in the low energy state, and this quantum effect can only
play an important role in the 3D case. Note that there is also no Bose-Einstein condensation in the
low dimensional case (see Pathria 2003).

Throughout this paper, we talk about the RCS process in pulsar magnetospheres. We think it may
be a common process. In different cases, it has different manifestations. In the case of magnetars, we
have observed a stiffened blackbody spectrum. In the case of INSs, we have observed an optical/UV
excess. These different manifestations can be treated universally using the Kompaneets equation for
the RCS presented in this paper.

Concerning the magnetospheric properties, now people are thinking that the CFLRs of pulsar
magnetospheres are not dead but filled with dense plasma (Ruderman 2003; Luo & Melrose 2007;
Lyutikov 2008). The plasma can be 104 − 105 times denser than the local Goldreich-Julian density.
The origin of this overdense plasma is the consequence of the presence of twisted magnetic field
lines (in the case of magnetars) or magnetic mirroring (in the case of RRATs). When discussing the
magnetospheric properties we have to be careful. As stated in Section 2, the scattering radius and
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the optical depth (or cross section) is frequency-dependent. The local Goldreich-Julian density is
proportional to the magnetic field. At the scattering sphere, from Equation (1), it is proportional to
the photon frequency. Given that the electron density is a constant, the ratio of Ne/nGJ varies with
frequency as ∝ 1/ν. In the case of magnetars (photon energy ranges between 1 keV − 10 keV), the
electron density is 103 − 104 times the local Goldreich-Julian density while in the case of INSs, we
have a broader frequency range 1 eV − 1 keV and a much higher RCS optical depth, about 1000.
The corresponding electron density is 103−106 times the local Goldreich-Julian density. Therefore,
a plasma with number density 104− 105 times the local Goldreich-Julian density is presented in the
CFLRs of magnetars/INSs according to our model. We have computed the mass of this dense plasma.
Assuming an electron-ion plasma, the total mass is 1011 g and 1012 g in the magnetar case and INS
case, respectively. This is consistent with studies in the double pulsar binary PSR J0737–3039, Crab
giant pulses, and magnetar spectrum modeling (Lyutikov 2008; Rea et al. 2008).

The presence of dense plasmas in CFLRs of INSs needs further explanations. Unlike the case of
magnetars, the INSs are believed to be dead NSs (Kaspi et al. 2006; Trümper 2005). For slow rotators
like INSs, the magnetic mirroring mechanism comes into play (Luo & Melrose 2007). Therefore, we
think that the dense plasma in the case of INSs could be due to the magnetic mirroring mechanism.
The source of this dense plasma may be the result of accretion from circumpulsar material, e.g.
ISM, fallback disk etc. Unlike the case of RRATs, in the case of INSs the radiation belts are not
very far away from the neutron stars (about 40 stellar radii at the outer edge). We may call it the
“inner radiation belt” of a pulsar if we call the radiation belt near the light cylinder proposed by
Luo & Melrose (2007) the “outer radiation belt” of a pulsar. Nevertheless, the particle processes are
similar. The pulsar accretes material from the environment which will be accelerated in the “dormant
outer gap” (Luo & Melrose 2007). High energy curvature photons will collide with surface X-ray
photons generating pairs in INS CFLRs. The pair plasma will be confined by the magnetic mirroring
mechanism. This is the pulsar “inner radiation belt” (or “electron blanket,” e.g. Ruderman 2003).
Semi-quantitative estimates are given in Luo & Melrose (2007), and Ruderman (2003). It can be as
high as 104−105 times the Goldreich-Julian density. The plasma is cold since it has undergone a long
time of relaxation (INSs are old thermally emitting neutron stars). Meanwhile during the scattering
process, the photons will push the plasma particles away from the star. The kinetic energy of the
particle decreases, thus resulting in a low temperature. This also explains why the plasma system in
INS CFLRs is distributed in a rather wide space range, see the caption of Figure 3. A similar process
is also possible in the coronae of magnetars (Beloborodov & Thompson 2007).

The last but not least important question is: can a neutron star have a blackbody spectrum which
can be modified when passing through its magnetosphere? It might not be impossible. The current
neutron star atmosphere models leave us two questions: one is that a blackbody spectrum fits the
observation better than that with spectral lines (Ho et al. 2007). The other is that we have not found
a high energy tail in INS X-ray spectra (van Kerkwijk & Kaplan 2007). Therefore from the ob-
servational point of view, a blackbody spectrum is possible. A blackbody-like spectrum could be
reproduced in a quark star model (Xu 2009).

7 CONCLUSIONS

We consider the RCS process in pulsar magnetospheres. The photon diffusion equation (Kompaneets
equation) for RCS is presented. It can not only produce up scattering but also down scattering de-
pending on the parameter space. Its possible applications to magnetar soft X-ray spectra and INSs
are pointed out.

The application to INSs is calculated in detail. We show that the optical/UV excess of INSs may
be due to down scattering of RCS. The RCS model has the same number of parameters as the double
blackbody model. Meanwhile, it has a clear physical meaning. The initial blackbody spectrum from
the stellar surface is down scattered by the RCS process when passing through its magnetosphere.
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This can account for the optical/UV excess of INSs. The low pulsation amplitude of INSs is a natural
consequence in our model.

