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Abstract Theoretically, stars formed from the collapse of cores in molecular clouds.
Historically, the core had been assumed to be a singular isothermal sphere (SIS), and
the collapse had been investigated in a self-similar manner. When the rotation and
magnetic fields lead to non-symmetric collapse, a spheroidal shape may occur. Here,
the result of the centrifugal force and magnetic field gradient is assumed to be in
the normal direction to the rotational axis, and its components are supposed to be
a fraction (3 of the local gravitational force. In this research, a collapsing SIS core
is considered to find the importance that the parameter 3 plays in the oblateness of
the mass shells, which are the crests of the expansion waves. We apply the Adomian
decomposition method to solve the system of nonlinear partial differential equations
because the collapse does not occur in a spherically symmetric and self-similar man-
ner. In this way, we obtain a semi-analytical relation for the mass infall rate M of
the shells in the envelope. Near the rotational axis, M decreases with the ipcrease of
the non-dimensional radius &, while a direct relation is observed between M and § in
the equatorial regions. Also, the values of M in the polar regions are greater than their
equatorial values, and this difference occurs more often at smaller values of €. Overall,
the results show that before reaching the crest of the expansion wave, the visible shape
of the molecular cloud cores can evolve into oblate spheroids. The ratio of major to
minor axes of oblate cores increases when increasing the parameter (3, and its value
can approach the observed elongated shapes of cores in the maps of molecular clouds,
such as those in Taurus and Perseus.
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1 INTRODUCTION

A great deal is now known about dense cores in molecular clouds that are the progenitors of proto-
stars (e.g., di Francesco et al. 2007; Ward-Thompson et al. 2007). We know that, approximately, all
cores in the maps of molecular clouds seem to be elongated rather than spherical. For example, we
can refer to the recent work of Curtis & Richer (2010) for the two-dimensional ellipticity of cores
in the Perseus molecular cloud, or to the old report of Myers et al. (1991) for the apparent elongated
shapes of cores in the Taurus maps. Overall, the observations show that, on average, the ratios of the
major to minor axes of cores vary between approximately 1.2 to 2 with a mean value of ~ 1.6.
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Determining the exact three-dimensional shape of a core from the apparent observations of the
plane-of-the-sky is impossible; instead, statistical techniques have to be applied. Several studies have
analyzed the observations in the context of a random distribution of inclinations to infer that cores
are more nearly prolate than oblate (e.g., Curry 2002; Jones & Basu 2002). This prolate elongation of
cores may be inferred to be a remnant of their origin in filaments (e.g., Hartmann 2002). Also, models
with cores forming from turbulent flows predict random triaxial shapes with a slight preference for
prolateness (Gammie et al. 2003; Li et al. 2004). Although some work indicates a preference for
prolate cores, there are many studies that consistently favor oblate shapes (e.g., Jones et al. 2001;
Goodwin et al. 2002; Tassis 2007; Offner & Krumholz 2009; Tassis et al. 2009). If strong magnetic
fields are present then collapsing cores are expected to be oblate (e.g., Galli & Shu 1993; Basu &
Ciolek 2004; Ciolek & Basu 2006), which could also be caused by strong rotational motion (e.g.,
Cassen & Moosman 1981; Terebey et al. 1984).

Historically, in primary theoretical models for the collapse of cores and formation of stars,
an isothermal equation of state had been used, from which, as a consequence of subsonic com-
munications between different parts of the cloud, an inverse square profile for density appeared
(Bodenheimer & Sweigart 1968). Larson (1969) and Penston (1969) were the first to analyze this
inverse square behavior of the density profile using the similarity method. In this case, which had
been subsequently extended by Hunter (1977), one begins with a static cloud of constant density
and follows the formation of the 7—2 density profile. In the opposite case, Shu (1977) assumed that
the density is initially in the inverse square profile of the singular isothermal sphere (SIS) core, and
constructed the expansion wave collapse solution to suggest the inside-out collapse scenario. These
two limiting solutions of Hunter and Shu may be described as fast and slow collapses, respectively,
and the reality may be somewhere in between (McKee & Ostriker 2007). Since then, a lot of asymp-
totic solutions and global numerical simulations have been found and developed in which authors
have approximately considered the effects of three important mechanisms: turbulence, rotation and
magnetic fields (see, e.g., Hartmann 2009).

