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Abstract Large ground-based laser beam interferometers are presently in operation
both in the USA (LIGO) and in Europe (VIRGO) and potential sources that might be
detected by these instruments are revisited. The present generation of detectors does
not have a sensitivity high enough to probe a significant volume of the universe and,
consequently, predicted event rates are very low. The planned advanced generation of
interferometers will probably be able to detect, for the first time, a gravitational sig-
nal. Advanced LIGO and EGO instruments are expected to detect few (some): binary
coalescences consisting of either two neutron stars, two black holes or a neutron star
and a black hole. In space, the sensitivity of the planned LISA spacecraft constellation
will allow the detection of the gravitational signals, even within a “pessimistic” range
of possible signals, produced during the capture of compact objects by supermassive
black holes, at a rate of a few tens per year.
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1 INTRODUCTION

Gravitational waves (GWs) are predicted by General Relativity Theory (GRT) and, after decades
of doubts and controversies, the conceptual and mathematical issues of gravitational radiation have
presently been clarified. GWs are fundamentally different from electromagnetic waves (EMWs).
While the latter propagate in the framework of space and time, the former are waves of the spacetime
itself created by asymmetric mass motions. However, they share some properties: both propagate at
the same velocity c and linearized GWs have, as EMWs, two independent transverse polarization
states (h+ and h×). The field components h+ and h× are derived from double time integrals of
the space-time components of the Riemann curvature tensor. They “stretch” and “squeeze” space
whereas inertia “stretches” and “squeezes” objects that reside in that space, a behavior analogous
to the tidal effects exerted by the Moon on Earth. If an object is small compared to the wavelength
of GWs, then waves exert tidal forces with a quadrupolar pattern. The dimensionless strength h
of the wave can be estimated using the quadrupole approximation, e.g., h � (G/c 4)Q̈/r, where
Q̈ is the second derivative of the source’s quadrupole moment and r is the distance to the source.
Gravitational waves carry away from their sources not only energy but also angular and linear mo-
menta. The weakness of the gravitational interactions explains the difficulty of detecting GWs, which
propagate practically without being scattered or absorbed by matter. Thanks to the transparency of
media to GWs, the deep interior of neutron stars or the neighborhood of merging black holes can be
probed as well as physical processes in the very early universe. An indirect proof of the existence of
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GWs was provided by measurements of the secular changes in the orbital parameters of the binary
pulsar PSR 1913+16, which agrees with predictions of the GRT to within 1% accuracy (Hulse &
Taylor 1975; Taylor & Weissberg 1989).

The search for a direct detection of GWs began with the pioneering work by Weber (1960),
who used a resonant mass detector. In the early seventies, the idea emerged that laser interferom-
eters might have a better chance of detecting GWs (Weiss 1971; Moss et al. 1971). Presently, the
first generation of ground-based laser interferometers, such as TAMA300 (Kuroda et al. 1997), LIGO
(Abramovici et al. 1992) and VIRGO (Bradaschia et al. 1990), are operational and gravitational wave
astronomy is becoming a reality, in spite of the fact that no direct detection has been achieved up to
date. A fundamental upgrade of the present technology is required to reach the ultimate sensitivity
that will permit the detection of signals from a representative volume of the universe. This includes
new materials, high-powered lasers, diffractive optics and cryo-techniques. More ambitious projects
are presently in development or under discussion, including the Laser Interferometer Space Antenna
(LISA), a collaboration between the European Space Agency (ESA) and the National Aeronautics
and Space Administration (NASA), and the next generation of ground-based interferometers like
the advanced LIGO or cryogenic laser interferometers, such as the Japanese LCGT or the European
Einstein gravitational antenna. Besides laser interferometers, new concepts of broadband resonant
mass detectors have been put forward (Cerdonio et al. 2001; Bonaldi et al. 2003). A massive sphere
is suspended inside a second hollow one and short, high-finesse Fabry-Perot optical cavities read
out the differential sphere displacements as their quadrupole modes are excited. Theoretical esti-
mates indicate that a molybdenum detector with an overall size of 2 m, would reach spectral strain
sensitivities of ∼ 2 × 10−23 Hz−1/2 in the frequency range 1–3 kHz.

