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Abstract A global relationship between cosmological time and Belinskii-Khalatnikov
-Lifshitz (BKL) time during the entire evolution of the Mixmaster Bianchi IX universe
is used to explain why all the Lyapunov exponents are zero at the BKL time. The actual
reason is that the domain of the cosmological time is finite as the BKL time runs from
minus infinity to infinity.
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1 INTRODUCTION

Recently there have been a large number of papers written on the subject of chaos in Relativity and
Cosmology (Levin 2006; Wu & Zhang 2006; Wu & Xie 2007; Ma et al. 2009). The former deals
mainly with the orbital dynamics of test particles moving in a given gravitational field, and the latter
relates to the evolution of a metric itself. Generally speaking, standard indicators of deterministic
chaos (like Lyapunov exponents) that were constructed in classical physics and are not invariant
under space-time diffeomorphisms can be effectively applied to the first field. Of course, it is better
to select coordinate independent manifestations of chaos, such as the invariant Lyapunov exponents
and fast Lyapunov indicators of two nearby trajectories developed by Wu & Huang (2003) and Wu
et al. (2006). However, these standard indicators used in a certain system about the second field
may give rise to a fatal risk in declaring that the system is chaotic. In particular, there was a long
history of debating whether the evolution of the Mixmaster Bianchi IX cosmological model becomes
really chaotic because different chaotic indicators provided distinct answers to its dynamical nature
(Barrow 1982; Berger 1991; Ferraz & Francisco 1992; Burd & Tavakol 1993).

Initially, Barrow (1982) obtained positive Lyapunov exponents that indicate the presence of
chaotic behavior 1 from the analysis of the one-dimensional Gaussian map, as discretized approxi-
mations of the continuous flow of the Mixmaster cosmology. However, it was uncovered after years
of study that there were apparent contradictions between the result and those of some numerical stud-
ies. For instance, earlier numerical experiments (Hobill et al. 1992) confirmed the lack of chaos by

∗ Supported by the National Natural Science Foundation of China.
1 This is not true in all cases. A positive Lyapunov exponent means the onset of chaos for a compact manifold, but not

necessarily for an unbounded system.
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finding that all Lyapunov exponents are zero 2. The choice of time variable was regarded as a reason
for causing the conflict. From then on it was widely accepted that Lyapunov exponents depend on
the choice of time parameter as well as one of distance measure. In this case, it becomes important
to evaluate the relationship between the original time parameter (namely, cosmological time t) and a
new time variable (e.g. BKL (1970) time τ ) in the Mixmaster dynamics. It should be mentioned that
the relationship between t and τ in the Mixmaster universe has been viewed as one in the Bianchi
I model, namely, τ = ln t (Belinskii et al. 1970). However, Szydlowski (1997) and Contopoulos
et al. (1999) suggested that the relationship should be τ = − ln t. Szydlowski also investigated the
dependence of Lyapunov exponents on time reparametrizations. In addition, by observing the trans-
formation laws of the Lyapunov exponent flows under space-time reparametrizations, Motter (2003)
found that chaos remains invariant with respect to any other time parameter that satisfies the four
required conditions. These conditions are sufficient but not necessary for the occurrence of invariant
chaos. Usually time transformations in relativistic cosmology cause the violation of these hypotheses
for a proper definition of the Lyapunov exponents, so the noninvariance of chaos might appear under
these transformations. These facts imply that it is very significant to look for coordinate indepen-
dent methods of quantifying chaos. As two of the most promising proposals about this point in the
Mixmaster dynamics, one is fractal techniques made by Cornish & Levin (1997a,b), and the other
deals with a geometrical criterion for local instability or chaos in terms of negative curvature of the
Jacobi metric introduced by Szydlowski and coworkers (Szydlowski & Szczesny 1994; Szydlowski
& Krawiec 1996). Following the geometrical criterion, Imponente & Montani (2001) found positive
Lyapunov exponents of the Mixmaster cosmology by projecting a geodesic deviation vector on an
orthogonal tetradic basis. In a word, all these invariant indicators demonstrated that the Mixmaster
dynamics is in fact chaotic. It is worth emphasizing that the two methods for identifying the existence
of invariant chaos are not perfect. The fractal method is somewhat problematic (Motter & Letelier
2001), and has its limitations in application (Wu & Xie 2008). As to the geometrical criterion, it is
neither necessary nor sufficient for the prediction of chaos in some circumstances (Wu 2009).

