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Abstract The deconfinement phase transition from hadronic matter to quark matter
in the interior of compact stars is investigated. The hadronic phase is described in the
framework of relativistic mean-field theory, where the scalar-isovector δ-meson effec-
tive field is also taken into account. The MIT bag model for describing a quark phase
is used. The changes of the parameters of phase transition caused by the presence of
a δ-meson field are explored. Finally, alterations in the integral and structural param-
eters of hybrid stars due to both a deconfinement phase transition and inclusion of a
δ-meson field are discussed.
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1 INTRODUCTION

The structure of compact stars functionally depends on the equation of state (EOS) of matter in a
sufficiently wide range of densities, from 7.9 g cm−3 (the endpoint of thermonuclear burning) to
one order of magnitude higher than nuclear saturation density. Therefore, the study of properties
and composition of the constituents of matter in the extremely high density region is of great in-
terest in both nuclear and neutron star physics. The relativistic mean-field (RMF) theory (Walecka
1974; Serot & Walecka 1986, 1997) has been effectively applied to describe the structure of finite
nuclei (Lalazissis et al. 1997; Typel & Wolter 1997), the features of heavy-ion collisions (Ko & Li
1996; Prassa et al. 2007), and the equation of state (EOS) of nuclear matter (Müller & Serot 1995).
Inclusion of the scalar-isovector δ-meson in this theoretical scheme and investigation of its influence
on low density asymmetric nuclear matter was performed in Refs. Kubis & Kutschera (1999); Liu
et al. (2002); Greco et al. (2003). At sufficiently high density, different exotic degrees of freedom,
such as pion and kaon condensates, in addition to deconfined quarks, may appear in the strongly
interacting matter. The modern concept of a hadron-quark phase transition is based on the feature of
that transition, that is the presence of two conserved quantities in this transition: baryon number and
electric charge (Glendenning 1992). It is known that, depending on the value of surface tension σs,
the phase transition of nuclear matter into quark matter can occur in two scenarios (Heiselberg et al.
1993; Heiselberg & Hjorth-Jensen 2000): ordinary first order phase transition with a density jump
(Maxwell construction), or formation of mixed hadron-quark matter with a continuous variation of
pressure and density (Glendenning construction) (Glendenning 1992). Uncertainty of the surface
tension values does not allow us to determine the phase transition scenario, which actually takes
place. In our recent paper (Alaverdyan 2009a), under the assumption that the transition to quark
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matter is a usual first-order phase transition, which can be described by the Maxwell construction,
we have shown that the presence of the δ-meson field leads to the decrease of transition pressure P0

and coexistence of baryon number densities nN and nQ.
In this article, we investigate the hadron-quark phase transition of neutron star matter, when

the transition proceeds through a mixed phase. The calculation results of the mixed phase struc-
ture (Glendenning construction) are compared with the results of a usual first-order phase transition
(Maxwell construction). Also, the influence of a δ-meson field on phase transition characteristics is
discussed. Finally, using the EOS obtained, we calculate the integral and structural characteristics of
neutron stars with quark degrees of freedom.

2 EQUATION OF STATE OF NEUTRON STAR MATTER

2.1 Nuclear Matter

In this section, we consider the EOS of matter in the region of nuclear and supranuclear density
(n ≥ 0.1 fm−3). For the lower density region, corresponding to the outer and inner crust of the star,
we have used the EOS of Baym-Bethe-Pethick (BBP) (Baym et al. 1971). To describe the hadronic
phase we use the relativistic nonlinear Lagrangian density of a many-particle system consisting of
nucleons (p, n), electrons and isoscalar-scalar (σ), isoscalar-vector (ω), isovector-scalar (δ), and
isovector-vector (ρ) - exchanged mesons 1

L = ψN[γμ(i∂μ − gωωμ(x) − 1
2
gρτNρμ(x)) − (mN − gσσ(x) − gδτNδ(x))]ψN

+
1
2
(∂μσ(x)∂μσ(x) −mσσ(x)2) − U(σ(x)) +

1
2
m2

ωω
μ(x)ωμ(x) − 1

4
Ωμν(x)Ωμν(x)

+
1
2
(∂μδ(x)∂μδ(x) −m2

δδ(x)2) +
1
2
m2

ρρ
μ(x)ρμ(x) − 1

4
�μν(x)�μν(x)