The detected gravitational signal depends on the relative orientation between the detector and
the source, being expressed as

h(t) = h+(t)F+(θ, φ, ψ) + h×(t)F×(θ, φ, ψ), (1)

where F+ and F× are the beam factors, which are functions of the source coordinates, the zenith
distance θ and the azimuth φ, as well as of the wave polarization plane orientation ψ (see, for in-
stance, Jaranowski et al. 1998, for details). The observation of a GW signal in a noisy detector
entails the measurement of the signal properties in the presence of a particular instance of the de-
tector noise. The best signal-to-noise (S/N) ratio that can be achieved implies the use of techniques
such as “matched filtering,” which depends on the nature of the signal. The basic idea of this proce-
dure is to correlate the observed signal s to theoretical templates hT , which represent the expected
source waveform. If the “match,” namely the correlation between the observed signal and a given
template, is much higher than the correlation between the observed signal and the detector noise,
then a gravitational wave detection has occurred.

Burst sources associated to cosmic catastrophes, like a gravitational collapse, emit gravitational
radiation at some characteristic frequency but in a very short time. Quasi-periodic sources like close
binary systems, emit gravitational radiation over a longer time interval but generally produce weaker
signals. However, if the waveform is known or can be modeled, the source can be followed during
many cycles, considerably improving the S/N ratio.

In this paper, the properties of potential GW sources that have been discussed in the literature
in the past years are reviewed, as well as the expected detectability by the major interferometers
presently in operation around the world or by those still under consideration, either in space or on
the ground. Gravitational wave sources are generally classified in two categories (“burst” and “quasi-
periodic”): “burst” and “quasi-periodic” sources as mentioned above or alternatively, equivalent cat-
egories (10−4 ∼ 10−1 Hz) and “high” (1 ∼ 104 Hz) frequency sources. The former correspond to
frequencies in the range of space experiments like LISA, while the latter correspond to frequencies
covered by most ground based laser interferometers. Here, GW sources will be studied according to
their association with known astrophysical objects. In Section 2, the core collapse of massive stars
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and the consequent formation of either a neutron star (NS) or a black hole (BH) are discussed; in
Section 3, the different GW emission mechanisms associated with fast rotating NSs are analyzed; in
Section 4, sources associated with binary systems consisting of two compact objects are examined
and, finally, in Section 5, the main conclusions are given.

2 CORE COLLAPSE

2.1 Formation of Neutron Stars

When the core of a massive star has exhausted its supply of nuclear fuel, it collapses to form, accord-
ing to its initial mass, either a neutron star or a black hole. Besides the initial mass, the outcome of
the core collapse depends on the angular momentum and metallicity of the progenitor. Three distinct
phases can be identified:

(1) The infall of the iron core having a mass close to the Chandrasekhar limit (� 1.4M�). The
infall of the inner layers stops when the very central core reaches the nuclear matter density but
in fast rotating cores, centrifugal forces may stop the collapse before the nuclear matter density
is reached.

(2) The sudden “stiffness” of the equation of state produces a bounce of the infalling matter and a
reverse shock develops at the edge of the inner core, defined by the shell where the infall velocity
is equal to the local sound velocity.

(3) Finally, the oscillatory phase, in which the core oscillates with a superposition of various radial
and surface modes (see, for instance, Zwerger & Muller 1997). This quasi-periodic phase could
last for hundreds of oscillation periods before effectively being damped.

