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Abstract We report on a simple pure numerical method developed for computing
Hansen coefficients by using a recursive harmonic analysis technique. The precision
criteria of the computations are very satisfactory and provide materials for comput-
ing Hansen’s and Hansen’s like expansions, and also to check the accuracy of some
existing algorithms.
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1 INTRODUCTION

Hansen coefficients (Cefola 1977) are an important class of functions which are frequently used
in many branches of Celestial Mechanics, such as planetary theory (Newcomb 1895) and artifi-
cial satellite motion (Allan1967; Hughes1977). Moreover, there are extensive forms of Hansen like
expansions (Klioner et al. 1998; Sharaf 1985, 1986) which play important roles in the expansion
theories of elliptic motion.

Giacaglia (1976) noted that Hansen’s coefficients appear in satellite theory in the expression of
the perturbing function due to the primary and due to the presence of a third body and they are usu-
ally called Eccentricity Functions. He derived the recurrence relation for these functions and their
derivatives, as they appear in the evaluation of geopotential and third body perturbations of an ar-
tificial satellite. Also Giacaglia (1987) proved Hansen’s coefficients, for Fourier series in terms of
the mean anomaly, correspond to a rotation of the orbital plane proportional to the eccentricity of
the orbit. They are given in terms of Bessel functions and generalized associated Legendre func-
tions which arise through the transformation of spherical harmonics under rotation. Hughes (1981)
computed tables of analytical expressions for the Hansen coefficients Xn,±m

o (e) and X
−(n+1),±m
o (e)

when 1 ≤ n ≤ 30 and 0 ≤ m ≤ n. Branham (1990) derived a recursive calculation method for
Hansen coefficients which is used in expansions of elliptic motion by three methods: Tisserand’s
method, the von Zeipel-Andoyer method with explicit representation of the polynomials required to
compute the Hansen coefficients and the von Zeipel-Andoyer method with the value of the polyno-
mials calculated recursively. Vakhidov (2000) studied in detail efficient approximations of Hansen
coefficients using polynomials in terms of the eccentricity. He & Zhang (1990) used Hansen coeffi-
cients to compute general perturbations of the asteroids in the Flora group due to Jupiter. Breiter et
al. (2004) showed that most of the theory of Hansen coefficients remains valid for X

γj
k , when γ is a

real number; also, the generalized coefficients can be applied in a variety of perturbed problems that
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involve some drag effects. Sadov (2008) deals analytically with the properties of Hansen’s coeffi-
cients in the theory of elliptic motion considered as functions of the parameter η =

√
1 − e2, where

e is the eccentricity.
In the present paper, we develop a simple pure numerical method for computing Hansen coeffi-

cients by using a recursive harmonic analysis technique. The precision criteria of the computations
are very satisfactory. The importance of the method is that it not only provides materials for com-
puting Hansen’s and also Hansen’s like expansions, but also it can be used, due to its simplicity and
accuracy, to check the accuracy of the different algorithms which already exist.

2 BASIC FORMULATIONS

2.1 Properties of Least Squares

Let y be represented by the general linear expression of the form
∑L

i=1 ciφ(x) where the φ expres-
sions are linear independent functions of x. Let c be the vector of the exact values of the c coeffi-
cients and ĉ be the least squares estimators of c obtained from the solution of the normal equations
Gĉ = b. The coefficient matrix G(L × L) is symmetric positive definite, that is, all its eigenvalues
Vi; i = 1, 2, .., L are positive. Let EC(z) denote the expectation of z and σ2 the variance of the fit,
defined as

σ2 = qn/(N − L), (1)

where
qn = (y − ΦT ĉ)T (y − ΦT ĉ). (2)

N is the number of observations, y is a vector with elements yk and Φ(L × N) has elements ϕik =
ϕi(xk). The transpose of a vector or a matrix is indicated by the superscript ‘T ’.

According to the least squares criterion, it could be shown that (Sharaf et al. 2000)

– The estimators ĉ given by the least squares method give the minimum of qn.
– The estimators ĉ of the coefficients c, obtained by the method of least squares, are unbiased, i.e.