+ ψe(iγ
μ∂μ −me)ψe , (1)

where x = xμ = (t, x, y, z), σ(x), ωμ(x), δ(x), and ρμ(x) are the fields of the σ, ω, δ, and ρ
exchange mesons, respectively, U(σ) is the nonlinear part of the potential of the σ-field, given by
Boguta & Bodmer (1977)

U(σ) =
b

3
mN(gσσ)3 +

c

4
(gσσ)4, (2)

mN, me, mσ , mω, mδ and mρ are the masses of the free particles, ψN =
(
ψp

ψn

)
is the isospin

doublet for nucleonic bispinors, and τ are the isospin 2 × 2 Pauli matrices. The bold face type
denotes vectors in isotopic spin space. This Lagrangian also includes antisymmetric tensors of the
vector fields ωμ(x) and ρμ(x) given by

Ωμν (x) = ∂μων (x) − ∂νωμ (x) , �μν (x) = ∂μρν (x) − ∂νρμ (x) . (3)

In the RMF theory, the meson fields σ (x), ωμ (x), δ (x) and ρμ (x) are replaced by the effective
mean-fields σ, ωμ , δ and ρμ.

This Lagrangian density (1) contains the meson-nucleon coupling constants, gσ, gω, gρ and
gδ, as well as parameters of the σ-field self-interacting terms b and c. In our calculations, we take
aδ = (gδ/mδ)

2 = 2.5 fm2 for the δ coupling constant, as given in Refs. Liu et al. (2002); Greco et al.
(2003); Alaverdyan (2009a); for the bare nucleon massmN = 938.93 MeV, for the nucleon effective
massm∗

N = 0.78mN, for the baryon number density at saturation n0 = 0.153 fm−3, for the binding

1 We use the natural system of units with h̄ = c = 1.
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energy per baryon f0 = −16.3MeV, for the incompressibility modulus K = 300MeV, and for the
asymmetry energy E(0)

sym = 32.5MeV. Five other constants, aσ = (gσ/mσ)2, aω = (gω/mω)2,
aρ = (gρ/mρ)

2, b and c, can then be numerically determined (Alaverdyan 2009b).
In Table 1 we list the values of the model parameters with and without the isovector-scalar δ

meson interaction channel (The models RMFσωρδ and RMFσωρ, respectively).

Table 1 Model Parameters with and without a δ -Meson Field

aσ ( fm2) aω ( fm2) aδ ( fm2) aρ ( fm2) b (10−2 fm−1) c (10−2)

RMFσωρδ 9.154 4.828 2.5 13.621 1.654 1.319
RMFσωρ 9.154 4.828 0 4.794 1.654 1.319

The knowledge of the model parameters makes it possible to solve the set of four equations in a
self-consistent way and to determine the re-denoted mean-fields, σ ≡ gσσ̄, ω ≡ gωω̄0, δ ≡ gδ δ̄

(3),
and ρ ≡ gρρ̄0

(3), depending on baryon number density n and asymmetry parameter α = (nn −
np)/n. Here δ̄(3) and ρ̄0

(3) are the third isospin components of corresponding mean-fields. The
standard QHD procedure allows us to obtain expressions for energy density ε(n, α) and pressure
P (n, α) of nuclear npe plasma
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where μe is the chemical potential of electrons,

m∗
p(σ, δ) = mN − σ − δ, m∗

n(σ, δ) = mN − σ + δ (6)

are the effective masses of the proton and neutron, respectively, and

k±(n, α) =
[
3π2n

2
(1 ± α)

]1/3

. (7)
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Fig. 1 Asymmetry parameter as a function of
the baryon number density n for a β-equilibrium
charge-neutral npe -plasma. The solid and dotted
lines correspond to the RMFσωρδ and RMFσωρ
models, respectively.

Fig. 2 Re-denoted meson mean-fields as a
function of the baryon number density n in case
of a β-equilibrium charge-neutral npe-plasma
with and without the δ-meson field. The solid
and dashed lines correspond to the RMFσωρδ
and RMFσωρ models, respectively.

