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Abstract Existing theory and models suggest that a Type I (merger) GRB should
have a larger jet beaming angle than a Type II (collapsar) GRB, but so far no statistical
evidence is available to support this suggestion. In this paper, we obtain a sample of
37 beaming angles and calculate the probability that this is true. A correction is also
devised to account for the scarcity of Type I GRBs in our sample. The probability is
calculated to be 83% without the correction and 71% with it.
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1 INTRODUCTION

There are two intrinsically different phenomena that give rise to gamma-ray bursts (GRBs). One is
the merging of two compact objects, such as a neutron star and a black hole; the other is the core
collapse of a massive star (“collapsar”), such as the birth of a Type Ib/c Supernova. According to a
classification scheme developed recently (Zhang 2007; Zhang et al. 2009), a GRB obtained from the
former channel is defined as a Type I GRB, while one from the latter would be classified as a Type II
GRB. This classification scheme, though more intrinsic than the classical short/hard vs. long/soft
categories, is not easy to carry out at present, since many different criteria need to be applied in order
to determine the progenitor of a GRB, few of which are decisive. One of these criteria is that Type I
GRBs are usually short/hard (T90 ≤ 2 s), while Type II GRBs are usually long/soft (T90 > 2 s). This
criterion, though supported by many individual cases, is not decisive, because any short GRB could
theoretically have been a long GRB had it occurred at a high enough redshift. Of the criteria that are
decisive, such as whether or not a GRB emanates gravitational radiation, most are impractical and
the remainder are not applicable to a great majority of GRBs at the present stage.

GRBs eject their energy in the form of jets. These jets have already been modeled, and their
beaming angles (also called opening angles) can be calculated from observed physical data (Sari
et al. 1999). The size of the beaming angle, according to the models, is highly dependent on the
nature of the GRB progenitor: theoretically, Type II GRBs should have smaller beaming angles than
Type I GRBs, due to the collimation effect of the stellar wind hugging collapsars. However, this
dependence has not yet been supported statistically, possibly due to the exceptionally small sample
of Type I GRB jet beaming angles available. Hence, this paper specifically seeks to find statistical
evidence of this theoretical relationship.

This paper is divided into 5 sections, of which this introduction is the first. In the second, we
will list the relevant observational data and use them to obtain the jet beaming angles of 37 GRBs.
The third section will cover data reduction and statistical analysis. The results and discussion of the
analysis will be presented in the fourth section, and the entire paper will be summarized in the fifth
section, which is the conclusion.
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2 COLLECTED DATA

According to the literature (Sari et al. 1999; Frail et al. 2001), the jet beaming angle of a GRB can
be obtained by Equation (1):
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where θj is the jet beaming angle mentioned above, tj is the time of the jet break, z is the redshift at
which the GRB took place, Eiso(γ) is the isotropic energy released by the burst, ηγ is the gamma-ray
radiative efficiency of the jet and n is the density of the interstellar medium. In this case, t j , z and
Eiso(γ) are observable parameters, shown in Table 1. However, ηγ and n are not observable, but,
thankfully, they do not have a very significant effect on the value of θ j . Therefore, we set ηγ = 0.2
and n = 0.1 cm−3. The jet beaming angles obtained from these data are presented in Table 1 and in
Figure 1. In Figure 1, the bars filled in black, stripes and grey correspond to Sample I, Sample II and
unclassified jet beaming angles (defined below), respectively.

Fig. 1 Jet beaming angles: a complete sample. Sample I is shown with black filling, while Sample II
is shown with striped filling. Filled in grey are those GRBs that have not been positively identified
as either Sample I or Sample II. The horizontal axis is θj in degrees, while the vertical axis is the
number of opening angles that have the specified magnitude.

3 DATA REDUCTION

As shown in Table 1, we have only managed to confirm 2 Type I bursts and 13 Type II bursts among
the GRBs whose parameters we obtained.

Of the remaining GRBs, one is identified to be a short burst, while 21 of the others are known
to be long. According to experience, short GRBs are usually of Type I origin, while long bursts are
usually of Type II. Therefore, we incorporate the short GRBs into the Type I sample, and the long
GRBs into the Type II sample. It is hoped that, statistically, this will serve the purpose of giving a
larger sample while maintaining sample integrity.
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Table 1 Data from Observations and Derived Data

GRB Eiso tj z Category θj(
◦)

