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Abstract When a satellite galaxy falls into a massive dark matter halo, it suffers
from the dynamical friction force which drags it into the halo’s center, where it finally
merges with the central galaxy. The time interval between entry and merger is called
the dynamical friction timescale (Tdf). Many studies have been dedicated to deriving
Tdf using analytical models or N -body simulations. These studies have obtained qual-
itative agreements on how Tdf depends on the orbital parameters, and the mass ratio
between the satellite and the host’s halo. However, there are still disagreements on
deriving an accurate form for Tdf . We present a semi-analytical model to predict Tdf

and we focus on interpreting the discrepancies among different studies. We find that
the treatment of mass loss from the satellite by tidal stripping dominates the behavior
of Tdf . We also identify other model parameters which affect the predicted Tdf .

Key words: methods: analytical — methods: numerical — galaxies: haloes — galax-
ies: evolution — galaxies: interactions — cosmology: dark matter

1 INTRODUCTION

In the standard cold dark matter (CDM) model, galactic structures (dark matter halos) grow in a
hierarchical manner. During the merger of two dark matter halos, the less massive one becomes
the satellite1 (or subhalo) of the more massive one (host halo). The satellite will orbit the host and
finally merge with the host halo. Halo mergers play an important role in the formation and evolution
of galaxies, as they can significantly affect the star formation rate, color and morphology of galaxies
(e.g., Benson et al. 2002, 2004; Kang et al. 2005; Kazantzidis et al. 2008). Therefore, one inevitable
question about galaxy formation and evolution in the CDM scenario is to find out how long it takes
for the satellite to merge with the host halo.

Dynamical friction is the primary mechanism which decreases the orbital energy and angular
momentum of a satellite, and drags it into the host halo’s center. A description of dynamical friction
was first given by Chandrasekhar (1943), who derived a formula for dynamical friction based on
the idealized case that a rigid body moves through an infinite, homogeneous sea of field particles.

∗ Supported by the National Natural Science Foundation of China.
1 When we refer to a satellite, we mean the dark matter subhalo, not its luminous counterpart which is often called a

satellite galaxy.
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In most cases, the satellite is moving through a finite host halo, and the dynamical friction timescale
(Tdf ) of the satellite is defined as the time interval between entry and merger with the host’s center.
A simple application of Chandrasekhar’s formula to derive Tdf for a rigid satellite is given by Binney
& Tremaine (1987, hereafter BT87) and Lacey & Cole (1993, hereafter LC93), and these formulas
are widely used in semi-analytical models of galaxy formation and evolution (e.g., Kauffmann et al.
1999; Cole et al. 2000; Somerville & Primack 1999; Neistein & Weinmann 2010). The early study
of Navarro et al. (1995) found that the LC93 formula could accurately match their simulation results.
However, the simulation results of Springel et al. (2001) and Kang et al. (2005) indicated that the
LC93 formula underestimates the merging timescale and overestimates the merger rate since LC93
is only valid for a rigid object, not for an amorphous satellite in simulations.

For an amorphous satellite, one needs to take into account the effect of tidal force, which leads
to mass loss from the satellite and redistribution of mass inside of it. Deriving an analytical for-
mula of Tdf for a real satellite is nontrivial as one has to follow both the orbit and mass evolution.
Colpi et al. (1999, hereafter C99) first questioned the conclusion of Navarro et al. (1995), and they
found that tidal stripping can significantly increase Tdf . This conclusion was recently confirmed
by Boylan-Kolchin et al. (2008, hereafter BK08) and Jiang et al. (2008, hereafter J08) using high
resolution simulations. BK08 and J08 both gave fitting formulas for Tdf , but with different depen-
dences on orbital parameters. Their results differ by a factor of up to two for eccentric orbits. Using a
semi-analytical model with the inclusion of tidal effects, Taffoni et al. (2003, hereafter T03) derived
a fitting formula for Tdf . However, their results are not well tested in simulations. Moreover, the
prediction of T03 is quantitatively inconsistent with the results of BK08 and J08.