In this research, we return to the basic spherical collapse problem for polytropic spheres, which
was used as the idealized SIS similarity solution by Shu (1977). In addition, we consider an initial
inward flow, i.e. the conditions observed in some molecular cloud cores and used by Fatuzzo et
al. (2004), to investigate its effects on the collapse of the SIS. The goal of this paper is to reexamine
the gravitational collapse of the SIS with a focus on the oblateness of a core via the effect of rota-
tion and magnetic fields. We suggest that the centrifugal force and magnetic field pressure lead to
oblateness of the envelope of a molecular core before triggering the collapsing density wave. Since
the collapse is not in a spherically symmetric manner, the similarity method cannot be used. Instead,
we use the Adomian decomposition method (Adomain 1994) to semi-analytically solve the system
of differential equations. For this purpose, the collapse of SIS using the Adomian method is given in
Section 2. The non-similar collapse of SIS is investigated in Section 3 in which the oblateness of the
core is also obtained. Finally, Section 4 is devoted to a summary and conclusions.

2 COLLAPSE OF SIS BY ADOMIAN METHOD

The initial density of an SIS is assumed to be in the form of an inverse square, and the collapse is
assumed to be only in the radial direction. The mass continuity equation is

dp 1 0

- - 2 —
o T e (o) =0, (1)

where u is the radial velocity which follows the force equation,
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as 1s the sound speed, and the gravitational acceleration g follows the Poisson’s equation,
10
2 or ar
Choosing the sound speed as the unit of velocity, and [t] = 1/y/47Gp. as the unit of time where p.
is the density at the center of the core, the basic Equations (1)—(3) can be rewritten as follows

r2g) = 4nGp. (3)
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5—28—5(5 g) = p, (6)

where £ = r/(as]t]) is the nondimensional radius and the density and gravitational acceleration are
non-dimensionalized by p. and as/[t], respectively.

If the cloud is in hydrostatic equilibrium (v = 0), Equations (4)—(6) lead to the Lane-Emden
equation which is well-known in the theory of stellar structure (e.g., Chandrasekhar 1939). The
Lane-Emden equation can be solved by the Adomian decomposition method which is found in
Appendix A. The SIS is a special case of the Lane-Emden equation with inverse square density which
does not conform to the boundary conditions. Here, we choose the initial density as p(£,0) = A /&2
where A is the overdensity parameter with A = 2 for hydrostatic equilibrium. The boundary condi-
tion for gravitational acceleration is g(0,¢) = 0, and we assume that the initial velocity is inward so
that u(&,0) = —uwo, Where uq is constant.

As mentioned in Appendix A, for using the Adomian decomposition method, Equations (4)—(6)
must be rewritten as

Lip + Ni(p,u) =0, (7
Liuw + g+ Na(p,u) =0, (8)
Leg — p=0, )
where where Ly (o) = 2°) and L¢(o) = g%a% (¢%(0)) are operators, and
dp
N- = u— 1
1(p, u) uag+pag+£pu (10)
0 10
Na(p,u) = “a_Z+Ea_§’ (11)

are the nonlinear terms of the differential equations which can be written by Adomian series
Ni(p,u) =32, A for j = 1,2, where

AW = ﬁiﬁ% [W (Z PN, Zuw\zﬂ (12)

are the Adomian polynomials (Adomian 1994). In this way, the final solutions are given by the series
P= 0 Pt = o supand g =Y 7 g, where the terms can be obtained by the recurrence
relations

Pn+1 = _Lt_lAng)v (13)
Uns1 = =L (gn + AD), (14)

gni1 = Lg ' pn, (15)
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and where L; (o) = [ (o)dt and L ( [ &% (o) df) are the integration operators and the
n = 0 terms are from initial and boundary condltlons. o = p(£,0), up = u(€,0) and go = ¢(0,1).