050709 0.00069[1] 10[1] 0.16[1] Type I[2] 18.1957
060614 0.021[2] 1.3[4] 0.13[4] Type I[2] 5.57885
970508 0.061[2] 25[4] 0.835[4] Type II[2] 12.3366
980703 0.72[2] 2.49[4] 0.966[4] Type II[2] 3.71802
990123 22.9[2] 1.8[4] 1.6[4] Type II[2] 1.92367
990712 0.0672[5] 1.6[5] 0.433[5] Type II[2] 4.77012
000418 0.75137[6] 25[6] 0.1181[6] Type II[2] 8.54109
000926 2.71[2] 2.03[4] 2.307[4] Type II[2] 2.40104
011211 0.67234[6] 1.77[6] 2.14[6] Type II[2] 2.76815
020405 1[2] 2.74[4] 0.689[4] Type II[2] 3.91555
020813 6.6[2] 0.46[4] 1.254[4] Type II[2] 1.42145
000328 3.61[5] 0.8[5] 1.52[5] Type II[2] 1.80902
030329 0.166[5] 0.5[5] 0.169[5] Type II[2] 2.97281
041006 0.83[5] 0.16[5] 0.716[5] Type II[2] 1.37314
050525A 0.25[2] 0.16[4] 0.606[4] Type II[2] 1.63548
051221A 0.024[7] 4.1[4] 0.5465[4] short[8] 7.50341
010921 0.13611[6] 33[6] 0.4509[6] long[9] 13.5235
020124 2.15[5] 3[5] 3.198[5] long[9] 2.61651
021004 0.55601[6] 7.6[6] 2.332[6] long[9] 4.78799
030226 0.67[5] 0.84[5] 1.986[5] long[9] 2.13395
030429 0.173[5] 1.77[5] 2.656[5] long[9] 3.09816
050315 0.49[10] 2.6[4] 1.95[4] long[11] 3.40529
050318 0.22[3] 0.12[4] 1.44[4] long[11] 1.27531
050401 5.323[12] 0.06[12] 2.9[12] long[11] 0.55384
050416A 0.0083[5] 1[5] 0.653[5] long[11] 4.92335
050820A 9.74[3] 3.99[4] 2.61[4] long[11] 2.55110
060124 4.1[3] 0.61[4] 2.3[4] long[11] 1.45364
060206 0.43[3] 0.82[4] 4.05[4] long[11] 1.83552
060210 4.15[13] 2.16[4] 3.91[4] long[11] 2.00912
060526 0.26[3] 0.98[4] 3.21[4] long[11] 2.23733
060605 0.25[14] 0.27[14] 3.773[14] long[11] 1.32273
060814 0.7[3] 0.79[4] 0.84[4] long[11] 2.48693
061121 2.25[3] 0.28[4] 1.31[4] long[11] 1.33753
061126 1.06[15] 25.7[15] 1.1588[15] long[11] 8.20785
070125 10.6[16] 3.8[16] 1.547[16] long[16] 2.82483
071010A 0.036[17] 1[17] 0.98[17] long[11] 3.83010
080319B 13[18] 0.032[18] 0.937[18] long[11] 0.50876
970828 2.1982[6] 2.2[6] 0.9578[6] 3.09196
990510 1.76349[6] 1.2[6] 1.6187[6] 2.27045
990705 2.55952[6] 1[6] 0.8424[6] 2.30918
991216 5.35369[6] 1.2[6] 1.02[6] 2.17822
000301C 0.43749[6] 7.3[6] 2.0335[6] 5.03377
010222 8.57841[6] 0.93[6] 1.4768[6] 1.72899

[1] Fox et al. (2005); [2] Zhang et al. (2009); [3] Amati et al. (2008); [4] Liang et al. (2008); [5]
Ghirlanda et al. (2007); [6] Bloom et al. (2003); [7] Soderberg et al. (2006); [8] Sakamoto et al.
(2008); [9] Pélangeon et al. (2008); [10] Amati (2006); [11] Evans et al. (2009); [12] Kamble et
al. (2009); [13] Ghirlanda et al. (2008); [14] Ferrero et al. (2009); [15] Perley et al. (2008); [16]
Chandra et al. (2008); [17] Covino et al. (2008); [18] Racusin & Burrows (2008).
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Six bursts, namely GRB 970828, GRB 990510, GRB 990705, GRB 991216, GRB 000301C and
GRB 010222, cannot be identified as either Type I/II or long/short bursts, and, therefore, cannot be
used in the statistics. These bursts are represented by the columns filled in grey in Figure 1.