In this paper, we use a semi-analytical model to study Tdf of a satellite. Our main motivation is
neither to get a consistent result with simulations or other models, nor to derive a reasonable Tdf ,
but rather to see how the model predictions are affected by various physical processes. This will
tell us which process dominates the predicted Tdf and how to interpret the discrepancies among the
previous studies. Our model is based on Taylor & Babul (2001) and Zentner & Bullock (2003), but
with a few modifications. The paper is organized as follows. In Section 2, we review the previous
results. We introduce our model in Section 3, and compare our model predictions with previous
works in Section 4. We briefly summarize and conclude in Section 5.

2 PREVIOUS RESULTS

2.1 Set Up of Initial Conditions

The first step in modeling the evolution of a satellite is to set its initial conditions, including the
orbital energy, angular momentum and initial position. The satellite is assumed to start its orbit at
the virial radius, Rvir, from the host halo. It has an initial orbital energy equal to that of a circular
orbit of radius ηRvir, and the initial specific angular momentum of the satellite is parameterized as
j(0) = εjc, where jc is the specific angular momentum of the circular orbit mentioned above and
ε is the orbital circularity (note that 0 ≤ ε ≤ 1). In the following, we use Rm to denote the initial
mass ratio between the host and satellite halo, i.e. Rm = Mh(0)/Ms(0).

2.2 Previous Results

Here we briefly review the previous studies on Tdf from analytical models or N -body simulations.
Using Chandrasekhar’s formula, BT87 derived an expression of Tdf for a satellite starting with a
circular orbit in an isothermal distributed host halo as

Tdf,BT87 =
1.17
ln Λ

Rmτdyn, (1)

where τdyn is the dynamical time Rvir/Vvir, and ln Λ is the Coulomb logarithm.
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Taking into account the dependence on the orbital circularity, LC93 obtained that

Tdf,LC93 =
ε0.78

0.855
Rm

ln Λ
η2τdyn. (2)

Note that in the above two equations, the satellite is treated as a rigid object without mass loss.
With the help of N -body simulations, C99 derived Tdf for an amorphous satellite to be

Tdf,C99 = 1.2ε0.4 Rm

fm ln Λ
η2τdyn, (3)

where fm refers to the remaining fraction of satellite mass due to tidal stripping. Note that C99 only
considers minor mergers. It is difficult to use this formula as the Tdf depends on the presumed value
for fm.

Using a semi-analytical model, T03 derived their fitting formulas for Tdf and they were updated
by Monaco et al. (2007). Their model has incorporated the effect of tides, but they ignored this effect
for large satellites (with mass R−1

m > 0.1). Here we omit the complex formula of T03.
Using smoothed-particle hydrodynamical simulations with gas cooling and star formation in a

cosmological context, J08 fitted their results with Tdf as

Tdf, J08 =
0.9ε0.47 + 0.6

0.855
Rm

ln(1 + Rm)
√

ητdyn. (4)

BK08 considered controlled N -body simulations for two halo mergers. They gave the fitting
formula of Tdf as

Tdf, BK08 = 0.216e1.9ε R1.3
m

ln(1 + Rm)
ητdyn. (5)

In Figure 1, we show Tdf as a function of satellite mass and orbital circularity2 predicted by
LC93, T03, J08 and BK08. For a full comparison with other results, we choose ln Λ = ln(1 + Rm)
in the formula of LC93. It can be seen that all results show a clear trend that Tdf decreases with
increasing satellite mass, but Tdf increases with orbital angular momentum and energy. However,
the discrepancies among different studies are still remarkable. For example, the results of BK08
and J08 are longer than those of T03 and LC93. T03 agrees well with LC93 for large satellites
(R−1

m > 0.1), but disagrees for small satellites. The results of BK08 exhibit a steeper dependence on
ε than other results.

3 MODELING A SINKING SATELLITE

This section describes the dynamical evolution of a satellite based on the model of Taylor & Babul
(2001); Zentner & Bullock (2003). In Section 3.1, we introduce the model of the mass distribution of
a dark matter halo. Then we describe the physical processes governing the orbital and mass evolution
of the satellite. These processes can be independently implemented into the model, which allows us
to investigate the effect of any specific process by tuning its free parameter.

