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Abstract Einstein’s field equations with variable gravitational and cosmological con-
stants are considered in the presence of perfect fluid for the Bianchi type-I universe by
assuming that the cosmological term is proportional to R−m (R is a scale factor and
m is a constant). A variety of solutions are presented. The physical significance of the
respective cosmological models are also discussed.
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1 INTRODUCTION

Einstein’s field equations are a coupled system of highly nonlinear differential equations and we
seek physical solutions to the field equations for applications in cosmology and astrophysics. In
order to solve the field equations, we normally assume a form of the matter content or suppose that
space-time allows killing vector symmetry (Kramer & Schmutzer 1980).

Solutions to the field equations may also be generated by the law of variation of the scale factor
which was proposed by Pavón (1991). The behavior of the cosmological scale factor R(t) in the
solution of Einstein’s field equations with Robertson-Walker line elements has been the subject of
numerous studies. In earlier literature, cosmological models where the cosmological term is propor-
tional to the scale factor have been studied by Hoyle et al. (1997), Olson & Jordan (1987), Pavón
(1991), Maia & Silva (1994), Silveira & Waga (1994), Silveira & Waga (1997) and Bloomfield
Torres & Waga (1996). Chen & Wu (1990) considered Λ varying with R −2 (R is the scale factor),
Carvalho et al. (1992) generated it by taking Λ = αR−2 + βH2, where R is the scale factor of
the Robertson-Walker metric, H is the Hubble parameter and α and β are adjustable dimensionless
parameters on the basis of quantum field estimations in the curved expanding background.

The idea of a variable gravitational constant G in the framework of general relativity was
first proposed by Dirac (1937). Lau (1985), working in the framework of general relativity, pro-
posed a modification linking the variation of G with that of Λ. This modification allows us to use
Einstein’s field equations formally unchanged since variation in Λ is accompanied by a variation of
G. A number of authors investigated FRW models and Bianchi models using this approach (Abdel-
Rahman 1990; Berman 1990; Sisteró 1991; Kalligas et al. 1992; Abdussattar & Vishwakarma 1997;
Vishwakarma 2000, 2005; Pradhan & Otarod 2006; Singh et al. 2007; Singh & Tiwari 2008). Borges
& Carneiro (2005) have considered that the cosmological term is proportional to the Hubble param-
eter in the FRW model and the Bianchi type-I model with variables G and Λ. Recently, I have
(present author 2008) considered whether or not the cosmological term is proportional to the Hubble
parameter in the Bianchi type-I model with varying G and Λ.
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In this paper, we study homogeneous Bianchi type-I space-time with variables G and Λ contain-
ing matter in the form of a perfect fluid. We obtain solutions of the field equations assuming that the
cosmological term is proportional to R−m (where R is a scale factor and m is constant). The paper
is organized as follows. Basic equations of the models are given in Section 2, and their solution in
Section 3. We discuss the models and conclude our results in Section 4.

2 MODEL AND FIELD EQUATIONS

We consider the space-time admitting Bianchi type-I group of motions in the form

ds2 = −dt2 + A2(t)dx2 + B2(t)dy2 + C2(t)dz2. (1)

We assume that the cosmic matter is represented by the energy momentum tensor of a perfect fluid

Tij = (ρ + p)vivj + pgij, (2)

where ρ is the energy density of the cosmic matter, p is its pressure, and v i is the four velocity vector
such that viv

i = 1. We take the equation of state

p = ωρ, 0≤ω≤1. (3)

The Einstein field equations with time dependent G and Λ given by (Weinberg 1972) are

Rij − 1
2
Rgij = −8πG(t)Tij + Λ(t)gij , (4)

so that for metric (1) and energy-momentum tensor (2) in a co-moving system of co-ordinates, the
field Equation (4) yields

B̈

B
+

C̈

C
+

ḂĊ

BC
= −8πGp + Λ, (5)

Ä

A
+

C̈

C
+

ȦĊ

AC
= −8πGp + Λ, (6)

Ä

A
+

B̈

B
+

ȦḂ

AB
= −8πGp + Λ, (7)

ȦḂ

AB
+

ḂĊ

BC
+

ȦĊ

AC
= 8πGρ + Λ. (8)

In view of the vanishing divergence of the Einstein tensor, we have

8πG
[
ρ̇ +

(
ρ + p

)( Ȧ

A
+

Ḃ

B
+

Ċ

C

)]
+ 8πρĠ + Λ̇ = 0. (9)

The usual energy conservation equation T j
i;j = 0 yields

ρ̇ +
(
ρ + p

)( Ȧ

A
+

Ḃ

B
+

Ċ

C

)
= 0. (10)

Equation (9) together with Equation (10) puts G and Λ in some sort of a coupled field given by

8πρĠ + Λ̇ = 0, (11)

here and elsewhere a dot denotes ordinary differentiation with respect to t. Equation (11) implies
that Λ is a constant whenever G is constant. Inserting Equation (3) into Equation (10) and then
integrating, we obtain

ρ =
k

R3(ω+1)
, (12)
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where k > 0 is a constant of integration.
Let R be the average scale factor of the Bianchi type-I universe, i.e.