Theoretical stellar evolutionary tracks at advanced phases are still uncertain but NSs are ex-
pected to be formed in the collapse of stars more massive than 9M�. The upper limit is more
uncertain, but is expected to be situated around 40–50M� or, in other words, stars more massive
than these values will probably collapse into a BH. It is interesting to notice that the binary X-ray
pulsar GX301-2 has a B1 supergiant (Wray 977) as a companion. From an estimate of the present
mass of Wray 977, Kaper et al. (1995) were able to obtain a lower limit of 50M� for BH formation.
This conclusion is probably not a robust one, since in mass exchange processes in the early evolu-
tionary phases of the system, it is difficult to estimate the original masses. However, the discovery
of the X-ray pulsar (CXO J1647–45) in the young galactic cluster Westerlund-1 (Muno et al. 2005)
defines a secure estimate of the mass of the NS progenitor of about 40M�, based on the cluster age.
Since there are no evidences for a companion with M > 1M�, this limit is not affected, as in the
previous case, by mass exchange processes, which implies that stellar BHs probably originated from
progenitors more massive than 40M�.

The formation of a NS releases about 1053 erg carried out essentially by MeV-neutrinos, which
transfer momentum to the star’s mantle, triggering the explosive ejection of these outer layers and
giving rise to a supernova. An eventual detection of both neutrinos and GW bursts would be an
unambiguous signature of the gravitational collapse.

Although there is little doubt that a core-collapse produces GWs, the characteristics of the signal
are difficult to estimate. The rotation rate of the collapsing star directly affects the emission rate and
the choice of the pre-collapse angular velocity can make a large difference in the strength of the GW
signal. Muller & Janka (1997) performed 3+1 dimensional simulations of the gravitational collapse
and estimated an amplitude h � 4×10−23(10 kpc r−1), which is a consequence of a relatively small
flattening. In fact, recent studies (Hirschi et al. 2004; Heger et al. 2005) indicate that stellar iron
cores rotate more slowly than previously assumed and that the asphericity is not enough to produce
a sizeable mass-quadrupole moment. These results indicate that only events occurring in our Galaxy
are likely to produce a gravitational signal able to be detected by the present generation of laser
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interferometers. It is worth mentioning that even if a non-rotating core collapses, a convective and
unstable neutron star can be formed (Burrows & Hayes 1996; Muller et al. 2004). In this situation,
the fluid at nuclear matter density “boils” during the very first seconds, dredging up high temperature
material (T ∼ 1012 K), which cools by neutrino emission before being swept back downward and
reheated. Such a boiling generates ∼ 100 cycles of GWs with a frequency ∼ 100 Hz and amplitude
large enough to be detected either by VIRGO or LIGO throughout our Galaxy and its satellites.

Long-term 2D axisymmetric simulations in the post-bounce phase of a core-collapse have been
performed by Kotake et al. (2007), aiming to study asphericities induced by the growth of instabilities
in the accretion shock region. These instabilities produce an anisotropic neutrino emission, which
increases the amplitude of GWs up to two orders of magnitude larger than those originating from the
aforementioned convective motion and could be detected by advanced interferometers for a typical
source distance of ∼ 10 kpc.

More recently, axisymmetric 2D Newtonian radiation-hydrodynamic simulations (Burrows et
al. 2007) indicate that the dominant emission process of GWs during the core-collapse may be the
oscillations of a protoneutron star. These oscillations are predominantly g-modes excited hundreds
of milliseconds after the bounce and lasting typically for several hundred milliseconds. Supernova
models with progenitors having 11, 15 and 25M� respectively have been modeled by Ott et al.
(2006). Their results suggest that the total energy released in the form of GWs depends on the
progenitor mass and can attain values up to 8.2 × 10−5M�c2 with characteristic frequencies in the
range 650–940 Hz. According to these calculations, the gravitational signal of collapsing massive
stars can be detected up to distances on the order 1 Mpc or up to M31, the Andromeda galaxy.

Another mechanism able to produce GWs refers to the “ringing” of a NS excited by the fall-back
accretion of material not expelled during the supernova explosion. Rotation and convective motions
break the spherical symmetry of the accretion flow and different oscillation modes will be excited in
the process. The 2D nonlinear hydrodynamical simulations of NS ringing have been performed by
Nagar et al. (2004), who have shown that the gravitational wave signal comprises the l = 2 mode and
high frequency interference fringes, related to the motion of the infalling matter. The total emitted
GW energy is comparable to the amount released immediately after the core bounce.