3.1 Halo Properties

The dark matter halo is a gravitational self-bound system. We express the size of the halo in terms
of its virial mass Mvir and virial radius Rvir, which is defined as the radius within which the mean
mass density of the halo is 200 times the critical density (ρc) of the universe at z = 0 (e.g., Mo et

2 Throughout this paper, we keep the orbital energy fixed at η = 1.0 to reduce the number of free model parameters.
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Fig. 1 Dynamical friction timescale of a sinking satellite predicted by the formulas of Lacey & Cole
(1993, LC93), Taffoni et al. (2003, T03), Boylan-Kolchin et al. (2008, BK08) and Jiang et al. (2008,
J08). The six panels show the dependence on the orbital circularity ε, and each panel shows the
dependence on the initial mass ratio between the satellite and host halo. In the results of LC93, we
adopt ln Λ = ln(1 + Rm), as used by T03, BK08 and J08. In all cases, η = 1.0.

al. 1998). The Hubble constant is adopted to be H0 = 100 h km s−1 Mpc−1 with h = 0.7 (BK08).
The dynamical timescale can be described as

τdyn =
Rvir

Vvir
=

(
R3

vir

GMvir

)1/2

= 0.1H−1
0 � 1.40 Gyr, (6)

where Vvir is the virial velocity of a halo.
For simplicity, the dark matter halo is usually treated as a spherically symmetric system, and a

simple formalism for the halo density profile is the profile of a singular isothermal sphere (hereafter,
ISO profile), which can be described by (e.g., Mo et al. 1998)

ρ(r) =
V 2

vir

4πGr2
, (7)

and

M(< r) =
V 2

vir

G
r. (8)

As measured by N -body simulations, the halo density profile can be well described by the NFW
profile (Navarro et al. 1997)

ρ(r) =
δ0ρc

(r/rs)(1 + r/rs)2
, (9)

with rs the scale radius, and δ0 the characteristic overdensity. From the definition of virial radius,
we can find the characteristic overdensity of δ0 = 200c3/[3g(c)], where c = Rvir/rs is the halo
concentration parameter, and g(x) = ln(1 + x) − x/(1 + x). For the NFW profile, the halo mass
enclosed by radius r is

M(< r) = Mvir
g(r/rs)

g(c)
. (10)
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The halo concentration is tightly correlated to its mass, and we use the median relation of c ∼ M as
measured by Neto et al. (2007)

c(M) = 4.67
(

M

1014h−1M�

)−0.11

. (11)

Note that there are still existing debates regarding the inner shape of the NFW profile (e.g.,
Fukushige & Makino 2001; Navarro et al. 2004; Stoehr 2006; Springel et al. 2008). Varying the
shape of the NFW profile or using other halo profiles [e.g., ISO profile; Hernquist profile (Hernquist
1990)] may derive a different Tdf . However, the simulation of BK08 indicated that using a different
halo profile led to a change in Tdf of only 5% (see BK08 for more details).

Except for Section 4.1, where the ISO profile is adopted to compare the model predictions with
the analytical results of LC93, we use the NFW profile from other studies in this paper. When the
tidal effects are considered, the satellite halo has an NFW profile at the time of entering (t = 0), and
this profile is subsequently modified due to tidal heating, as described in Section 3.4.

In our studies, we select the host halo mass to be 1012M�, which is the typical mass used to
derive the Tdf (BK08, J08, C99). We have also tested that the predicted Tdf has a negligible effect
on the host halo mass once the mass ratio Rm is fixed.