The chemical potentials of the proton and neutron are given by

μp(n, α) =
√

[k−(n, α)]2 +
[
m∗

p(σ, δ)
] 2 + ω +

1
2
ρ, (8)

μn(n, α) =
√

[k+(n, α)]2 + [m∗
n(σ, δ)] 2 + ω − 1

2
ρ. (9)

In Figure 1, we show the asymmetry parameter α for the β-equilibrium charge-neutral npe-
plasma as a function of the baryon number density, n (Alaverdyan 2009a). The solid and dotted lines
correspond to the RMFσωρδ and RMFσωρ models, respectively. One can see that the asymmetry
parameter falls off monotonically with the increase of baryon number density n. For a fixed baryon
number density n, the inclusion of the δ-meson effective field reduces the asymmetry parameter α.
The presence of a δ-field reduces the neutron density nn and increases the proton density np.

In Figure 2, we plot the effective mean-fields of exchanged mesons, σ, ω, ρ and δ, as a function
of the baryon number density n for the charge-neutral β-equilibrium npe-plasma. The solid and
dashed lines correspond to the RMFσωρδ and RMFσωρ models, respectively.

From Figures 1 and 2, one can see that the inclusion of the scalar-isovector virtual δ(a0(980))
meson results in significant changes of species baryon number densities np and nn, as well as the
ρ and δ meson effective fields. This can result in changes of the deconfinement phase transition
parameters and, thus, alter the structural characteristics of neutron stars.

The results of our analysis show that the scalar - isovector δ-meson field inclusion leads to the
increase of the EOS stiffness of nuclear matter due to the splitting of proton and neutron effective
masses, and also to the increase of asymmetry energy (for details see Ref. Alaverdyan 2009a).
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2.2 Quark Matter

To describe the quark phase, an improved version of the MIT bag model (Chodos et al. 1974) is
used, in which the interactions between u, d and s quarks inside the bag are taken into account in the
one-gluon exchange approximation (Farhi & Jaffe 1984). The quark phase consists of three quark
flavors, u, d, and s, and electrons, which are in equilibrium with respect to weak interactions. We
choose mu = 5MeV, md = 7 MeV and ms = 150MeV for quark masses, and αs = 0.5 for the
strong interaction constant.

2.3 Deconfinement Phase Transition Parameters

There are two independent conserved charges in the hadron-quark phase transition: baryonic charge
and electric charge. The constituent chemical potentials of the npe-plasma in β-equilibrium are
expressed through two potentials, μ(NM)

b and μ(NM)
el , according to conserved charges as follows

μn = μ
(NM)
b , μp = μ

(NM)
b − μ

(NM)
el , μe = μ

(NM)
el . (10)

In this case, the pressure PNM, energy density εNM and baryon number density nNM are functions
of potentials, μ(NM)

b and μ(NM)
el .

The particle species’ chemical potentials for udse-plasma in β-equilibrium are expressed
through the chemical potentials μ(QM)

b and μ(QM)
el as follows

μu =
1
3

(
μ

(QM)
b − 2 μ(QM)

el

)
,

μd = μs =
1
3

(
μ

(QM)
b + μ

(QM)
el

)
, (11)

μe = μd − μu = μ
(QM)
el .

In this case, the thermodynamic characteristics, pressure PQM, energy density εQM and baryon

number density nQM are functions of chemical potentials μ(QM)
b and μ

(QM)
el .

The mechanical and chemical equilibrium conditions (Gibbs conditions) for the mixed phase are

μ
(QM)
b = μ

(NM)
b = μb, μ

(QM)
el = μ

(NM)
el = μel, (12)

PQM(μb, μel) = PNM(μb, μel). (13)

The volume fraction of the quark phase is

χ = VQM/ (VQM + VNM) , (14)

where VQM and VNM are volumes occupied by quark matter and nucleonic matter, respectively.
We applied the global electrical neutrality condition for mixed quark-nucleonic matter, which

according to Glendenning is (Glendenning 1992, 2000),

(1 − χ) [np(μb, μel) − ne(μel)]

+χ
[
2
3
nu(μb, μel) − 1

3
nd(μb, μel) − 1

3
ns(μb, μel) − ne(μel)

]
= 0. (15)

The baryon number density in the mixed phase is determined as

n = (1 − χ) [np(μb, μel) + nn(μb, μel)]

+
1
3
χ [nu(μb, μel) + nd(μb, μel) + ns(μb, μel)] , (16)
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and the energy density is

ε = (1 − χ) [εp(μb, μel) + εn(μb, μel)]
+ χ [εu(μb, μel) + εd(μb, μel) + εs(μb, μel)] + εe(μel). (17)

In the case of χ = 0, the chemical potentials μN
b and μN

el, corresponding to the lower threshold of
a mixed phase, are determined by solving Equations (13) and (15). This allows us to find the lower
boundary parameters PN, εN and nN. Similarly, we calculate the upper boundary values of mixed
phase parameters, PQ, εQ and nQ, for χ = 1. The system of Equations (13), (15), (16) and (17)
makes it possible to determine the EOS of the mixed phase between these critical states.