Although whether the Mixmaster cosmology is chaotic, as an old problem over a decade ago,
was solved, the reparametrization of the logarithmic time τ = ln t leading to zero Lyapunov expo-
nents in the BKL time τ has been commonly believed in the existing literature. This seems to be
cloudy and confusing. In fact, the logarithmic relation τ = ln t arises only when the evolution is
close to the initial or final singularity. In such cases the Bianchi-IX can be well approximated by a
sequence of Kasner transitions. In the language of numerical relativity, the relation between τ and
t is a transformation from a unit lapse function to a singularity avoiding a lapse that “freezes the
dynamics” as the singularity is approached. That is to say, the so-called logarithmic relation is a
local one at the approach of the singularity. However, the computation of the Lyapunov exponents
is demanded in order to consider the average over the whole orbit during the entire evolution. If the
logarithmic relation between t and τ is a global one applicable to the entire dynamical evolution,
one cannot truly explain why all the Lyapunov exponents vanish in time τ (as will be proved in
Sects. 2 and 3). In addition, the relationship τ = − ln t can explain this, but it is in disagreement
with qualitative properties of the function t vs τ . In view of this, the aim of this paper is to provide
some insights into a global relationship between the two categories of time so as to truly uncover
an actual and direct source leading to chaos hidden behind time τ during the entire evolution of
the Mixmaster universe. For this purpose, the effect of Lyapunov exponents on time reparametriza-
tions is discussed in detail in Section 2. This discussion is viewed as an extension to the work of
Szydlowski (1997) and Motter (2003). Then, the relationship between the two categories of time is

2 The statement that a zero Lyapunov exponent indicates a lack of chaos is not true in all cases. It does not distinguish the
case of transient chaos at all. On the other hand, if a dynamical system can lie on the center-manifold, the linear analysis that
leads to the definition of a Lyapunov exponent is not sufficient to determine the stability or instability of the system. In spite
of those, by neglecting the rigor of this concept this paper adopts the same meaning as many references in the literature.
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described in Section 3. Meanwhile, the reason for the lack of chaos in time τ is mentioned. Finally,
Section 4 draws my conclusions.

2 DEPENDENCE OF LYAPUNOV EXPONENTS ON TIME REPARAMETRIZATIONS

Lyapunov exponents are an important criterion for measuring the rate of exponential divergence
between a given trajectory and its neighboring one in the phase space 3 of dynamical systems. The
largest of the Lyapunov exponents is defined as the limit

λt = lim
t→∞

1
t

ln
d(t)
d0

, (1)

where d0
4 and d(t) are the distances of the two trajectories at times 0 and t respectively. Then the

compact system considered turns out to be ordered if λ t = 0 and chaotic if λt > 0, as stated in
Footnotes 1 and 2.

Now let me perform a time transformation t → τ such that t = t(τ), where t(τ) stands for a
strictly positive, continuously differentiable function with respect to new time variable τ . Provided
that d(t) is an invariant quantity independent of the choice of space-time coordinates 5, I obtain the
maximal Lyapunov exponent

λτ = lim
τ→∞

1
τ

ln
d(t(τ))

d0
(2)

at time τ . Equations (1) and (2) imply that

λτ = σλt (3)

with

σ = lim
τ→∞

t(τ)
τ

. (4)

The following conclusions can immediately be inferred from Equation (3).

(I) If σ = ∞, then λτ and λt may have rather distinct values. In other words, there may be a com-
pletely different evaluation of dynamical features for a deterministic system. For instance, the
power-law divergence of initially close trajectories with d(t) = d0t

λ can be transformed into the
exponential divergence with d(τ) = d0 exp(λτ) by means of a logarithmic time reparametriza-
tion τ = ln t. That is to say, this reparametrization converts a zero Lyapunov exponent into
a positive Lyapunov exponent such that the original regular system is wrongly interpreted as
a chaotic one. As an illustration, the statement that “Chaos can seemingly be removed by a
coordinate transformation: simply let τ ′ = log τ and the chaos disappears” 6 is not true.

(II) If 1 < σ < ∞ and λt > 0, then λτ > λt. This leads to an overestimation of Lyapunov
exponents observed in time τ such that the strength of chaos seems to increase. Of course, both
λτ and λt remain of the same sign. In this sense, the dynamical information achieved from the
two different categories of time should be the same.

3 It is better to use the configuration space instead of the phase space in certain cases, as mentioned in the article of Wu &
Huang (2003).

4 The initial separation d0 should have been infinitesimal, but it is demanded to have a suitable choice from practical
calculations. See the article of Tancredi & Sánchez (2001) for more details.