3.2 Dynamical Friction

The satellite will sink into the halo center due to dynamical friction force which is caused by the
gravitational interactions between the satellite and the background ‘field’ particles that make up the
host halo (for a complete description, see BT87). This effect was first discussed by Chandrasekhar
(1943), and the force generated by the field particles is known as the Chandrasekhar dynamical
friction. By assuming that the field particles locally follow a Maxwellian velocity distribution, BT87
gave the formula of dynamical friction to be

F df = −4πG2M2
s ln Λ ρ(r)

[
erf(X) − 2X√

π
e−X2

]
vorb

v3
orb

, (12)

where vorb is the orbital velocity of the satellite, and X = vorb/[
√

2σ(r)] with σ(r) the local,
one-dimensional velocity dispersion of the host halo at radius r, which can be solved from the
Jeans equation (BT87, Cole & Lacey 1996). For the ISO profile, σ(r) ≡ Vvir/

√
2; for the NFW

profile, we use the fitting formula of σ(r) from Zentner & Bullock (2003). We choose the Coulomb
logarithm ln Λ = ln(1 + Rm), as used by T03, J08 and BK08.

Equation (12) was derived with the idealized assumption that the velocity distribution of dark
matter particles is Maxwellian and isotropic. Although there are debates about whether this assump-
tion is reasonable (e.g., Manrique et al. 2003; Williams et al. 2004; Salvador-Solé et al. 2005;
Bellovary et al. 2008), in this paper, we follow most authors (e.g., LC93; C99; T03; Zentener &
Bullock 2003; Fellhauer & Lin 2007; BK08) and adopt the Maxwellian, isotropic velocity distribu-
tion. There are also simulations showing that this assumption is a good approximation (e.g., Cole &
Lacey 1996; Sheth 1996; Seto & Yokoyama 1998; Kang et al. 2002; Hayashi et al. 2003).

3.3 Tidal Mass Stripping

For an amorphous satellite, the tidal force from the host halo will strip its mass. The tidal radius, rt,
is the distance from the center of the satellite to the radius where the external differential force from
the host halo exceeds the binding force of the satellite. The tidal radius can simply be solved from
the following equation (von Hoerner 1957; King 1962; Taylor & Babul 2001):

r3
t =

GMs(< rt)
ω2 + G [2Mh(< r)/r3 − 4πρh(r)]

, (13)
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with ω being the angular speed of the satellite and ρh(r) the density profile of the host halo. The
mass outside rt becomes unbound and is gradually stripped. Taylor & Babul (2001) suggested the
unbound mass is stripped at the rate

dMs

dt
= −Ms(> rt)

Torb
, (14)

with Torb the instantaneous orbital period (i.e., Torb = 2π/ω), which is assumed to be the mass
stripping timescale.

There are some uncertainties in the above mechanisms of mass stripping. (i) The tidal radius
cannot be characterized by a single radius, since the zero-velocity surface (the surface defined by the
tidal radius, see BT87) is not spherical. (ii) The perturbation of particles within the satellite may lead
to scatter in ω, and the zero-velocity surface is actually a shell of ‘non-zero’ thickness; this effect
is ignored in Equation (13). So the solution of Equation (13) is only an approximation for the tidal
radius. (iii) The stripped mass from a satellite still remains in the vicinity of the satellite, and the
interaction between the stripped and unstripped mass will perturb the satellite’s orbit and affect the
mass loss (e.g., Fellhauer & Lin 2007).

Owing to these uncertainties, numerical simulations have generated a debate on how fast the
unbound mass is stripped from the satellite. Zentner et al. (2005) and Diemand et al. (2007) found
a stripping timescale 3.5 and 6 times shorter than Torb, respectively. It was also pointed out that
the stripping timescale is dependent on the satellite’s internal structures (Kazantzidis et al. 2004;
Kampakoglou& Benson 2007). In general, the mass loss rate can be described using a free parameter
α as

dMs

dt
= −α

Ms(> rt)
Torb

, (15)

where α describes the efficiency of tidal stripping. In Section 4.2, we will show how Tdf depends
on α.