Using mathematical software, such as Maple (see Appendix B), the density and inward velocity
are obtained respectively as follows:

A A—2)¢? 2(A —2) 3 A —2)(6 —2A + 3u2) ¢* t°
N OIEE

2 2 3 5

" 7%7(/\72)2 {1 u%o% G Agzum)é_2 (- 5A1—;3uoo)uoo 23} o (;) Can
In the case of us, = 0, these results reduce to equation (19) of the well-known paper of Shu (1977)
in which the similarity variable x is replaced by t/£ (note that eqgs. (45) and (46) of Fatuzzo et
al. 2004 are mistyped). According to the convergence problem in the series of the Adomian decom-
position method (as mentioned in Appendix A), Equations (16) and (17) are reliable in the range
of t/¢ < 1. Thus, Equations (16) and (17) are acceptable only for the outer regions from the crest
of the expansion wave (i.e., £ = t), and the mass infall rate M = 47€2%p | u | of the shells in the
envelope can be determined. For the inner regions of the expansion wave, the terms of series (16)
and (17) are not convergent, thus, we must use some suitable method, such as the piecewise-adaptive
decomposition method (e.g., Ramos 2009), to perform the analysis, which is beyond the scope of
this paper.

3 NON-SIMILAR COLLAPSE OF SIS

The cores of molecular clouds rotate and the magnetic fields are also the non-negligible parts of
this medium. In this section, we investigate the effects of these mechanisms on the dynamics of
the collapsing SIS core. In this case, the infall velocity of matter in spherical coordinates has two
components given by v = ru + fw, so that the mass continuity equation is expressed as

dp 1 0 0
—+ == 0 =0, 18
ot T2 oE sy g morw) = (18)
which is non-dimensionalized according to the units given in Section 2. Here, the effects of the
centrifugal force and pressure of magnetic field, in the envelope of the core, are assumed to be in the
normal direction of the rotational axis as follows

(& pu) +

Froagiror = 7Fe sin? 0 + 0 Fp sin 26), (19)

where for simplicity, the components are assumed to be a fraction of the local gravitational force as
Fe = —p0¢/0¢ and Fy = —[(30¢/06, where the magnetic-rotational parameter 0 < 3 < 1 indicates
the importance of rotation and magnetic fields, and ¢ is the gravitational potential which follows the
Poisson’s equation,

10 ,.,00 1 9

25e o)t oo ae( nb55) = o (20)
In this way, the force equation has two components as follows
8“ ou  wou 10p 5 ¢
co0 - poe U7 P 21
8§+§89 O (1 —Bsin 6)85’ 1)
8“’ ow wow _ 10p 106
8_54-2%7 2 00 (1 581n29)§80, (22)

Since the components of gravitational force, d¢/I¢ and O¢p/00, are zero at the center of the
core, the boundary condition of the gravitational potential at £ = 0 is assumed to be ¢(0,¢) = 0.
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At the beginning of collapse, the components of velocity are assumed to be u(r,0) = —uq, and
w(r,0) = 0, and the initial density is assumed to be the density of SIS: p(&,0) = A/£2. We rewrite
Equations (18), (20), (21) and (22) in the Adomian form as follows

Lip + Ni(p, u,w) =0, 23)
1 0%¢  coth dg

Lecop + 2 902 +£—2@—P=0, (24)
. 9,00
Liu+ (1 — (Bsin 9)8_5 + Na(p,u,w) =0, (25)
. 10¢
Liyw + (1 — Bsin26) + N3(p,u,w) =0, (26)