5 This hypothesis is possible. For example, the proper distance between the observer and the neighbor adopted by Wu &
Huang (2003) does satisfy this requirement.

6 Time parameters τ and τ′ in the article of Hartl (2003) refer to time variables t and τ respectively in the present paper.
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(III) If σ = 1, then λτ = λt. In order to remove the singularity at r = 2GM of the
Schwarzschild space-time, Lemaı̂tre (1933) introduced new space-time variables ( t̄, r̄, θ̄, φ̄) in
place of Schwarzschild space-time coordinates (t, r, θ, φ) such that θ̄ = θ, φ̄ = φ, and

t̄ = t + 2
√

2GMr + 2GM ln

∣∣∣∣∣
√

r −√
2GM√

r +
√

2GM

∣∣∣∣∣ , (5)

r = (2GM)1/3

[
3
2
(r̄ − t̄)

]2/3

. (6)

When the system is compact, r should be bounded. Thus, Lyapunov exponents are not differ-
ent for the two time parameters. Similarly, Eddington-Finkelstein time (Finkelstein 1958) and
Schwarzschild time have this property.

(IV) If 0 < σ < 1 and λt > 0, then λτ < λt. The extent of chaos seems to become weaker. For
example, through a time transformation (Wu & Huang 2003)

t → τ : τ = 10t +
1
2
r2, (7)

a positive Lyapunov exponent in time τ is about 10 times smaller than that in time t.
(V) If σ = 0, then a positive Lyapunov exponent in the original time parameter t can be converted

into a zero Lyapunov exponent for a new time variable τ . This is so-called chaos hidden behind
the new time parameter. For example, positive Lyapunov exponents at old time t would all
become zero in any of the following new time parameters: (V.1) t =

√
τ , (V.2) t = ln τ (Cornish

1996), (V.3) t = e−τ (Szydlowski 1997; Contopoulos et al. 1999), (V.4) Kruskal time (Weinberg
1972), and (V.5) t = t(τ) but t(τ) ∈ [0, T ] (T being a finite number) as |τ | → ∞.

It is shown clearly in the above discussions that Lyapunov exponents are time coordinate de-
pendent. In cases (II)–(IV), the dynamical properties of chaos and order remain invariant under time
reparametrizations, but in cases (I) and (V), they may not all be true. In brief, Lyapunov exponents
are not very reliable indicators of chaos. Therefore, it is necessary to choose a reference coordi-
nate system in which space-time coordinates are physical. The dynamics of a system should be
determined by this reference system. Since there is a gauge freedom of choosing time and space
coordinates for a particle moving along a gravitational field in general relativity, the above time t is
merely the proper time as a reference. In addition, the proper distances are required. In this way, Wu
& Huang (2003) used case (III) as the construction of the definition of invariant Lyapunov exponents
independent of space-time transformations. On the other hand, in universal dynamics the universal
time can nearly be regarded as a reference because it is just the proper time of a stationary observer in
a synchronous reference system, while the proper distances like those in the article of Wu & Huang
(2003) are not very easy to obtain.

As is well known, the Mixmaster cosmology is chaotic in the universal time t for the existence
of positive Lyapunov exponents, but it seems to be integrable in the BKL time variable τ because
all the Lyapunov exponents vanish. In particular, the relation between the two categories of time
variables was commonly expressed as τ = ln t, so time τ was called logarithmic time. As claimed in
the Introduction, the relation is not a global one. Otherwise, this statement is completely in conflict
with case (I). Next, let me visit the global relation so as to clearly understand why chaos can be
hidden behind time τ .

3 WHY LYAPUNOV EXPONENTS VANISH AT TIME τ IN THE BIANCHI IX
COSMOLOGY

At first, I introduce the Mixmaster cosmology. Then I discuss the global relationship between the
related time parameters according to the evolution of the three-space volume of the universe with
time τ , so that the cause of zero Lyapunov exponents at time τ can be found.
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3.1 Mixmaster Universe

The Mixmaster cosmology is a homogeneous but anisotropic model of an early closed universe. In
a synchronous reference system, the Bianchi type IX metric reads as

ds2 = −dt2 + ηijω
iωj , (8)

where t is named the cosmological time, ω is a differential one-form, and the matrix (η ij) =
diag(a2, b2, c2). The three-volume of the universe is 16π 2abc (Belinskii et al. 1970; Landau &
Lifshitz 1971). Hereafter, I take V = abc. The vacuum Einstein field equations provide the evolu-
tion equations governing the behavior of these scale factors a, b and c for the three spatial axes in
the forms (Belinskii et al. 1970; Landau & Lifshitz 1971)