3.4 Tidal Heating

During the pericentric passage of the satellite’s orbit, the gravitational field changes rapidly, and
this induces a gravitational shock that can add energy to the satellite (e.g., Gnedin & Ostriker 1997,
1999). This effect is called tidal heating. It has been found from N -body simulations (e.g., Hayashi
et al. 2003; Kravtsov et al. 2004) that tidal heating will expand the satellite and reduce its inner mass
profile. Hayashi et al. (2003) introduced a modified NFW profile to describe the density distribution
of a tidally heated satellite according to

ρ(r) =
ft

1 + (r/rte)3
ρNFW(r) , (16)

where
lg ft = −0.007 + 0.35xm + 0.39x2

m + 0.23x3
m , (17)

and
lg

rte

rs
= 1.02 + 1.38xm + 0.37x2

m . (18)

In Equation (16), ρNFW(r) is the original NFW density profile of the satellite at the time it enters
the larger halo (t = 0), ft describes the reduction in the central density of the satellite, and rte is
the ‘effective’ tidal radius that describes the outer cutoff imposed by the tides. In Equations (17) and
(18), xm = lg[Ms(t)/Ms(0)] is the logarithm of the remaining fraction of satellite mass, and rs is
the scale radius of the satellite with the NFW profile at t = 0. As shown by Hayashi et al. (2003),
ft and rte are well fitted by the function xm. Both ft and rte decrease with time while a satellite is
losing mass.
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3.5 Orbital Evolution

Here we explicitly present the equations to solve the orbit [x(r, θ)] of the satellite under the influence
of gravity and dynamical friction. The equation of motion for the satellite is given by

d2x

dt2
= −GMh(< r)

r3
r +

F df

Ms
(19)

with Mh(< r) the mass of the host halo inside of radius r, and F df the dynamical friction force given
by Equation (12). The orbital energy and angular momentum of the satellite will decay due to the
dynamical friction since it is always opposite to the direction of motion. We define the satellite to be
merged with its host’s center when it loses all of its angular momentum, and Tdf is the time interval
between accretion and merger 3 (as also used by BK08). The equation of motion and Equation (15)
are solved using the fifth-order Cash-Karp Runga-Kutta method, in which an adaptive step-size
control is embedded.

4 RESULTS

4.1 Examination on a Rigid Satellite

First we validate our model by comparing the predicted Tdf with the LC93 result for a rigid satellite.
LC93 derived Tdf using Equation (12) and the ISO profile for the host halo. In our model, we simply
set α = 0 to ‘close’ the tidal stripping and tidal heating effect, and we model the host halo with both
the NFW profile and ISO profile.

In Figure 2, we show Tdf as a function of R−1
m and ε for a rigid satellite, with Tdf normalized

to its value when Rm = 20 and ε = 1, respectively. As indicated, our results in the NFW (solid
line) and ISO (dashed line) models both have the same dependences as predicted by LC93. On
the other hand, the amplitudes of Tdf from the models also agree well with the results of LC93,
which is demonstrated in Figure 3. The differences resulting from varying halo profiles are small
and negligible, which is the same conclusion as reached by BK08.
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Fig. 2 Dependence of Tdf on satellite mass (left panel) and orbital circularity (right panel) for a rigid
satellite, where Tdf is normalized to its value when Rm = 20 and ε = 1, respectively. The model
with α = 0 means that a rigid satellite is considered. The results in solid lines are computed with the
NFW profile, while the dashed lines show the results with the ISO profile. Both model predictions
match well with LC93’s (dotted line).

3 Some authors (e.g., Kravtsov et al. 2004; Zentner et al. 2005) define a satellite to be merged with the host halo when its
distance to the host center is less than a fiducial radius. We find that different definitions have no significant effects.
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Fig. 3 Comparison of Tdf between our model (α = 0) and LC93 (dotted line) for a rigid satellite.
The Tdf with the NFW profile (solid line) and ISO profile (dashed line) both agree well with LC93’s
prediction, and they agree for all orbital circularities, although only ε values with 0.1, 0.5, and 1.0
are given here.
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Fig. 4 Dynamical friction timescale (Tdf ) predicted by our model. The lines with increasing thick-
ness show the effects of tidal stripping efficiency (α = 1, 2, 3). The Tdf is a strong function of α.