R3 = ABC. (13)

From Equations (5), (6) and (7), we obtain

Ȧ

A
− Ḃ

B
=

k1

R3
, (14)

and
Ḃ

B
− Ċ

C
=

k2

R3
, (15)

where k1 and k2 are constants of integration. The Hubble parameter H , volume expansion θ, sheer
σ and deceleration parameter q are given by

H =
θ

3
=

Ṙ

R
,

σ =
k√
3R3

,

q = −1 − Ḣ

H2
= −−RR̈

Ṙ2
.

Equations (5)–(8) and (10) can be written in terms of H , σ and q as

H2
(
2q − 1

)
− σ2 = 8πGp − Λ, (16)

3H2 − σ2 = 8πGρ + Λ, (17)

ρ̇ + 3
(
ρ + p

) Ṙ

R
= 0. (18)

Overduin & Cooperstock (1998) define

ρc =
3H2

8πG
, (19)

ρv =
Λ

8πG
, (20)

and

Ω =
ρ

ρ c

=
8πGρ

3H2
, (21)

which are, respectively, the critical density, vacuum density and density parameter. From
Equation (16), we obtain

σ2

θ2
=

1
3
− 8πGρ

θ2
− Λ

θ2
.

Therefore, 0 ≤ σ2

θ2 ≤ 1
3 and 0 ≤ 8πGρ

θ2 ≤ 1
3 for Λ ≥ 0. Thus, the presence of a positive Λ puts a

restriction on the upper limit of anisotropy, whereas a negative Λ contributes to the anisotropy. From
Equations (16) and (17), we have dθ

dt = −12πGp − θ2

2 + 3Λ
2 − 3

2σ2 = −12πG(ρ + p) − 3σ2.
Thus, the universe will be in a decelerating phase for negative Λ, and for positive Λ, the universe
will slow its rate of decrease. Also σ̇ = − 3σṘ

R implies that σ decreases in an evolving universe and
it is negligible for an infinitely large value of R.
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3 SOLUTION OF THE FIELD EQUATIONS

The system of Equations (3), (5)–(8), and (11) supply only six equations in seven unknowns (A, B,
C, ρ, p, G and Λ). One extra equation is needed to solve the system completely. The phenomenolog-
ical Λ decay scenarios have been considered by a number of authors. Chen & Wu (1990) considered
Λ∝ a−2 (a is the scale factor of the Robertson-Walker metric).

Hoyle et al. (1997) considered Λ∝a−3 whereas Λ∝a−m (a is the scale factor and m is constant)
considered by Olson & Jordan (1987), Pavón (1991), Maia & Silva (1994), Silveira & Waga (1994),
Silveira & Waga (1997), and Bloomfield Torres & Waga (1996). Thus, we take the decaying vacuum
energy density

Λ =
a

Rm
, (22)

where a and m are positive constants. Substituting Equations (12) and (22) into Equation (11), we
get

G =
am

8πk

R3ω+3−m

(3ω + 3 − m)
. (23)

From Equations (16), (17), (22) and (23), we get

R̈

R
+ 2

(Ṙ

R

)2

− am(1 − ω)
2(3ω + 3 − m)Rm

− a

Rm
= 0. (24)

Now we analyze for different values of ω.

3.1 Matter Dominated Solution (Cosmology for ω = 0)

For ω = 0, Equation (24) becomes

R̈

R
+ 2

(Ṙ

R

)2

−
a
(
m − 6

)
2
(
m − 3

) 1
Rm

= 0. (25)

To determine the time evolution of the Hubble parameter, integrating Equation (25), we get

Ṙ

R
= H =

√
a

3 − m

[m

2

√( a

3 − m

)
t + t0

]−1

, (26)

where t0 is a constant of integration. The integration constant is related to the choice of origin of
time. From Equation (26), we obtain the scale factor

R =
[m

2

√( a

3 − m

)
t + t0

]2/m

. (27)