€00
respectively, where the nonlinear terms are

dp ou 2 wdp pow  cotd

Nl(p,u,w)_u—f—i—paf—l-g +z£+5%+ 5pw7 27)
) du 10

Na(p,u, w) = u Z+? 5t ag (28)

Ng(p,u,w)—ua—w—i—ga—w—i—i%. (29)

g 00 p§ ol

In this way, by using the Adomian polynomials,

for j = 1,2, 3, we obtain the recurrence relations as follows

pni1=—L; ALY, GD
1 [108%p, cotfdp,
St = ~Le {5_2 o e on "} ’ 2
sy = L1 [(1 _ gsin2 g)2n A<2>] (33)
3
Wpy1 = —L; ! [(1 — @sin 26){ Oén + A(?’)} (34)

where the n = 0 terms are given by the initial and boundary conditions. Thus, we can obtain the
terms of the series p = Y 0" Pn, U = Do g Ups W = Do wy, and ¢ = Y7 ¢, with math-
ematical software such as Maple (see Appendix B). Here, we turn our attention to the mass infall
rate, M = 4m¢? plul, in the envelope of the core (¢ > t) where the Adomian decomposition method
is reliable. The result is

. 2 3
M = 4w Ause + 4mA(A — 2 — ABsin? 9)% — 47 A(A — 2 — ABsin? 9)um2—2 <23> , (35)

whose values for A = 2.1, uo, = 0.1 and § = 0.1 at time ¢ = 1/6 are shown in Figure 1.
Since the infall rates at the polar and equatorial regions are different, an initial spherical shell in
the outer region of the expansion wave will be spheroidal after some time, as schematically shown



1280 M. Nejad-Asghar

3.0

28

O=m/4&3n/4

.S 26
6=m/2
24+ o4
22k 20
1.0 1.2 14 16 1.8 20 22 24 26 28 3.0 0.0 05 1.0 1.5 2.0 25 3.0
ﬁ @ (rad)

(a) (b)

Fig.1 Mass infall rate versus (a) nondimensional length &, and (b) polar angle 0, with A = 2.1,
Uso = 0.1 and 8 = 0.1 attime ¢t = 1/6.

in Figure 2. In the first order approximation of mass infall rate (i.e. to the order of ¢/£), the ratio of
major to minor axes of the spheroid can be approximated as

b _ €= toot = g Mporyo)t? 36)
a & — Ul — %M(gzo)tQ .
Inserting M ~ 47A(A — 2 — ABsin? 0) /¢, obtained from Equation (35), we have
2
b l—ust—2rAA-2-AB)L
o= ¢ 2 e, (37)

a 1—u00%—27TA(A—2)2—2
which is depicted in Figure 3 at time ¢t = 1/6.

4 SUMMARY AND CONCLUSIONS

Stars have been formed from the collapse of cores in molecular clouds. A basic standard model for
the collapse of cores assumes an SIS, in which the collapse occurs inside-out accompanied by an
expansion wave. We know that not only the molecular cores rotate, but also the magnetic fields affect
their dynamics. If we assume that the effect of centrifugal force and magnetic pressure are in the
normal direction to the rotational axis, we expect that the shape of the envelope of the core (regions
outside of the crest of the expansion wave) will be modified into a spheroid. In this case where the
collapse is in a non-symmetric manner, we used the Adomian decomposition method to solve the
differential equations. In Appendix A, we solved the well-known Lane-Emden equation to find that
the Adomian method is applicable. Then, in Section 2, the collapse of an SIS core is investigated.
The results show that the Adomian decomposition method presents convergent solutions only for the
regions outside of the crest of the expansion wave (i.e. envelope).