4.2 Dependence on Tidal Stripping Efficiency α

In this section, we study the effects of tidal stripping efficiency (α). In Figure 4, we show the pre-
dicted Tdf with different values of α. A larger value of α corresponds to a stronger tidal field or a
rapid mass loss from the satellite. The results show a remarkable trend that the Tdf is increased when
the tidal field becomes stronger. The reason can be seen from Figure 5 which shows the evolution
of satellite mass and specific angular momentum with dependence on α. The initial conditions are
set to Rm = 10, ε = 0.5, and η = 1.0. The left panel shows that a stronger tidal field will induce
more mass loss from the satellite, and this effect is more distinct at the beginning. As seen from
Equation (12), the amplitude of dynamical friction has a strong dependence on the mass of the satel-
lite (Fdf ∝ M2

s ). So a stronger tidal stripping will lead to a slower decay of the satellite’s angular
momentum and will result in a longer dynamical friction timescale, as shown in the right panel of
Figure 5.
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ε = 0.5, and η = 1.0. Strong tidal effects reduce the amplitude of dynamical friction and decelerate
the loss of angular momentum.
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Fig. 6 Comparison of the evolution of a satellite’s specific angular momentum between our model
and BK08, with three cases of initial masses and orbits as indicated. The solid lines with increasing
thickness are the model results with α = 1, 2, 3, while the dashed line is the result from fig. 1 of
BK08. The tidal stripping efficiency in the simulation of BK08 should be stronger than that in a
model with α = 1.

As shown in Figure 1, the predicted Tdf values from the previous results quantitatively disagree
with each other. We believe that the main discrepancy is a result of the treatment of tidal stripping,
and we discuss it in more detail in the following.

– T03 ignored the tidal effects for a massive satellite (with mass R−1
m > 0.1), and so their Tdf val-

ues are consistent with LC93’s. However, T03 predicted a longer Tdf for a low-mass satellite
which suffers from tidal stripping.

– The Tdf values inferred by J08 and BK08 are longer than those of T03. This is because T03
adopted a tidal stripping efficiency that is different from those in N -body simulations. T03 also
used Equation (15) to describe the mass loss, but with α = 1.0 which is too low. As shown
by Zentner et al. (2005), a higher value than α = 3.5 is required to better fit the satellite mass
function from simulations (also see Gan et al. 2010). A higher value of α is also favored from
Figure 6 where we compare the evolution of a satellite’s specific angular momentum from our
model (solid lines) with the simulation results of BK08 (dashed lines). We find that α = 2 can
better match the simulation results. Thus, the lower value of α used by T03 explains why they
obtained a lower Tdf .
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– The Tdf of J08 is longer than that of BK08 for an eccentric orbit (i.e., low ε)4. The simulation
of J08 includes the process of gas cooling and star formation. The halo of a satellite is expected
to contract in response to the cooling of gas (e.g., Gnedin et al. 2004; Abadi et al. 2010). During
the pericentric passage, the satellite with halo contraction is resistant to the strong tidal field,
and will survive for a longer time (e.g., Weinberg et al. 2008; Dolag et al. 2009). Instead, BK08
performs a higher resolution simulation, in which the satellite can avoid the artificial mass loss
due to the numerical effects. So the satellite will deposit more mass in the eccentric orbit and
will suffer stronger dynamical friction.

4.3 Dependence on Orbital Circularity ε

The previous results showed a similar dependence of Tdf on the initial satellite mass, but very differ-
ent dependences on the orbital circularity [Equations (2)–(5)]. For example, BK08 found an expo-
nential dependence of Tdf on the the orbital circularity, while others found a power-law dependence.
Here we investigate this problem using our model with α = 1. We compute the Tdf as a function
of ε for a minor merger (R−1

m = 0.05) and a major merger (R−1
m = 0.3), as shown in Figure 7. We

find that the dependence for the minor merger can be fitted to a power law, Tdf ∝ ε0.4, as predicted
by C99 (long-dashed). For the major merger, the dependence is close to the result of BK08, who
found an exponential law of Tdf ∝ exp(1.9ε). It is not a surprise because C99 only considers minor
mergers while BK08 has more samples for the major mergers. Thus, we argue that the dependence
on orbital circularity is mainly determined by the distribution of mass ratios between the satellite
and host halo.
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Fig. 7 Dependence of Tdf on orbital circularity for an amorphous satellite (α = 1). For a minor
merger (triangle), with R−1

m = 0.05, the result shows a power-law dependence, which is similar to
that of C99 (long-dashed line), while for a major merger (square), with R−1

m = 0.3, it indicates an
exponential dependence, which is close to that of BK08 (short-dashed line).