Thus, we obtain a “Type I + short” sample, noted as “Sample I” for the rest of the paper, and
a “Type II + long” sample, hereby noted as “Sample II.” Their jet beaming angles are presented in
Figure 1 (black and striped filling respectively). A primary contributing factor to the scarcity of
Sample I data is the fact that tj is hard to determine in short bursts, rendering Equation (1) unappli-
cable. Of the five bursts known to be of Type I origin (Zhang et al. 2009), we obtained the opening
angles for two of them (see Table 1 for details). Of the remaining three (GRB 050509B, GRB 050724
and GRB 061006), the jet break time of GRB 050509B and GRB 061006 cannot be found, while
only a lower limit constraint could be placed on the jet break time of GRB 050724. The problem
of whether lower limit constraints could be used in the sample is discussed further in Section 4. Of
the short/hard bursts listed in Zhang et al. (2009), the opening angle of only one could be ascer-
tained. Since GRB 080503, the latest short/hard burst mentioned in Zhang et al. (2009), five bursts
(GRB 080702A, GRB 080905A, GRB 080919, GRB 081024 and GRB 090510) have been observed
according to GCN reports that fall indisputably in the short/hard category. However, no jet break
time has been found for any of them.

From Figure 1, it should be quite obvious that Sample I data have a greater arithmetic mean
in comparison to Sample II data. This is indeed the case, as Sample I has a mean value of 10.42 ◦,
while the mean of Sample II is only 3.42◦. This is supportive of the statement that Type I GRBs
have a larger beaming angle than Type II GRBs. However, the fact that there are 4 of the Sample II
data that are larger than 2 of the 3 Sample II data leaves plenty of room for argument. Therefore,
statistical analysis based on the data that lead to a quantitative result on the validity of the statement
above is required. In order to obtain such a quantitative result, statistical fitting must be carried out.
Many papers consider the Gaussian distribution under similar circumstances (for instance: Zhang &
Meszaros 2002), and therefore we will fit the data using the Gaussian distribution. Whether open-
ing angles really do follow Gaussian distributions is indeed rather problematic: this topic will be
discussed further below.

Assuming that elements taken from Samples I and II are random variables that have Gaussian
distributions (N(µ, σ2)), we take their probability densities to be
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respectively. Here, i = 1 corresponds to Sample I, while i = 2 corresponds to Sample II. Also, µ i

and σi are the means and standard variations of the two samples respectively, and are hereby defined
mathematically as µi =

∑
k

Xki and σ2
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∑
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2, where Xki is the “kth” datum from

Sample i.
Taking the sample mean and sample standard deviation as µ and σ respectively for both samples

(µ1 = 10.42, µ2 = 3.42, σ2
1 = 46.24, σ2

2 = 9.07), we obtain best-fit curves as shown in Figures 2
and 3, where they have been superimposed on their respective sample distributions for comparison.
For the rest of this paper, these best-fit distributions for Sample I and Sample II will be termed Fit
I and Fit II respectively. A Kolmogorov-Smirnov test has been preformed for Fit II, resulting in
D34 = 0.125, in other words, an acceptance level of 1 − α ≈ 65%. Fit I is expected to have a very
low acceptance level, which we did not calculate but are certain that it is (possibly much) smaller
than 30%, which is one of the reasons why we decided to devise the correction below.
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Fig. 2 Sample I best fit probability distribution curve superimposed on the Sample I bar graph.

Fig. 3 Sample II best fit probability distribution curve superimposed on the Sample II bar graph.

Next, we calculate the probability that a random variable from Fit I (θ j1) is larger than a random
variable from Fit II (θj2). The random variable θj1 − θj2 should have a distribution of

N(θj1 − θj2) =
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This distribution is another normal distribution with a mean of (µ 1 − µ2) and a variance of
(σ2

1 + σ2
2), as shown in Figure 4. Thus,

P (θj1 > θj2) = P (θj1 − θj2 > 0) =
∫ +∞

0

N(θj1 − θj2)d(θj1 − θj2) ,
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i.e.
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Calculating this by means of a Fortran program, we obtain

P1(θj1 > θj2) = 0.83 . (5)

The probability shown in Equation (5) is the probability that a Type I jet angle is larger than a
Type II jet beaming angle, but only if Type I and II GRB beaming angles have a distribution strictly
the same as Fit I and Fit II, respectively. In the case of Fit II, 34 samples have been taken to make
the fit, therefore, the difference is considered negligible. However, for Fit I, which was made with
only three samples, the effects of inconsistency must be considered.

According to Equation (4), P (θj1 > θj2) can be calculated once µ1 and σ2
1 are given as con-

stants. However, the µ1 and σ2
1 in this equation have probability distributions of their own, which

are reliant on the consistency of Fit I. They are
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respectively, where N = 3, the number of Sample I elements. Here, t and χ 2 correspond to a t
distribution and a χ2 distribution respectively, X is the sample mean, SX is the sample variance;
µ1 and σ1 are the theoretical mean and standard variation of Sample I respectively (shown here as
variables).