In Section 3, the non-similar collapse of an SIS core, which is affected by the centrifugal force
and magnetic pressure, is solved by the Adomian decomposition method. The mass infall rate of the
shells in the envelope of the core is obtained and depicted in Figure 1 with typical values of the pa-
rameters. According to Figure 1(a), the mass infall rate in the polar regions (near the rotational axis)
decreases with an increase of radius, while in the equatorial regions, the mass infall rate in regions
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Fig.2 Schematic diagram for mass infall rate which leads to the formation of a spheroidal shell from
an initial spherical shell.
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Fig.3 Ratio of major to minor axes of spheroidal shells of a core at time ¢ = 1/6, versus (a)

magnetic-rotational parameter 3 with A = 2.1 and us = 0.1, (b) overdensity parameter A with
[ =0.1and us = 0.1, and (c) inward initial velocity 1~ with A = 2.1 and 3 = 0.1.

far from the crest of the expansion wave is greater than that in regions near to it. Figure 1(b) shows
that the mass infall rate in equatorial regions is less than that in polar regions, thus, before reaching
the expansion wave, the shape of the envelope is converted to a spheroid as shown schematically in
the Figure 2.

In this way, according to the mass infall rate, we determined the ratio of major to minor axes
of the spheroid, and its values are shown in Figure 3 with typical values of the parameters. We
see that the ratio of major to minor axes of the spheroid does not strongly depend on the initial
inward velocity u, but its value depends on the overdensity parameter A and magnetic-rotational
parameter (3. Thus, the results show that the magnetic field and rotation lead to a non-symmetric
collapse so that before reaching the crest of the expansion wave, the apparent shape of the envelope
will be converted to that of triaxial oblate spheroids. Also, the results show that the ratio of major
to minor axes of the spheroids can reach values which are consistent with the observed maps of the
cores in the molecular clouds, such as those in Taurus and Perseus.
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Astrophysics of Maragha (RIAAM).
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Appendix A: SOLVING THE LANE-EMDEN EQUATION BY THE ADOMIAN
DECOMPOSITION METHOD

A spherical polytropic gas in hydrostatic equilibrium satisfies the equation

ldp  GM(r)
pdr r2

) (A.1)

where M (r) is the mass inside the radius r and the polytropic pressure is p = xp", for which, in the
isothermal case, we have k = a2 and I' = 1, where as is the isothermal sound speed. Substituting
p = pcexp(—1) into Equation (A.1), we have

1d |, L(1-D)p P dy —o
A2
2
where £ = Hlf;}c, r is the nondimensional radius. In the isothermal case, Equation (A.2)

reduces to the well-known Lane-Emden equation. The boundary conditions are ¥¢—g) = 0 and
(dyp/de) ¢—o = 0. Thus, Equation (A.2) can straightforwardly be solved by numerical methods such
as fourth-order Runge-Kutta.

Here, we solve Equation (A.2) by the Adomian decomposition method, then we compare the
result with the numerical method. For this purpose, we rewrite Equation (A.2) as follows

Leep + N(y) =0, (A.3)

where Lee (o) = 5% di (5 2d(0 )) is the operator, and nonlinear terms of the differential equation are

assembled in the function N(¢)) = (1 — T (%) — e(I'=2)¥_The basis of using the Adomian

decomposition method is to replace the function ¢ by a series » = > ° 1, and the nonlinear
term N (¢) by a Taylor expansion series N (¢)) = >_° ; A,,, where A,, are Adomian polynomials

Ao = N (o),
- Y
A= (d_£>¢ 1/’0
d 1 d?
) )

and so on (Adomian 1994), which can be expressed in the general form

A=y lim lWN (Z W)] (A3)

and where )\ is only a dummy variable which is inserted to recover Equation (A.4).
In this way, Equation (A.2) leads to a recurrence relation

Yni1 = —Lgg An, (A.6)

where ng = [¢2 (f £2(0) d§) dg is the integration operator and ¢g = v(¢—¢). Thus, we can
determine the 1, s with the help of any mathematical software, such as Maple (see Appendix B).
The result is a series like

¥ =a28” + asl* + agt® + ..., (A7)
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Fig. A.1 Ratio of density to the central density of an isothermal spherical core
in hydrostatic equilibrium.