By inserting Equation (27) into Equations (14) and (15), the metric (1) has the form

ds2 = −dt2 +
(m

2

√
a

3 − m
t + t0

) 4
m ×

[
m2

1exp2
{(

2k1 + k2

)
3

2

√
3 − m

a

1
m − 6

(m

2

√
a

3 − m
t + t0

) m−6
m

}
dx2

+ m2
2exp2

{(
k2 − k1

)
3

2

√
3 − m

a

1
m − 6

(m

2

√
a

3 − m
t + t0

)m−6
m

}
dy2

+ m2
3exp2

{−(
k1 + 2k2

)
3

2

√
3 − m

a

1
m − 6

(m

2

√
a

3 − m
t + t0

)m−6
m

}
dz2

]
, (28)
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where m1, m2 and m3 are constants.
For the model (28), the spatial volume V , matter density ρ, pressure p, gravitational constant G,

and cosmological constant Λ are given by

V =
[m

2

√( a

3 − m

)
t + t0

]6/m

, (29)

ρ =
k[

m
2

√(
a

3−m

)
t + t

] 6
m

, (29′)

p = 0, (30)

G =
am

8πk(3 − m)

[m

2

√( a

3 − m

)
t + t0

] 2
m (3−m)

, (31)

Λ = a
[m

2

√( a

3 − m

)
t + t0

]−2

. (32)

Expansion scalar θ and shear σ are given by

θ = 3
√

a

3 − m

[
m

2

√( a

3 − m

)
t + t0

]−1

, (33)

σ =
k√
3

[
m

2

√( a

3 − m

)
t + t0

]−6/m

. (34)

The density parameter is given by

Ω =
ρ

ρc
=

m

3
. (35)

The deceleration parameter q for the model is

q =
m

2
− 1. (36)

The vacuum energy density ρv and critical density ρc are given by

ρv =
k(3 − m)

m

[m

2

√( a

3 − m

)
t + t0

]−6/m

, (37)

ρc =
3k

m

[m

2

√( a

3 − m

)
t + t0

]−6/m

. (38)

Thus for the model (28), we find that for 0 < m < 3 the spatial volume V is zero at t = t ′, where
t′ = −t0

m
2

√
a

3−m

and expansion scalar θ is infinite, which shows that the universe starts evolving with

zero volume at t = t′ with an infinite rate of expansion. The scale factors also vanish at t = t ′ and
hence the space-time exhibits a point type singularity during the initial epoch. The energy density
shear scalar diverges at the initial singularity. As t increases, the scale factors and spatial volume
increase but the expansion scalar decreases. Thus, the rate of expansion slows down with an increase
in time. Also ρ, σ, ρv, ρc, and Λ decrease as t increases. As t →∞, scale factors and volume become
infinite whereas ρ, σ, ρv, ρc, and Λ tend to zero. Therefore, the model would essentially give an
empty universe for large time t. Gravitational constant G(t) is zero at t = t ′ and as t increases, G(t)
also increases.
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A partial list of cosmological models in which the gravitational constant G is increasing with
time are contained in Abdel-Rahman (1990), Chow (1981), Levitt (1980) and Milne (1935). The
ratio σ

θ → 0 as t → ∞ provided m < 3. So, the model approaches isotropy for large values of t.
Thus, the model represents a shearing, non-rotating and expanding model of the universe with a big
bang start approaching isotropy at late times.

Further, it is observed that when 2<m<3, q>0; q = 0 for m = 2 and for 0<m<2, q<0.
Therefore, the universe begins with decelerating expansion changes and the expansion changes from
a decelerating phase to an accelerating one. This cosmological scenario is in agreement with SNe Ia
astronomical observations (Knop et al. 2003; Riess et al. 1998, 2004; Spergel et al. 2007; Tegmark et
al. 2004; Perlmutter et al. 1998) and it presents a unified description of the evolution of the universe.
3.2 Zel’dovich Fluid Distribution (Cosmology for ω = 1)

It corresponds to the equation of state ρ = p. This equation of state has been widely used in general
relativity to obtain stellar and cosmological models for utterly dense matter ( Zel’dovich 1968)

R̈

R
+ 2

(Ṙ

R

)2

− a

Rm
= 0. (39)

To determine the time evolution of the Hubble parameter, integrating Equation (39) we get

Ṙ

R
= H =

√
2a

6 − m

[m

2

√( 2a

6 − m

)
t + t0

]−1

, (40)

where the integration constant t0 is related to the choice of origin of time. From Equation (39) we
obtain

R =
[m

2

√( 2a

6 − m

)
t + t0

] 2
m

. (41)