EC(ĉ) = c.
– The variance-covariance matrix Var (ĉ) of the unbiased estimators ĉ is given by

Var(ĉ) = σ2G−1, (3)

where G−1 is the inverse of G.
– The average squared distance between c and ĉ is

EC(D2) = σ2
L∑
1

1
Vi

. (4)

2.2 Harmonic Analysis of a Periodic Function

Let it be required to find a sum

a0 +
s∑

j=1

aj cos jx +
s∑

j=1

bj sin jx, (5)

which furnishes the best possible representation of a function u(x), when we are given that u(x)
assumes the values u0, u1, ..., ui−1 when x takes x0, x1, ..., xi−1 respectively, and m is some number
greater than 2s. The problem is to determine the (2s + 1) constants, a0, aj and bj, j = 1, 2, ..., s
so as to make the expression (5) assume, as nearly as possible, the l values u0, u1, ..., ui−1 when
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x takes the values x0, x1, ..., xi−1. To do so, we shall make use of the method of least squares and
we get

1
2
a0η0i +

s∑
j=1

ajηij +
s∑

j=1

bjβij = di, i = 0, 1, ..., s;

1
2
a0β0q +

s∑
j=1

ajβqj +
s∑

j=1

bjγqj = cq, q = 1, 2, ..., s; (6)

where

ηij = ηji =
i−1∑
k=0

cos ixk, i = 0, 1, ..., s, j = 0, 1, ...s;

βqj =
i−1∑
k=0

cos jxk sin qxk, j = 0, 1, ..., s, q = 1, 2, ..., s;

γqj = γjq =
i−1∑
k=0

sin qxk sin jxk, q = 1, 2, ..., s, j = 1, 2, ..., s; (7)

di =
i−1∑
k=0

uk cos ixk, i = 0, 1, ..., s;

cq =
i−1∑
k=0

uk sin qxk, q = 1, 2, ..., s.

The system of Equations (7) is the normal equation. These equations represent a set of linear equa-
tions in (2s + 1) unknown a and b coefficients and could be solved by any of the methods adopted
for linear systems. However, the coefficient matrix of this set could be reduced to a diagonal one by
a certain choice of the arguments xk and, in this case, the a and b values are exactly determined and
the problem is known as harmonic analysis.

In the method of harmonic analysis, the arguments xk take the special values:

0,
2π

l
, 2

2π

l
, 3

2π

l
, ..., (l − 1)

2π

l
. (8)

For these values, the set of η, β and γ values of Equations (7) becomes

for i = j �= 0 : ηij = γji =
1
2
l; βij = 0;

for i �= j : ηij = γij = βij = 0 .

Consequently, the a and b coefficients could then be exactly computed from

aj =
μ

l

i−1∑
k=0

uk cos j
2π

l
k; j = 0, 1, .., s,

bq =
2
l

i−1∑
k=0

uk sin q
2π

l
k; q = 1, 2, ..., s, (9)

where μ = 1 if j = 0; μ = 2 if j > 0.
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2.3 Hansen Coefficients

Consider elliptic motion expansions of (r/a)n cosmv and (r/a)n sin mv in terms of the mean
anomaly M that is ( r

a

)n

cosmv =
∑
k=0

An,m
k cos kM,

( r

a

)n

sin mv =
∑
k=1

Bn,m
k sin kM, (10)

where a is the semimajor axis, r the radial distance, n is a positive or negative integer, while m is a
positive integer and v the true anomaly in elliptic motion. The set of A and B coefficients is called
Hansen’s coefficients, which are functions of the eccentricity e.

The relations between the eccentric anomaly E and the anomalies M and v are given for elliptic
motion as follows:

– The relation between E and M is the well-known Kepler’s equation

M = E − e sinE. (11)

– The fundamental relations between v and E in an elliptic orbit are

tan
v

2
=

√
1 + e

1 − e
tan

E

2
. (12)

These equations are the most useful relations between v(E) and E(v), since v
2 and E

2 are always
in the same quadrant. There is a possibility of numerical trouble when Equation (12) is used with
angles that are near ±π

2 , as the two tangents become infinite. In order to avoid this difficulty,
Broucke & Cefola (1973) established the formula

tan
1
2
(v − E) =

β sin E

1 − β cosE
, (13)

where

β =
1 −√

1 − e2

e
=

e

1 +
√

1 − e2
. (14)

Equation (13) is free of numerical trouble, no matter what the values of the angles are. Moreover,
it can be easily used because the angle (v − E)/2 is always less than π

2 for all elliptic orbits.
– Finally the relation between r and E is( r

a

)
= 1 − e cosE. (15)