(ȧbc).

abc
=

1
2a2b2c2

[(b2 − c2)2 − a4], (9)

(aḃc).

abc
=

1
2a2b2c2

[(a2 − c2)2 − b4], (10)

(abċ).

abc
=

1
2a2b2c2

[(a2 − b2)2 − c4], (11)

ä

a
+

b̈

b
+

c̈

c
= 0. (12)

BKL (1970) introduced a new set of integration variables (τ , α, β, γ) such that

dt = V dτ, α = ln a, β = ln b, γ = ln c. (13)

Equations (9)–(12) are simplified to the forms

2α′′ = (e2β − e2γ)2 − e4α, (14)

2β′′ = (e2α − e2γ)2 − e4β , (15)

2γ′′ = (e2α − e2β)2 − e4γ , (16)

α′′ + β′′ + γ′′ = 2(α′β′ + β′γ′ + γ′α′). (17)

Obviously, it is more advantageous to integrate Equations (14)–(17) than Equations (9)–(12) in nu-
merical calculations because there is no singularity in Equations (14)–(17) as τ runs from−∞ to∞.
However, when τ → −∞, t → 0, which means the starting time of the universe and its singularity.
In addition, it can be inferred from Equations (14)–(17) that

0 = −4(α′β′ + β′γ′ + γ′α′) + e4α + e4β + e4γ − 2e2(α+β) − 2e2(β+γ) − 2e2(γ+α). (18)

Assume pα = −4(β′ +γ′), pβ = −4(γ′ +α′) and pγ = −4(α′ +β′), then Equation (18) is reduced
to a zero Hamiltonian (Contopoulos et al. 1999)

H =
1
16

(p2
α + p2

β + p2
γ − 2pαpβ − 2pβpγ − 2pγpα) + e4α

+e4β + e4γ − 2e2(α+β) − 2e2(β+γ) − 2e2(γ+α) ≡ 0. (19)

Its Hamiltonian canonical equations are

α′ = (pα − pβ − pγ)/8, p′α = −4[e4α − e2(α+β) − e2(γ+α)], (20)

β′ = (pβ − pα − pγ)/8, p′β = −4[e4β − e2(α+β) − e2(γ+β)], (21)

γ′ = (pγ − pα − pβ)/8, p′γ = −4[e4γ − e2(α+γ) − e2(γ+β)]. (22)

It should be pointed out that Equations (14)–(17) are completely equivalent to Equations (19)–(22).
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3.2 Relationship between the Two Categories of Time

For a long time, crucial to the understanding of the relationship between time variables t and τ
in the Mixmaster dynamics, studies had been based on the Kasner solution which is related to the
closed form solution of the Bianchi I model for which the right-hand sides of Equations (9)–(11) or
(14)–(16) are absent. Without a doubt, the Bianchi I dynamics has an analytic solution, in which

a ∼ tpl , b ∼ tpm , c ∼ tpn (23)

with
pl + pm + pn = p2

l + p2
m + p2

n = 1. (24)

It is easy to get V = t and τ = ln t + const (Belinskii et al. 1970). This is why τ in the Mixmaster
dynamics was called the logarithmic time. It is worth emphasizing that the treatment is valid only at
the approach to singularity. Without a doubt, it is not correct far from the singularity because 〈1〉 the
right-hand sides of Equations (9)–(11) or (14)–(16) are always present, and 〈2〉 the logarithmic rela-
tion is inconsistent with the analysis of case (I), as stated above. The following lists my investigations
about this problem.

My analysis is based on the auxiliary quantity Ω = V −2 given by Cushman & Sniatycki (1995).
Then I arrive at

Ω′ = −2Ω
V

V ′ =
Ω
4

(pα + pβ + pγ), (25)

Ω′′ = Ω(p2
α + p2

β + p2
γ)/8. (26)

Since Ω′′ ≥ 0, Ω′ is a monotonically increasing function of time τ . This means that there is only a
certain time τ = τm such that pα + pβ + pγ = 0 but p2

α + p2
β + p2

γ �= 0. In addition, Ω′ < 0 when
τ < τm, and Ω′ > 0 when τ > τm. Therefore, Ω reaches one minimum at time τm, and decreases
monotonically as τ < τm, but increases monotonically as τ > τm. In other words, the volume
V has only one maximum Vm at this time, and becomes monotonically increasing if τ < τm, but
decreasing if τ > τm. In sum, V is monotonically decreasing to zero as |τ | goes to infinity, and it
varies in the domain (0, Vm].