5 CONCLUSIONS AND DISCUSSION

In this paper, we study the dynamical friction timescale (Tdf) of a satellite sinking into a host halo.
Previous results using analytical models or simulations generally agree that the Tdf is correlated

4 The results of BK08 and J08 also differ for a small satellite with large ε, for which the Tdf values, however, are
extrapolated by their formulas and exceed the Hubble time.
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with the mass, orbital circularity and energy of the satellite, but disagree on the amplitude of Tdf and
the dependence of Tdf on orbital circularity. It was unclear what contributes to these discrepancies
among the different studies.

Aiming at interpreting these different dependences, we use a semi-analytical model similar to
that of Taylor & Babul (2001) and Zentner & Bullock (2003) to derive the Tdf . Our model considers
the main physical processes governing the evolution of a satellite: dynamical friction, tidal stripping,
tidal heating and merging. All these processes are independently described by free parameters, and
it allows us to investigate the dependence of Tdf on any process.

First, we apply our model to a rigid satellite by ‘turning off’ the tidal stripping and tidal heating
(i.e. α = 0). The model predictions agree well with LC93’s result of the amplitude of Tdf and its
dependences on satellite mass and orbital circularity. Then we study the dependence of Tdf on the
tidal stripping efficiency. We find that Tdf depends strongly on α, with the trend that Tdf increases
with increasing α. A higher α leads to rapid loss of mass from the satellite, then decreases the
dynamical friction force. Thus this results in a slower decay of angular momentum and a longer
Tdf . We believe that the main reason for the diversity of the previous results is the treatment of tidal
stripping.

We also study the dependence of Tdf on orbital circularity (ε). We find that for low mass-
ratio mergers (Ms/Mh < 0.1), Tdf is a power law of orbital circularity, but for massive mergers
(Ms/Mh > 0.1), the dependence of Tdf on orbital circularity is exponential. Thus, we argue that
the dependence on ε obtained by different studies is determined by their samples, in which the mass
ratio between the satellite and host halo is crucial.

In this paper, we do not model the effects of baryons, since it is difficult to include in the physical
processes governing galaxy formation, and it is still not clear how the dark matter halo will respond
to the baryon at the host halo center.

The major effect of the baryons is to modify the density profile of the dark matter halo. There are
still debates about how the baryon will change the central concentration of the halo. Some found that
central density increases (e.g., Blumenthal et al. 1986; Gnedin et al. 2004), but others disagreed with
this assertion. Gnedin et al. (2004) found that the halo will become more concentrated as baryons
condense in the radiative cooling, and the contraction of the halo depends on the amount of baryons.
Moreover, Abadi et al. (2010) found that the response of halo contraction depends not only on how
much baryon mass has been deposited by the halo, but also on the mode of its deposition (also see
Tissera et al. 2010). They showed that strong feedback by supernovae can significantly decrease the
central density of the halo (also see Pedrosa et al. 2009; Governato et al. 2010). The variation of
Tdf is about 20% when csat/chost changes between 1 and 2 (T03; BK08).

There are also some studies showing that the dark matter haloes have constant density cores
(e.g., Gilmore et al. 2007; de Blok et al. 2008; Kuzio de Naray et al. 2009; Gebhardt & Thomas
2009; Hernandez & Lee 2010), which can significantly suppress the effect of dynamical friction
(e.g., Sánchez-Salcedo et al. 2006; Inoue 2009). However, the typical size of the constant density
core in the dark matter halo is usually less than 1 kpc (e.g., de Blok et al. 2008). The effect of the
constant density core may be remarkable for the evolution of globular clusters in a dwarf galaxy (e.g.,
Sánchez-Salcedo et al. 2006), but not for the evolution of a satellite halo in a Milky-Way sized halo.
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