3 COMPUTATIONAL DEVELOPMENTS

3.1 Practical Computation of the a and b Coefficients

The a and b coefficients of Equation (9) could be computed efficiently (Ralston & Rabinowitz 1978)
from

aj =
μ

l

(
uo + F1,j cos

2π

l
j − F2,j

)
; j = 0, 1, ..., s, (16)

bq =
2
l
F1,q sin

2π

l
q; q = 1, 2, ..., s, (17)

where, for any j, the F values are computed recursively from

Fk,j = uk + 2 cosxjFk+1,j − Fk+2,j (18)

by using the initial conditions Fi,j = Fi+1,j = 0, starting with k = l − 1 to successively compute
Fi−1,j , Fi−2,j , ..., F1,j .
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3.2 Error Estimates

– The variance of the fit (Eq. (1)) is given by

σ2 =
δ2

l − L
, (19)

where the sum of squares of the residuals δ2 is given as (Ralston & Rabinowitz 1978)

δ2 =
i−1∑
i=0

u2
i −

1
2

⎡
⎣2a2

0 +
s∑

j=1

(a2
j + b2

j)

⎤
⎦ . (20)

Clearly both σ and δ depend on the number s of the a and b coefficients. If the precision is
measured by probable error (PE), then

PE = 0.6745σ . (21)

– Since the coefficient matrix G of the harmonic analysis is diagonal with elements of the same
value l/2, then according to Equation (3), the standard error of each of the a and b coefficients is

σcoeff = σ

√
2
l

. (22)

The corresponding probable error for each coefficient is

PEcoeff = 0.6745σcoeff. (23)

– The average squared distance between the exact and the least squares values (Eq. (9)) is given
according to Equation (4) as

Q = CE(D2) =
2s

l
σ2. (24)

3.3 Choosing the Number of Coefficients

In practice, since we do not know s, we would evaluate the a and b coefficients for s = 1, 2, then
compute δ2 (Eq. (19)), and continue as long as δ2 decreases significantly (within a given tolerance
(Tol)) with increasing s.

3.4 The Special Values

The special values of the left hand side of Equation (10) are computed as follows:

1. Mi = 2πi
l ; i = 0, 1, ..., l − 1.

2. For each M solve Kepler’s equation (Eq. (11)) by the Newton-Raphson iterative method (or any
other method). Let E0 be an initial approximation of E; define for k = 0, 1, 2, ...

Ek+1 = Ek − Ek − e sinEk − M

1 − e sinEk
.

Each Ek+1 should approximate E more closely than Ek . For the initial approximation E0, use
the value (Battin1999)

E0 = M +
e sinM

1 − sin(M + e) + sin M
.

The above procedure is terminated if the following conditions are satisfied
ε2 ≤ ε1 and | H(Ei+1) |≤ 100ε1, ε2 =| Ei+1−Ei

Ei+1
| if | Ei+1 |> 1; ε2 =| Ei+1 − Ei | if

| Ei+1 |< 1, where ε1 is a given tolerance and H(E) = M − E − e sin E.
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3. For each E compute v using Equation (14) and ( r
a )n from Equation (10).

4. For each v compute cos(mv).
5. Finally, find the product of the values of ( r

a )n (of step 3) and cos(mv) (of step 4).

3.5 Numerical Results

The above computational developments are applied for calculating Hansen’s coefficients of
Equation (10) with input constants l = 100, Tol = 10−6 and ε1 = 10−8. The numerical results
are listed in Tables 1 to 6 for different values of n, m and different eccentricities of some members
of the solar system. In these tables, δ2

A(δ2
B) represents the sum of the squares of the residuals of

Equation (19) for A (B) coefficients, σcoeff.A(σcoeff.B) represents the common standard error of
Equation (21) for A (B) coefficients, and finally QA(QB) represents the average squared distance
between the exact and least squares values of Equation (23) for A (B) coefficients.

Table 1 Hansen Coefficients for the Planet Earth: e = 0.016708617, n = −3, m = 6

k Ak Bk

0 −2.80505 × 10−16

1 −1.69927 × 10−10 −1.69927 × 10−10

2 1.31491 × 10−7 1.31491 × 10−7

3 −0.0000259261 −0.0000259261
4 0.00209013 0.00209013
5 −0.0749101 −0.0749101
6 0.99039 0.99039
7 0.124591 0.124591
8 0.00917108 0.00917108
9 0.000516607 0.000516607
10 0.0000246565 0.0000246565
11 1.05004 × 10−6 1.05004 × 10−6