Note that in the case of an ordinary first-order phase transition, both nuclear and quark matter
are assumed to be separately electrically neutral, and at some pressure P0, corresponding to the
coexistence of the two phases, their baryon chemical potentials are equal, i.e.,

μNM (P0) = μQM (P0) . (18)

Such a phase transition scenario is known as a phase transition with constant pressure (Maxwell
construction).

Table 2 represents the parameter sets of the mixed phase with and without a δ-meson field. It
is shown that the presence of the δ-field alters the threshold characteristics of the mixed phase. For
B = 60MeV fm−3, the lower threshold parameters, nN, εN and PN, are increased; meanwhile the
upper ones, nQ, εQ and PQ, are slowly decreased. For B = 100MeV fm−3 this behavior changes
to the opposite.

Table 2 Mixed Phase Threshold Parameters with and without the δ -Meson Field for Bag Parameter
Values B = 60 MeV fm−3 and B = 100 MeV fm−3

Model nN nQ PN PQ εN εQ

(fm−3) (fm−3) (MeV fm−3) (MeV fm−3) (MeV fm−3) (MeV fm−3)

B60σωρδ 0.0771 1.083 0.434 327.745 72.793 1280.884
B60σωρ 0.0717 1.083 0.336 327.747 67.728 1280.889
B100σωρδ 0.2409 1.448 16.911 474.368 235.029 1889.336
B100σωρ 0.2596 1.436 18.025 471.310 253.814 1870.769

In Figures 3 and 4, we plot the EOS of compact star matter with the deconfinement phase tran-
sition for two values of the bag constant,B = 60MeV fm−3 and B = 100MeV fm−3, respectively.
The dotted lines correspond to pure nucleonic and quark matter without any phase transition, while
the solid lines correspond to two alternative phase transition scenarios. Open circles show the bound-
ary points of the mixed phase.

In Figure 5, we plot the particle species number densities as a function of baryon density n for
the Glendenning construction. Quarks appear at the critical density nN = 0.241 fm−3. The hadronic
matter completely disappears at nQ = 1.448 fm−3, where the pure quark phase occurs. The solid
lines correspond to the case when the δ- meson effective field is also taken into account in addition
to the σ, ω, and ρ meson fields (model B100 σωρδ). The dashed lines represent the results in the
case where we neglect the δ-meson field (model B100 σωρ). One can see that inclusion of the δ-
meson field leads to the increase of number densities of quarks and protons, and simultaneously to
the reduction of number densities of neutrons and electrons. In Table 2 we have already shown the
mixed phase boundaries changes, which are caused by the inclusion of the δ - meson effective field.

Figure 6 shows the constituents’ number density as a function of baryon number density n for
B = 100MeV fm−3, when phase transition is described according to the Maxwell construction.
The Maxwell construction leads to the appearance of a discontinuity. In this case, the charge neutral
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Fig. 3 EOS of neutron star matter with the decon-
finement phase transition for a bag constant B =
60 MeV fm−3. For comparison we plot both the
Glendenning and Maxwell constructions. Open
circles represent the mixed phase boundaries.

Fig. 4 Same as in Fig. 3, but for B=100
MeV fm−3.

Fig. 5 Constituents’ number density versus
baryon number density n for B=100 MeV fm−3

in the case of the Glendenning construction.
Vertical dotted lines represent the mixed phase
boundaries. The dashed lines show appropriate
results of the model without the δ-meson field.

Fig. 6 Same as in Fig. 5, but for the Maxwell con-
struction. Vertical dotted lines represent the den-
sity jump boundaries.
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nucleonic matter at baryon density n1 = 0.475 fm−3 coexists with the charge neutral quark matter at
baryon density n2 = 0.650 fm−3. Thus, the density range n1 < n < n2 is forbidden. In case of the
Maxwell construction, the chemical potential of electrons, μe, has a jump at the coexistence pressure
P0. Notice that such discontinuity behavior takes place only in a usual first-order phase transition,
i.e., in the Maxwell construction case.