In the case τ = −∞, V = 0 results in the occurrence of the singularity from which the universe
begins to evolve. Meanwhile, this corresponds to cosmological time t = 0. Since then, the lapse of
time t with time τ obeys the relations

t′ = V > 0, t′′ = −Ω′ V

2Ω
. (27)

Several points I conclude from the above equations are as follows: (i) t is a strictly increasing func-
tion with respect to time τ ; (ii) τm is a turning point of the function t; (iii) t is a convex function that
has a positive second derivative as τ < τm, but it is a concave function when τ > τm; (iv) t is mono-
tonically decreasing to a constant T1 (for example, I specify T1 = 0 at the beginning of the universe)
for smaller τ , while it is monotonically increasing to another constant T 2 for larger τ . Namely, T1

is the infimum of t, and T2 is the supremum. T = T2 − T1 is called as the universal age similar to
that of the uniform, isotropic, standard universal model given by the Robertson-Walker metric with
curvature k = +1 (Weinberg 1972). These are basic qualitative properties of the function t versus
τ . More detailed quantitative descriptions of the function are arranged in the following numerical
simulations.

I use a Runge-Kutta-Fehlberg 8(9) integrator with automatical choices of step-sizes to integrate
Equations (20)–(22) along the orbit A. Seen from curve A in Figure 1 that draws the evolution of the
volume V with time τ , V remains almost invariant in the neighborhood of zero although it increases
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Fig. 1 Dependence of volume V on the BKL time τ . Orbit A corresponds to initial conditions
(τ = 0) of α = 0.3, β = γ = 0, α′ = −1 and β′ = −0.5, and orbit B relates to initial conditions
of α = 0.1, β = γ = 0, α′ = 0 and β′ = −0.71.

Fig. 2 Same as Fig. 1 but with the cosmological time t in place of V .

slowly as τ goes from −∞ to –5. To my surprise, V expands exponentially for τ ∈ [−5,−0.34].
Note that there is the largest volume Vm = 1.459 at time τm = −0.34. Then V decays exponentially
and tends nearly to zero when τ = 5. Finally, it becomes zero within an infinite time span. On the
other hand, the exponential expansion of t occurs mainly in the τ -time domain [–5, 5], as shown in
Figure 2(A). In addition, I can observe that t stabilizes almost to zero for τ < −5, but to T = 4.029
for τ > 5.

In light of both the analytic properties of the t-function and the numerical results, the relationship
between t and τ seems to be expressed as

t =
{ ν1e

µ1τ + T1 , (τ < τm) ,

−ν2e
−µ2τ + T2 , (τ > τm) ,

(28)
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with fit parameters ν1 > 0, ν2 > 0, µ1 > 0, µ2 > 0, T1 ≥ 0 and T2 > 0. These parameters also
satisfy

ν1e
µ1τm + T1 = −ν2e

−µ2τm + T2 , (29)

since the t-function is continuous at time τm. Note that Equation (28) is still suitable for other orbits,
but τm, Vm and T are generally different. In fact, I obtain τm = 0.5, Vm = 2.012 and T = 4.312
from orbit B in Figures 1 and 2.

It is clear that t is only limited to the finite interval (T1, T2) as τ ranges from the infinite interval
(−∞, +∞). As claimed in case (V) of Section 2, all the Lyapunov exponents must be zero at time τ .
It should also be emphasized that the so-called logarithmic relationship τ = ln t (Belinskii et al.
1970) just matches with the upper part of Equation (28) (t → 0 as τ → −∞). In this sense, the
relationship seems reasonable from the local point of view. However, it is wrong from the global
domain of τ , as mentioned above. In addition, although the relationship τ = − ln t (Szydlowski
1997) can explain why all the Lyapunov exponents vanish in time τ , it is completely contrary to the
above statement that t increases strictly monotonically with time τ . So, the latter relationship should
not be admitted from the global point of view.

4 CONCLUSIONS

In this paper, I discuss the dependence of Lyapunov exponents on time reparametrizations in detail.
I analyze the dependence of volume V and cosmic time t on the BKL time τ in the Mixmaster
universe so as to truly describe the relationship between these two categories of time from the entire
dynamical evolution as well as one from the local dynamical evolution as it approaches singularity.
It is worth pointing out that the local relationship is τ = ln t, but the global one is neither τ = ln t
nor τ = − ln t. One should distinguish the two cases when understanding why all the Lyapunov
exponents are zero in time τ . The global relationship where the cosmic time t runs only in a finite
domain for an infinite span of time τ is suggested to explain the reason.
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