d2
A = 8.52652 × 10−14 d2

B = 6.39488 × 10−14

s∞ee.A = 4.37729 × 10−9 s∞ee.B = 3.79085 × 10−9

QA = 2.10768 × 10−16 QB = 1.8076 × 10−16

Table 2 Hansen Coefficients for the Minor Planet Pluto: e = 0.249050, n = −3, m = 6

k Ak Bk

0 0.0508079
1 −0.325005 −0.319177
2 0.969155 0.969203
3 −1.34716 −1.34716
4 0.536896 0.536896
5 0.248699 0.248699
6 0.0765758 0.0765758
7 0.0211903 0.0211903
8 0.0056458 0.0056458
9 0.00148234 0.00148234
10 0.000386931 0.000386931
11 0.000100722 0.000100722
12 0.0000261571 0.0000261571
13 6.76933 × 10−6 6.76933 × 10−6

d2
A = 1.62174 × 10−10 d2

B = 1.6226 × 10−10

s∞ee.A = 1.93084 × 10−7 s∞ee.B = 1.93135 × 10−7

QA = 4.84659 × 10−13 QB = 4.84914 × 10−13
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Table 3 Hansen Coefficients for the Asteroid Ceres: e = 0.078, n = 8, m = 2

k Ak Bk

0 0.0854431
1 −0.492936 −0.479094
2 1.08609 1.08564
3 −0.157994 −0.157993
4 0.00140598 0.00140603
5 0.000192711 0.000192714
6 0.0000113508 0.0000113509
7 6.01265 × 10−7 6.01269 × 10−7

d2
A = 4.26326 × 10−14 d2

B = 4.26326 × 10−14

s∞ee.A = 3.02792 × 10−9 s∞ee.B = 3.02792 × 10−9

QA = 6.41781 × 10−17 QB = 6.41781 × 10−17

Table 4 Hansen Coefficients for the Asteroid Sekhmet: e = 0.296, n = −1, m = 5

k Ak Bk

0 −0.0000795273
1 0.00983893 0.00983416
2 −0.114213 −0.114214
3 0.431088 0.431088
4 −0.482649 −0.482649
5 −0.260258 −0.260258
6 0.191795 0.191795
7 0.410314 0.410314
8 0.411965 0.411965
9 0.318733 0.318733
10 0.213837 0.213837
11 0.130854 0.130854
12 0.0750457 0.0750457
13 0.0410069 0.0410069
14 0.021582 0.021582
15 0.0110231 0.0110231
16 0.00549385 0.00549385
17 0.00268279 0.00268279
18 0.00128767 0.00128767
19 0.000608982 0.000608982
20 0.000284349 0.000284349
21 0.000131294 0.000131294
22 0.0000600289 0.0000600289
23 0.0000272069 0.0000272069
24 0.0000122351 0.0000122351
25 5.46368 × 10−6 5.46368 × 10−6

d2
A = 3.64729 × 10−10 d2

B = 3.64665 × 10−10

s∞ee.A = 3.11867 × 10−7 s∞ee.B = 3.1184 × 10−7

QA = 2.43152 × 10−12 QB = 2.4311 × 10−12

Table 5 Hansen Coefficients for the Comet Wild2: e = 0.541, n = 3, m = 2

k Ak Bk

0 −0.187235
1 0.954443 0.943797
2 −1.75935 −1.75982
3 1.04451 1.04448
4 0.271626 0.271625
5 −0.101094 −0.101092
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Table 5 —Continued

k Ak Bk

6 −0.158792 −0.158791
7 −0.112669 −0.112669
8 −0.05443 −0.0544298
9 −0.0112087 −0.0112086
10 0.0142725 0.0142726
11 0.026263 0.026263
12 0.0296931 0.0296931
13 0.0283862 0.0283862
14 0.0248699 0.0248699
15 0.0206484 0.0206484
16 0.0165297 0.0165297
17 0.0128893 0.0128893
18 0.00985376 0.00985376
19 0.00741822 0.00741822
20 0.005551671 0.005551671
21 0.00406198 0.00406198
22 0.00296636 0.00296636
23 0.00215139 0.00215139
24 0.00155123 0.00155123
25 0.00111291 0.00111291
26 0.000795003 0.000795003
27 0.000565771 0.000565771
28 0.000401309 0.000401309
29 0.000283824 0.000283824
30 0.000200214 0.000200214
31 0.000140908 0.000140908
32 0.0000989644 0.0000989644
33 0.0000693761 0.0000693761
34 0.000048552 0.000048552
35 0.0000339265 0.0000339265
36 0.0000236736 0.0000236736
37 0.0000164982 0.0000164982
38 0.0000114842 0.0000114842
39 7.9854 × 10−6 7.9854 × 10−6