It is worth mentioning that other stellar collapse scenarios are possible as, for instance, that of
a white dwarf whose mass is pushed just beyond the Chandrasekhar limit via accretion (accretion
induced collapse, or AIC, see Liu & Lindblom 2001). In this case, as the star collapses, its tempera-
ture increases adiabatically until reaching a limit imposed by the neutrino cooling. If neutrino losses
are not sufficient to control the adiabatic heating, the temperature will increase up to values able
to ignite nuclear reactions and the entire white dwarf explodes as a type Ia supernova. However, if
neutrino losses are able to prevent the nuclear burning, electrons are captured onto protons during
the contraction and a neutron star will ultimately be formed. This is an evolution very similar to the
core-collapse of massive stars. Some fraction of collapsing white dwarfs will produce supernovae
while others will form NSs. Their evolutionary path sensitively depends upon the initial white dwarf
mass, its chemical composition and the rate at which it accretes mass. An upper limit on the rate
of AICs in the Galaxy of about 10−5 yr−1 was estimated by Fryer et al. (1999), implying that these
events have quite a small detection probability.

2.2 Formation of Black Holes

Black holes are expected to exist in our universe within a large mass interval. Stellar black holes may
directly be formed in the core collapse of massive stars, by accretion of NSs, and by the merging of
two NSs at the end point of their inspiral in a binary system, whereas very massive BHs, probably
present in all galactic nuclei, are mainly formed by successive coalescences after merger events of
their respective host halos and by accretion of the gas present in the central regions of galaxies.
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Past 2D-hydrodynamic simulations of core collapses by Fryer (1999) suggest that for a large
range of progenitor masses, the partial fall back of the envelope drives the compact core to collapse
into a BH. The newly formed BH is likely to be quite “distorted” from the quiescent Kerr form and
remains so as material falls back onto it. The “distortion” drives the BH to radiate GWs as it settles
down to a Kerr configuration. The waveform of the initial burst depends on the details of the collapse,
but the late time behavior (the “ring-down” phase) has a well established damped oscillatory form,
which is essentially a function of the BH mass Mbh and angular momentum J (Echeverria 1989). If
mass accretion significantly increases the BH mass during the ring-down, the decay rate and mode-
frequencies are modulated by the matter inflow and the frequency evolution pattern reveals features
which depend not only on the accretion rate but also on the total accreted mass (Papadopoulos &
Font 2001). The emitted waves are a superposition of spheroidal modes, with the quadrupole mode
(l = 2) being dominate, while the dominant m-mode depends upon the matter flow. The m = ±2
modes are bar-like co-rotating (+) or counter-rotating (−) with the BH spin. For the main quasi-
normal mode (l = m = 2) , the frequency and the quality factor Q = πν gwτgw are respectively
given by the approximate expressions (Echeverria 1989)

νgw � 12
(
M�
Mbh

)
F (a) kHz, (2)

and
Q = K(a) � 2(1 − a)−0.45, (3)

where a = Jc/GM 2 and F (a) is given by

F (a) �
[
100
37

− 63
37

(1 − a)0.3

]
. (4)

The amplitude of the ring-down wave depends on the way and extent to which the BH is “distorted”.
Here, we assume that the total emitted energy corresponds to a fraction ε of the BH mass, e.g.,
E = εMbhc

2. In this case, assuming a damped sinusoidal waveform, the amplitude of the signal is

h0 = 5.57 × 10−21

(
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D

)(
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)√
ε
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, (5)

where D is the distance-luminosity in Mpc.
Using a “matched-filtering” technique, the expected S/N ratio is(

S
N

)2

=
4
5
h2

0

[
τgw

Sn(νgw)

]
Q2

1 + 4Q2
, (6)

where Q = πνgwτgw is the quality factor of the oscillation, Sn(ν) is the noise power spectrum of
the detector; the angle averaged beam factors of the detector were already included. Equations (5)
and (6) permit an estimate of the maximum distance that a given event can be detected once the S/N
ratio, the radiation efficiency ε, the mass and the angular momentum of the BH are fixed.