where the coefficients are

1
=T
1 1
= —— — F -
ay 3(8 5 )5|a
2 2 8 2 1
as = +3 4(2-T) +5(2—F)(1—P)+§(1_F) 7 (A-8)

and so on. In the isothermal case (I' = 1), this result reduces to the result of Wazwaz (2001). In
Figure A, the ratio of density to central density, p’—’c = e~ ¥, in the isothermal case, which is obtained
from three terms of the series (A.8), is compared to the numerical results, which are obtained from
the fourth-order Runge-Kutta method. As can be seen, the Adomian decomposition method gives
reliable solutions for £ < 2. This is because of using the Taylor expansion which destroys the
convergence of the series at large £ (Liao 2003; Singh et al. 2009). Substituting the appropriate
values of typical molecular clouds, we have

€= "(pc) (A9)

o 1/2 ne —-1/27
0.03pc (gg) "~ (Tores=s)

where n. is the number density at the center of the core. Thus, in the hydrostatic equilibrium of a
typical molecular cloud core, the results, which are obtained by the Adomian decomposition method,
are usable only for radii less than ~ 0.06pc.

Appendix B: MAPLE PROGRAMS

— The Maple program for the Lane-Emden equation is as follows:

> psi[0]:= 0:
> n:= 0:
> N:= proc (psi) options operator, arrow;
(1-Gamma) * (diff (psi,xi)) "2-exp( (Gamma-2) *psi)
end proc:
> psi[l]l:= -int(xi™(-2)*int( xi"2*N(psi[0]),xi),x1):

for n from 1 to 7 do
N:= proc (psi) options operator, arrow;
(1-Gamma) * (diff (psi,xi)) "2-exp((Gamma-2) *xpsi)
end proc:

\2
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psisum:= sum(psi[m]*lambda[n] "m,m=0..n):
A[n]:= (diff (N(psisum),$(lambda[n],n)))/factorial (n):
lambda[n]:= 0:
psi[n+l]:= -int(xi” (-2)*int(xi"2*A[n],x1i),x1i):
end do:
> psitotal:= collect(sum(psi[m],m=0..n),x1i);

— The Maple program for the collapse of SIS is as follows:

> g[0]:= 0:

> rho[0] := Lambda/xi"2:

> ul[0]:= -ulinfinity]:

> n:= 0:

> N1l:= proc (rho,u) options operator, arrow;

uxdiff (rho,xi)+rhoxdiff (u,xi)+2+u*rho/x1i
end proc:
N2:= proc (rho,u) options operator, arrow;
uxdiff(u,xi)+rho” (-1)*diff (rho,xi)
end proc:
gll]:= xiA(—Z)*int(xiAZ*rho[O],xi):
rho[l]:= -int (N1 (rho[0],ul0]),t):
ull]:= —1nt(g[0]+N2(rho[O] ul0]),t):
for n from 1 to 7 do
Nl:= proc (rho,u) options operator, arrow;
uxdiff (rho,xi)+rhoxdiff (u,xi)+2+u*rho/xi
end proc:
N2:= proc (rho,u) options operator, arrow;
uxdiff(u,xi)+rho” (-1)*diff (rho,x1i)
end proc:
rhosum: = sum(rho[m]*lambda[n] m,m=0..n):
usum: = sum(u[m]*lambda[n] ,m=0..n):
Al[n]: (diff (N1 (rhosum,usum), $( lambda[n], )))/factorial (n) :
A2 [n]: (diff(NZ(rhosum usum) , $ (lambda([n],n))) /factorial (n):
lambda[n] 0:
gln+l]:= xi” (-2)*int(xi"2*rho[n],x1i) :
rho[n+1l]:= -int(Al[n],t):
uln+1l]:= —1nt(g[n]+A2[n], ) :
end do:
> rhototal:= collect (sum(rho[m],m=0..n),t);
)
)

\

VVVYV

\

utotal:= collect(sum(u[m],m=0..n),t);
> gtotal:= collect(sum(g[m],m=0..n),t);