By substituting Equation (41) into Equations (14) and (15), the metric (1) has the form

ds2 = −dt2 +
(m

2

√
2a

6 − m
t + t0

) 4
m ×

[
m2

1exp2
{(

2k1 + k2

)
3

2

√
6 − m

2a

1
m − 6

(m

2

√
2a

6 − m
t + t0

)m−6
m

}
dx2

+ m2
2exp2

{(
k2 − k1

)
3

2

√
6 − m

2a

1
m − 6

(m

2

√
2a

6 − m
t + t0

) m−6
m

}
dy2

+ m2
3exp2

{−
(
k1 + 2k2

)
3

2

√
6 − m

2a

1
m − 6

(m

2

√
2a

6 − m
t + t0

) m−6
m

}
dz2

]
. (42)

For the model (42), spatial volume V , matter density ρ, pressure p, gravitational constant G, and
cosmological constant Λ are given by

V =
[m

2

√( 2a

6 − m

)
t + t0

] 6
m

, (43)

ρ = p =
k(

m
2

√
2a

6−m t + t0

) 12
m

, (43′)

G =
am

8πk(6 − m)

[m

2

√
2a

6 − m
t + t0

] 2
m (6−m)

, (44)
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Λ =
a[

m
2

√
a

6−m t + t0

]2 . (45)

Expansion scalar θ and shear σ are obtained by

θ = 3

√
2a

6 − m

[m

2

√
2a

6 − m
t + t0

]−1

, (46)

σ =
k√
3

[m

2

√
2a

6 − m
t + t0

]−6/m

. (47)

The density parameter is given by

Ω =
ρ

ρc
=

m

6
. (48)

The deceleration parameter q for the model is

q =
m

2
− 1. (49)

The vacuum energy density ρv and critical density ρc are given by

ρv =
k(6 − m)

m

[m

2

√
2a

6 − m
t + t0

]−12/m

, (50)

ρc =
6k

m

[m

2

√
2a

6 − m
t + t0

]−12/m

. (51)

In the model, we observe that for m < 6, the spatial volume V is zero at t = −t0
m
2

√
2a

6−m

= t′′

and expansion scalar θ is infinite at t = t′′ which shows that the universe starts evolving with zero
volume and infinite rate of expansion at t = t ′′. Initially at t = t′′, the energy density ρ, pressure
p, Λ and shear scalar σ are infinite. As t increases, the spatial volume increases but the expansion
scalar decreases. Thus, the expansion rate decreases as time increases. As t tends to ∞, the spatial
volume V becomes infinitely large. As t increases all the parameters p, ρ, Λ, θ, ρ c, and ρv, decrease
and tend to zero asymptotically. Therefore, the model essentially gives an empty universe for large
t. The ratio σ

θ → 0 as t → ∞, which shows that the model approaches isotropy for large values of
t. The gravitational constant G(t) is zero at t = t′′ and as t increases, G increases and it becomes
infinitely large at late times.

Further, we observe that Λ∝ 1
t2 which follows from the model of Kalligas et al. (1992), Berman

(1990), Berman & Som (1990), Berman et al. (1989) and Bertolami (1986a,b). This form of Λ is
physically reasonable as observations suggest that Λ is very small in the present universe.

3.3 Radiation Dominated Solution (ρ = 3p) (Cosmology for ω = 1/3)

In this case, Equation (24) becomes

R̈

R
+ 2

(Ṙ

R

)2

+
2(m − 6)a

3(4 − m)Rm
= 0. (52)

To determine the time evolution of Hubble’s parameter, integrating Equation (52), we get

Ṙ

R
= H =

√
4a

3(4 − m)

[m

2

√
4a

3(4 − m)
t + t0

]−1

, (53)
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where t0 is the constant of integration and the integration constant t0 is related to the choice of origin
of time. From Equation (53) we obtain

R =
[m

2

√
4a

3(4 − m)
t + t0

]2/m

. (54)

By inserting Equation (54) into Equations (14) and (15), the metric (1) has the form

ds2 = −dt2 +
(m

2

√
4a

3(4 − m)
t + t0

)m
4 ×

[
m2

1exp2
{(

2k1 + k2

)
3

1
(m − 6)

√
3(4 − m)

a

(m

2

√
4a

3(4 − m)
t + t0

) m−6
m

}
dx2

+ m2
2exp2

{(
k2 − k1

)
3

1
(m − 6)

√
3(4 − m)

a

(m

2

√
4a

3(4 − m)
t + t0

)m−6
m

}
dy2

+ m2
3exp2

{−
(
k1 + 2k2

)
3

1
(m − 6)