3 PROPERTIES OF HYBRID STARS

Using the EOS obtained in the previous section, we calculate the integral and structural characteris-
tics of neutron stars with quark degrees of freedom.

The hydrostatic equilibrium properties of spherically symmetric and isotropic compact stars
in terms of general relativity are described by the Tolman-Oppenheimer-Volkoff (TOV) equations
(Tolman 1939; Oppenheimer & Volkoff 1939)

dP

dr
= −G

r2
(P + ε)(m+ 4πr3P )

1 − 2Gm/r
, (19)

dm

dr
= 4πr2ε, (20)

where G is the gravitational constant, r is the distance from the center of the star, m(r) is the mass
inside a sphere of radius r, and P (r) and ε(r) are the pressure and energy density at the radius
r, respectively. To integrate the TOV equations, it is necessary to know the EOS of neutron star
matter in a form ε(P ). Using the neutron star matter EOS obtained in the previous section, we have
integrated the TOV equations and obtained the gravitational mass M and the radius R of compact
stars (with and without quark degrees of freedom) for the different values of central pressure Pc.

Figures 7 and 8 illustrate the M(R) dependence of neutron stars for the two values of bag con-
stant B = 60MeV fm−3 and B = 100MeV fm−3, respectively. We can see that the behavior
of the mass-radius dependence significantly differs for the two types of phase transitions. Figure 7
shows that for B = 60MeV fm−3 there are unstable regions where dM/dPc < 0 between the two
stable branches of compact stars, corresponding to configurations with and without quark matter.
In this case, there is a nonzero minimum value of the quark phase core radius. Accretion of mat-
ter on a critical neutron star configuration will then result in a catastrophic rearrangement of the
star, forming a star with a quark matter core. The range of mass values for stars, containing the
mixed phase, is [0.085M�; 1.853M�] for B = 60MeV fm−3, and is [0.997M�; 1.780M�] for
B = 100 MeV fm−3. In the case of a Maxwellian type phase transition, the analogous range is
[0.216M�; 1.828M�] for B = 60MeV fm−3. From Figure 8, one can observe that in the case of
B = 100 MeV fm−3 the star configurations with deconfined quark matter are unstable. Thus, the
stable neutron star maximum mass is 1.894M�. Our analysis shows that for B = 100MeV fm−3,
the pressure upper threshold value for the mixed phase is larger than the pressure, corresponding
to the maximum mass configuration. Hence in this case, the mixed phase can exist in the center of
compact stars, but no pure quark matter can exist. The dash-dotted curve in Figure 8 represents the
results in the case when we neglect the δ-meson field (model B100 σωρ). One can see that for a
fixed gravitational mass, the star with the δ-meson field has a larger radius than the corresponding
star without the δ-meson field. The influence of the δ-meson field on the hybrid star properties is
demonstrated in Table 3, where we display the hybrid star properties with and without the δ-meson
field for minimum and maximum mass configurations. The results show that the minimum mass
of hybrid stars and the corresponding radius are increased with the inclusion of the δ-meson field.
Notice that the influence of the δ-meson field on the maximum mass configuration properties is
insignificant.
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Fig. 7 Mass-radius relation of a neutron star with
different deconfinement phase transition scenarios
for the bag constant B = 60 MeV fm−3. Open
circles and squares denote the critical configura-
tions for the Glendenning and Maxwellian type
transitions, respectively. Solid circles and squares
denote hybrid stars with minimal and maximal
masses, respectively.

Fig. 8 Same as in Fig. 7, but for B=100 MeV fm−3.
The mass-radius relation in the case of the
Glendennig construction without the δ-meson effec-
tive field is also displayed for comparison (dash-
dotted curve).

Table 3 Hybrid Star Critical Configuration Properties for B = 100 MeV fm−3 with
and without the δ-Meson Field

Minimum Mass Configuration Maximum Mass Configuration

Model εc Mmin R εc Mmax R
(MeV fm−3) (M�) (km) (MeV fm−3) (M�) (km)

B100σωρδ 235.029 0.997 14.354 1390.77 1.780 11.190
B100σωρ 253.814 0.955 13.960 1386.03 1.791 11.139

4 CONCLUSIONS

In this paper, we have studied the deconfinement phase transition of neutron star matter, when the
nuclear matter is described in the RMF theory with the δ-meson effective field. We show that the
inclusion of the scalar isovector δ-meson field terms leads to the stiff nuclear matter EOS. In a
nucleonic star, both the gravitational mass and corresponding radius of the maximum mass stable
configuration increases with the inclusion of the δ field. The presence of the scalar isovector δ-
meson field alters the threshold characteristics of the mixed phase. For B = 60MeV fm−3, the
lower threshold parameters, nN, εN, and PN, are increased, meanwhile the upper ones, nQ, εQ, and
PQ, are slowly decreased. For B = 100MeV fm−3, this behavior changes to the opposite.