— The Maple program for the non-similar collapse of SIS is as follows:
> Phi[0 0:

1:
> rho[0] := Lambda/xi"2:
> u[0]:= -ulinfinity]:
> w[0]:= 0:
> n:= 0:
> Nl:= proc (rho,u,w) options operator, arrow;

uxdiff (rho,xi)+rho+diff (u,xi)+2+u*rho/xi+rho/xi
+*diff (w, theta)+w/xi+diff (rho, theta) +cot (theta) *rho*w/xi
end proc:
> N2:= proc (rho,u,w) options operator, arrow;
urdiff(u,xi)+w/xi+diff (u, theta)+rho” (-1)*diff (rho,x1)

end proc:

> N3:= proc (rho,u,w) options operator, arrow;
uxdiff(w,xi)+w/xi*diff (w, theta)+rho” (-1)*diff (rho, theta) /xi
end proc:

> Phi[l]:= -int(xi1i”(-2)*int(x1i" 2% (diff (Phi[0], theta, theta) /xi"2

+cot (theta)»diff (Phi[0], theta)/xi"2-rho[0]),xi),x1):
> rho[l]:= -int(N1l(rho[0O],ul[0],w[0]),t):
> ul[l]:= -int((l-betax* (sin(theta))"2)*diff(Phi[0],x1)

+N2 (rho[0],ul[0],w[0]),t):
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> w[l]:= -int((l-beta*sin(2+«theta))*diff (Phi[0], theta) /xi
+N3 (rho[0],u[0],w[0]),t):
> for n from 1 to 7 do
Nl:= proc (rho,u,w) options operator, arrow;
uxdiff (rho,xi)+rhoxdiff (u,xi)+2+u*rho/xi+rho/xi
*diff (w, theta)+w/xi*diff (rho, theta)+cot (theta) *xrho*w/xi
end proc:
N2:= proc (rho,u,w) options operator, arrow;
u*xdiff (u,xi)+w/xi*diff (u, theta)+rho” (-1) *diff (rho,xi)

end proc:
N3:= proc (rho,u,w) options operator, arrow;
uxdiff(w,xi)+w/xixdiff (w, theta)+rho” (-1)+diff (rho, theta) /xi
end proc:
rhosum:=sum(rho[m] *1lambda[n] "m, m= n) :

usum:=sum(u[m] *lambda[n] "m,m= O .n

wsum: =sum (w[m] *lambda[n] "m,m=0..n

Al[n]:= (diff (N1 (rhosum,usum,wsum
/factorial (n) :

0.
) :
) :
), $(lambda[n],n)))

A2[n]:= (diff (N2 (rhosum,usum,wsum),$ (lambdal[n],n)))
/factorial (n) :
A3 [n]:= (diff (N3 (rhosum,usum,wsum),$ (lambdal[n],n)))
/factorial (n) :
Ad[n]:= (diff (N4 (rhosum,usum,wsum),$ (lambdal[n],n)))
/factorial (n) :
lambda[n] :=
Phi[n+1l]:=-int(xi” (-2)*int (x1"2* (diff (Phi[n], theta, theta)
/x1"2+cot (theta)+«diff (Phi[n], theta)/xi"2-rho[n]),xi),xi):
rho[n+1l] :=-int (Al[n],t):
uln+l] :=-int((l-betax* (sin(theta)) "2)*diff (Phi[n],xi)
+A2([n],t):
wln+l]:=-int ((l-betaxsin(2+theta) ) *diff (Phi[n], theta) /xi
+A3([n],t):
end do:
> rhototal:=collect (sum(rho[m],m=0..n),t):
> utotal:=collect(sum(u[m] ,m=0..n),t):
> wtotal:=collect (sum(w[m],m=0..n),t):
> phitotal:=collect (sum(Phi[m],m=0..n),t):
> mdot:=collect (4*Pi*xi" 2 (rhototal) * (-utotal), t);
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