√
3(4 − m)

a

(m

2

√
4a

3(4 − m)
t + t0

) m−6
m

}
dz2

]
.(55)

For the model (55), matter density ρ, pressure p, gravitational constant G, and cosmological constant
Λ are given by

ρ =
k(

m
2

√
4a

3(4−m) t + t0

) 8
m

, (56)

p =
k

3
(

m
2

√
4a

3(4−m) t + t0

) 8
m

, (57)

G =
am

8πk(4 − m)

[m

2

√
4a

3(4 − m)
t + t0

] 2
m (4−m)

, (58)

Λ =
a[

m
2

√
4a

3(4−m) t + t0

]2 . (59)

Expansion scalar θ and shear σ are obtained by

θ = 3

√
4a

3(4 − m)

[m

2

√
4a

3(4 − m)
t + t0

]−1

, (60)

σ =
k√
3

[m

2

√
4a

3(4 − m)
t + t0

]−6/m

. (61)

The density parameter is given by

Ω =
ρ

ρc
=

m

4
. (62)

The deceleration parameter q for the model is

q =
m

2
− 1. (63)
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The vacuum energy density ρv and critical density ρc are given by

ρv =
k(4 − m)

m
(

m
2

√
4a

3(4−m) t + t0

) 8
m

, (64)

ρc =
4k

m
(

m
2

√
4a

3(4−m) t + t0

) 8
m

. (65)

Thus, for the model (55), we observe that for 0<m<4 the spatial volume V is zero at t = t ′′′,
where t′′′ = −t0

m
2

�
4a

3(4−m)

and the expansion scalar θ is infinite, which shows that the universe starts

evolving with zero volume at t = t ′′′ with an infinite rate of expansion. The scale factors also
vanish at t = t′′′ and hence the space-time exhibits a point type singularity at the initial epoch. The
energy density shear scalar diverges at the the initial singularity. As t increases, the scale factors and
spatial volume increase but the expansion scalar decreases. Thus, the rate of expansion slows down
with an increase in time. Also ρ, σ, ρv , ρc, and Λ decrease as t increases. As t →∞, scale factors
and volume become infinite whereas ρ, σ, ρv , ρc, and Λ tend to zero. Therefore, the model would
essentially give an empty universe for large time t. Gravitational constant G(t) is zero at t = t ′′′

and as t increases, G(t) also increases, which is a similar result as that obtained by Abdel-Rahman
(1990), Chow (1981), Levitt (1980) and Milne (1935). The ratio σ

θ → 0 as t → ∞ provided m<4.
So, the model approaches isotropy for a large value of t. Thus, the model represents a shearing,
non-rotating and expanding model of the universe with a big bang start approaching isotropy at late
times.

4 CONCLUSIONS

In this paper, we have studied a spatially homogeneous and isotropic Bianchi type-I space-time with
variable gravitational constant G(t) and cosmological constant Λ(t). The field equations have been
solved exactly by using a law of variation of scale factor with a variable cosmological term, i.e. a
cosmological term that scales as Λ ∝ R−m (where R is a scale factor). Three exact Bianchi type-I
models have been obtained in Sections 3.1, 3.2 and 3.3. Expressions for some important cosmo-
logical parameters have been obtained for all the models and the physical behavior of the models
is discussed in detail. In all the cases, the models represent a shearing, non-rotating and expanding
model of the universe with a big-bang start approaching isotropy at late times. It is interesting that
the proposed variation law provides an alternative approach to obtaining exact solutions of Einstein’s
field equations. It presents a unified description of the evolution of the universe which starts with a
decelerating expansion and expands with acceleration at late times. Recent observational data (Knop
et al. 2003; Riess et al. 1998, 2004; Spergel et al. 2007; Tegmark et al. 2004; Perlmutter et al. 1998)
strongly suggest this acceleration. Also, gravitational constant G(t) is zero at the initial singularity
and it is increasing with the increase of time. The cosmological constant Λ(t)∝1/t 2 which follows
from the model of Kalligas et al. (1992), Berman (1990), Berman & Som (1990), Berman et al.
(1989) and Bertolami (1986a,b). This form of Λ is physically reasonable as observations suggest
that Λ is very small in the present universe. Finally, the solutions presented in the paper are new and
useful for a better understanding of the evolution of the universe in Bianchi type-I space-time with
variables G and Λ.

Acknowledgements I acknowledge my grateful thanks to CRO, Bhopal of U.G.C. New Delhi for
providing financial assistance under the Minor Research Project.
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