d2
A = 1.18559 × 10−8 d2

B = 1.18562 × 10−8

s∞ee.A = 4.05228 × 10−7 s∞ee.B = 4.05232 × 10−7

QA = 6.40418 × 10−12 QB = 6.4043 × 10−12

Table 6 Hansen Coefficients for the Comet Lexell: e = 0.786, n = 8, m = 4

k Ak Bk

0 28.4068
1 −47.0631 −25.693
2 23.9162 21.1464
3 −4.70405 −4.84203
4 −0.605464 −0.619241
5 −0.0262285 −0.0283248
6 0.0293643 0.0289445
7 0.0217703 0.0216686
8 0.0121887 0.0121605
9 0.00637396 0.00636531
10 0.00325957 0.00325672
11 0.00164622 0.00164524
12 0.000817397 0.000817052
13 0.000392683 0.000392564
14 0.000176143 0.000176105
15 0.0000672271 0.0000672181
16 0.0000140575 0.0000140581
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Table 6 —Continued

k Ak Bk

17 −0.0000103329 −0.0000103297
18 −0.0000200483 −0.000020045
19 −0.0000224845 −0.0000224818
20 −0.0000215081 −0.0000215061
21 −0.0000191168 −0.0000191154
22 −0.0000163167 −0.0000163158
23 −0.0000135893 −0.0000135887
24 −0.0000111418 −0.0000111414
25 −9.0409 × 10−6 −9.04071 × 10−6

d2
A = 7.42148 × 10−9 d2

B = 7.33417 × 10−9

s∞ee.A = 1.40679 × 10−6 s∞ee.B = 1.39849 × 10−6

QA = 4.94765 × 10−11 QB = 4.88944 × 10−11

4 CONCLUSIONS

In concluding the present paper, a pure numerical method is developed for computing Hansen co-
efficients by using a recursive harmonic analysis technique. The precision criteria, which are: the
variance of the fit, the standard errors of the coefficients and the average squared distance between
the exact and least squares values, are all very satisfactory. The method not only provides materi-
als for computing Hansen’s and also Hansen’s like expansions, but also can be used to check the
accuracy of the different algorithms that already exist.

References

Allan, R. R. 1967, Planet. Space Sci., 15, 53
Battin, R. H. 1999, Revised Edition, AIAA, Education Series, Reston, Virginia
Branham, R. L., Jr. 1990, Celestial Mechanics and Dynamical Astronomy, 49, 209
Breiter, S., Métris, G., & Vokrouhlický, D. 2004, Celestial Mechanics and Dynamical Astronomy, 88, 153
Broucke, R., & Cefola, P. 1973, Celestial Mechanics, 7, 388
Cefola, P. J. 1977, Charles Stark Draper Laboratory Report
Giacaglia, G. E. O. 1976, Celestial Mechanics, 14, 515
Giacaglia, G. E. O. 1987, Publ. Astron. Soc. Japan., 39, 171
Hughes, S. 1977, Planetary Space Sci., 25, 809
Hughes, S. 1981, Celestial Mechanics, 25, 101
Klioner, S. A., Vakhidov, A. A., & Vasiliev, N. N. 1997, Celestial Mechanics and Dynamical Astronomy,

68, 257
He, M.-F., & Zhang, J. 1990, Chinese Astronomy and Astrophysics, 14, 306
Newcomb, S. 1895, (United States. Nautical Almanac Office. Astronomical paper; v.5, pt.1 (1895)),

(Washington: U. S. Nautical Almanac Office, 1895), 1
Ralston, R., & Rabinowitz, P.,1978, A First Course in Numerical Analysis, McGraw-Hill Kogakusha, Ltd.

Tokyo, Japan
Sadov, S. Y. 2008, Celestial Mechanics and Dynamical Astronomy, 100, 287
Sharaf, M. A. 1985, Ap&SS116, 251
Sharaf, M. A. 1986, Ap&SS, 125, 259
Sharaf, M. A., Bassuny, A. A., & Korany, B. A. 2000, Astrophy. Letter & Communications, 40, 39
Vakhidov, A. A. 2000, Computer Physics Communications, 124, 40