In case of the bag constant value B = 100MeV fm−3, the pressure upper threshold value for
the mixed phase is larger than the pressure, corresponding to the maximum mass configuration. This
means that in this case, the stable compact star can possess a mixed phase core, but the density range
does not allow it to possess a pure strange quark matter core.
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Stars with a δ-meson field have a larger radius than stars of the same gravitational mass with-
out the δ-meson field. Alterations of the maximum mass configuration parameters caused by the
inclusion of the δ-meson field are insignificant.

For the bag constant value B = 60MeV fm−3, the maximum mass configuration has a
gravitational mass Mmax = 1.853M� with radius R = 10.71 km and central density ρc =
2.322 × 1015 g cm−3. This star has a pure strange quark matter core with radius rQ ≈ 0.83 km;
next it has a nucleon-quark mixed phase layer with a thickness of rMP ≈ 9.43 km, followed by a
normal nuclear matter layer with a thickness of rN ≈ 0.45 km.

Acknowledgements The author would like to thank Profs. Yu. L. Vartanyan and G. S. Hajyan for
fruitful discussions on issues related to the subject of this research. This work was partially supported
by the Ministry of Education and Sciences of the Republic of Armenia under grant 2008–130.

References

Alaverdyan, G. B. 2009a, Astrophysics, 52, 132
Alaverdyan, G. B. 2009b, Gravitation & Cosmology, 15, 5
Baym, G., Bethe, H. A., & Pethick, C. J. 1971, Nucl. Phys. A, 175, 225
Boguta J., & Bodmer, A. R. 1977, Nucl. Phys. A, 292, 413
Chodos, A., Jaffe, R. L., Johnson, K., Thorn, C. B., & Weisskopf, V. F. 1974, Phys. Rev. D, 9, 3471
Farhi, E., & Jaffe, R. L. 1984, Phys. Rev. D, 30, 2379
Glendenning, N. K. 1992, Phys. Rev. D, 46, 1274
Glendenning, N. K. 2000, Compact Stars: nuclear physics, particle physics, and general relativity / Norman

K. Glendenning (New York: Springer), 2000, (Astronomy and astrophysics library)
Greco, V., Colonna, M., Di Toro, M., & Matera, F. 2003, Phys. Rev. C, 67, 015203
Heiselberg, H., Pethick, C. J., & Staubo, E. F. 1993, Phys. Rev. Lett., 70, 1355
Heiselberg, H., & Hjorth-Jensen, M. 2000, Phys. Rep., 328, 237
Ko, C. M., & Li, G. Q. 1996, Journal of Physics G Nuclear Physics, 22, 1673
Kubis, S., & Kutschera, M. 1997, Phys. Lett. B, 399, 191
Lalazissis, G. A., Konig, J., & Ring, P. 1997, Phys. Rev. C, 55, 540
Liu, B., Greco, V., Baran, V., Colonna, M., & Di Toro, M. 2002, Phys. Rev. C, 65, 045201
Müller, H., & Serot, B. D. 1995, Phys. Rev. C, 52, 2072
Oppenheimer, J., & Volkoff, G. 1939, Phys. Rev. 55, 374
Prassa, V., Ferini, G., Gaitanos, T., Wolter, H. H., Lalazissis, G. A., & Di Toro, M. 2007, Nuclear Physics A,

789, 311
Serot, B. D., & Walecka, J. D. 1986, in Adv. in Nucl. Phys., eds. J. W. Negele, & E. Vogt, 16
Serot, B. D., & Walecka, J. D. 1997, Int. J. Mod. Phys. E, 6, 515
Tolman, R. 1939, Phys. Rev. 55, 364
Typel, S., & Wolter, H. H. 1999, Nucl. Phys. A 656, 331
Walecka, J. D. 1974, Ann. Phys., 83, 491