Integrating Equation (4) over these probability distributions, taking (X−µ1)
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are not constants for the purpose of the following calculations. Substituting the right hand side of
Equation (4) for P1(y, z), and equivalent terms in y and z for µ1 and σ1, respectively, we obtain
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Again using a Fortran program, we calculate this final result to be

P2(θj1 > θj2) = 0.71. (9)
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Fig. 4 Distribution of random variable θj1 − θj2. This is the probability distribution of the value of
the difference between a random variable from Fit I and another from Fit II.

4 DISCUSSION

Theoretically, it would have been more logical to perform a similar correction on Sample II in con-
junction with the one used on Sample I. However, this would lead to 5-dimensional integration,
which would be far more than what our PC could manage in a short period of time (the 3-D inte-
gration for P2 took 10min at double precision, with a step length of 0.03 for x, y and z). Instead,
we performed the 3-D integration correction on Samples I and II separately. Taking into account the
first 4 digits after the decimal point, P1 is calculated to be 0.8272. This merely decreases to 0.8254
after application of the correction to Sample II, while it decreases to P 2 = 0.7118 after application
of the correction to Sample I. From these numbers, we find that neglecting the Sample II correction
induces an error of only a magnitude of 10−3 (i.e. the third digit after the decimal point), and thus
find it safe to retain the first 2 digits without performing the correction to Sample II. Hence, this
yielded the number of digits used in the presentation of our results (Eqs. (5) and (9)).

With an acceptance level of only 65% for even Fit II, it is indeed debatable whether a Gaussian
fit is appropriate for the samples. However, due to the fact that an established fit for opening angles
does not exist, a Gaussian fit seems to be the natural choice. Further research may experiment with
other parametrical fits that may yield better acceptance levels.

It has been proposed that GRBs, which would fall into the Sample I category but have only
minimum constraints for their jet break times (such as GRB 050724), could be used in the statistics
as well. In doing so, a minimum value could be calculated for both P 1 and P2, on the basis of a larger
sample. However, this could lead to complexities, since there are GRBs which would also fall into
the Sample II category that only have minimum constraints for their jet break times. In this paper,
we wish to avoid such complexities, and therefore use only exact data.

The reader might want to notice that there are several problems that have not been taken into
account. Firstly, all data on Eiso(γ), z and tj in this paper have been collected from the literature.
While this should cause no problems for z and E iso(γ), it could be somewhat problematic for tj ,
since the time of the jet break is different for different bands at which the specific observation was
made. Throughout this paper, this matter has been treated indiscriminately. Also, the data, as shown
in Table 1, are presented with a certain deviation in the literature. In other words, they are not precise.
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Even more prominent is the problem that if we take Fit I to be exactly the distribution of Type I GRB
jet beaming angles, a significant number of Type I jet beaming angles will be smaller than zero.
These problems, throughout the paper, have been treated as insignificant details, hereby submitted
to future scrutiny by the reader.

5 CONCLUSIONS

In this paper, we have obtained a Sample I of 3 jet beaming angles and a Sample II of 34 jet beaming
angles. These two samples are expected to be representative of Type I and Type II GRBs respectively.
After that, normal (Gaussian) distributions have been fitted to the samples, resulting in Fit I and Fit
II. Taking these fits to be representative of Type I and Type II GRBs, we then proceed to calculate the
probability that a random variable taken from Fit I is larger than another taken from Fit II, thereby
deriving the probability that a Type I GRB has a larger opening angle than a Type II GRB. Taking
into account the uncertainty caused by the very small Sample I, we then devise a correction for
the probability stated above, and reach a probability that is much lower but still significantly high
nevertheless.

If we take Sample I to be a sample perfectly representative of Type I GRBs, then it could be said,
with an 83% degree of confidence, that Type I GRBs have larger jet beaming angles than Type II
GRBs. However, this 83% drops to 71% once we take into account the uncertainty caused by our
small sample in Sample I. In either case, it could be justifiably concluded, from our current samples,
that Type I GRBs generally have a larger beaming angle in comparison to Type II GRBs.

Our results are supportive of current models and theory. Type I GRBs in general have larger
beaming angles in comparison to Type II GRBs, with a fairly high degree of certainty, though by far
not high enough to become a decisive criterion for whether a GRB is of Type I or Type II origin (so
far).

It is possible that with a larger Sample I, higher levels of certainty could be reached. Therefore,
further observations that yield data concerning Sample I jet beaming angles (preferably Type I GRB
jet beaming angles) are required for progress. It is also possible that with a large enough Sample I,
the correction methods used in this paper (i.e. the correction for Sample I) will become obsolete;
however, given the current rate at which Sample I opening angles are being derived, it seems unlikely
that this would be the case in the near future. Lastly, it will be desirable to find a parametrical
fit which could be supported theoretically, and which yields a higher level of acceptance than the
Gaussian.
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