The calculations for RX J1856.5–3754 and RX J0720.4–3125 are presented and compared with
their observational data. The model parameters for RX J1856.5–3754 and RX J0720.4–3125 are
similar. This may in part reflect the similarities between these two INSs. Finally, we point out that
the quark star hypothesis (e.g. Xu 2002) still cannot be ruled out.

The photon diffusion equation (Kompaneets equation) for RCS is calculated semi-analytically.
The calculations for the magnetar and INS cases are all for surface thermal emission. Of course, its
application is not limited to the thermal emission case.

Using the Kompaneets equation (both the resonant and non-resonant ones, or a unified one
which will be presented in the future), a thorough and quantitative study of the scattering processes
in pulsar magnetospheres could be possible. This can help us make clear the physical process in
CFLRs of pulsar magnetospheres.
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Appendix A: PROPAGATION EFFECT

The validity of the isotropic assumption employed in the main body is discussed. From
Equations (21) to (22), we employ the isotropic assumption. This is also implicitly assumed dur-
ing the angular average in the numerical calculation section. Its validity is acceptable in regions
not far from the star. This is just the case at the inner edge r2 of the “electron blanket.” However,
at the outer edge r1, its validity needs further confirmation. Our approach to this problem is that
we consider an isotropization process. From Equation (3), the angular dependence of the outgoing
photons is (1 + cos2 θ′), the same as that of cyclotron radiation. It is almost isotropic. Therefore,
weakly dependent on the angle of incoming photons, the photons become isotropic through the RCS
process. This allows the required isotropic photon field to be scattered by nearby electrons. The
upper isotropization process is valid from one space location to another. Therefore, the isotropic
assumption is valid through the whole space range, from r2 to r1.

Note that the number of photons is conserved during the scattering process. The r−2 dependence
of the solid angle of the star is “transformed” to the photon occupation number n(x, t). It will only
modify the space integrated form of the Kompaneets equation, Equation (31). However, since the
output is not sensitive to where we introduce the r−2 dependence, the results should be similar. A
detailed calculation is presented below.

The energy density of the radiation field is

uν =
4π

c
Jν , (A.1)

where Jν is the mean intensity

Jν =
1
4π

∫
IνdΩ, (A.2)

and Iν is the specific intensity. From the definition of photon occupation number, we have

uν = n(ν)
8πν2

c3
hν, (A.3)
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where n(ν) is the photon occupation number in the Kompaneets equation. Combining
Equations (A.1) and (A.3), we obtain the relation between mean intensity and occupation number

Jν =
2hν3

c2
n(ν). (A.4)

For an isotropic radiation field (e.g. as we have assumed in the main text), this is just Equation (34).
We consider the propagation effect for a uniformly bright sphere with brightness Bν and radius R
(e.g., Rybicki & Lightman 1979, sect. 1.3). The mean intensity at radius r is

Jν =
1
2
Bν

[
1−

√
1− (R/r)2

]
. (A.5)

The dilution factor is
Jν(r À R)
Jν(r = R)

=
1
2

(
R

r

)2

. (A.6)

This is also the dilution factor for the occupation number n(ν).
Only considering the propagation effect, this will introduce a spatial dependence of the photon

occupation number
∂

∂r
r2n(ν, r) = 0. (A.7)

For a neutron star with surface temperature Trad, the photon occupation at radius r is

n(ν, r À R) =
1
4

1
ehν/kTrad − 1

(
R

r

)2

. (A.8)

Besides the dilution factor, it means that only half of the photons will propagate towards the observer.
The photon occupation number now in Equation (30) is a function of frequency, time, and posi-

tion n = n(ν, t, r). In order to include the dilution effect, we introduce another variable m

m(ν, t) = r2n(ν, t, r). (A.9)

From Equation (A.7), m only depends on frequency and time. Multiplying r2 on both sides of
Equation (30) and performing a spatial integral from r2 to r1, we obtain

(
∂m

∂t

)

RCS

=
kTe

mec2

1
x2

∂

∂x

{
x4 τRCS

r1 − r2
c gθ

[
∂m

∂x
+ m(1 +

m

r2
RCS

)
]}

. (A.10)

It is similar to Equation (31).
In order to make a comparison with the observational data, the flux of such a system must be

calculated. It is related to the energy density

Fν = uνc

=
8πhν3

c2
n(ν, t, r)

=
8πhν3

c2

m(ν, t)
D2

, (A.11)

where D is the distance to this source. The spectrum is proportional to ν3m(ν, t). Similar results are
obtained with similar input parameters in the main text.

There is an important reason why the isotropic assumption is still valid in regions far away from
the star. From Equation (9), low energy photons will be scattered in outer regions. At the same time,
they have a large cross section and optical depth, e.g. see Equation (10) and the caption of Figure 3.
Low energy photons will encounter strong scattering, although they are limited to a narrow beam. A
related issue has already been pointed out in Section 2.
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