In order to perform some numerical estimates, a typical stellar BH of mass 9M� will be consid-
ered and a signal-to-noise ratio S/N=5 will be required. Head-on collisions between a BH and an NS
have been considered in a fully relativistic approach by Loffler et al. (2006). They have estimated a
GW efficiency for the ring-down emission of about 7.8× 10−4, which will be adopted here. Table 1
compares the maximum distances that are expected to be probed by advanced interferometers like
EGO or Advanced LIGO for two values of the spin parameter a.

These estimates indicate that even advanced laser beam interferometers are not able to probe
the ringdown emission beyond the Local Universe, implying that the expected event rate is quite
low. The reason is that the ring-down has a very low quality factor (Q ∼ 2 − 4) and, at frequencies
around 1.4–2.0 kHz, laser interferometers are dominated by photo-electron shot noise. That range is
less sensible than at frequencies around 150–250Hz, the domain in which the mirror thermal noise
prevails and where the sensitivity is maximum.
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Table 1 Maximum Expected Distances at which a “Ringdown” Signal
Can Be Detected with an S/N=5

a νgw (kHz) τgw (ms) DEGO (Mpc) DAdL (Mpc)

0.02 1.35 0.48 6.9 0.94
0.50 1.76 0.49 4.1 0.54

3 ROTATING NEUTRON STARS

3.1 Tri-Axial Stars

Historically, neutron stars, which are known to be quite abundant in the Galaxy, were ranked among
conspicuous emitters of GWs. Rotating NSs may have a time-varying quadrupole moment and hence
radiate GWs, by either having a triaxial shape or a misalignment between the symmetry and spin
axes, which produces a wobble in the stellar motion. Moreover, fast and hot rotating proto-neutron
stars may develop different instabilities, such as the so-called Chandrasekhar-Friedman-Schultz
(CFS) instability (Andersson & Kokkotas 2001, and references therein), which is responsible for the
excitation of density waves traveling around the star in the sense opposite to its rotation, or undergo
a transition from axi-symmetric to triaxial shapes through the dynamical “bar-mode” instability (Lai
& Shapiro 1995). All these mechanisms are potentially able to emit a considerable amount of energy
in the form of GWs. In the case of a rotating triaxial NS, the gravitational strain amplitude of both
polarization modes is given by

h+(t) = 2A(1 + cos2 β) cos(2Ωt), (7)

and
h×(t) = 4A cosβ sin(2Ωt), (8)

where β is the angle between the spin axis and the wave propagation vector, assumed to coincide
with the line of sight, Ω is the angular rotation velocity and the amplitude A is defined by

A =
G

Dc4
εIzzΩ2, (9)

where D is the NS distance, Izz is the moment of inertia and the ellipticity ε is defined by

ε =
Ixx − Iyy

Izz
. (10)

Notice that the frequency of the GWs is twice the rotation frequency of the NS.
Detection of both polarization modes of a radio pulsar immediately leads to the value of the spin

projection angle β and to an estimate of the ellipticity, if the distance is known by measuring the
dispersion of radio signals through the interstellar plasma. Upper limits on the ellipticity ε have been
obtained by assuming that the observed spin-down of pulsars is essentially due to the emission of
GWs. In this case, for “canonical” pulsars, one obtains ε ≤ 10−3 whereas “recycled” millisecond
pulsars seem to have equatorial deformations less than 10−8. Monte Carlo simulations of the galactic
pulsar population by Regimbau & de Freitas Pacheco (2000, 2003) indicate that for integration times
on the order of 107 s, significant detections by VIRGO are only possible if the mean pulsar ellipticity
is on the order of 10−6. Recently, the LIGO team (Abbott et al. 2007) reported upper limits for
the amplitude of gravitational waves from 78 isolated radio pulsars, which can be translated into
limits for ellipticities. For instance, J1024–07 and J2124–33 respectively have ellipticities less than
ε < 1.0 × 10−6 and ε < 7.0 × 10−7, consistent with the results derived from the aforementioned
simulations.
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Most of these upper limits are higher than values derived under the assumption that the observed
rotation breaking is essentially due to the emission of gravitational waves, with the exception of the
Crab pulsar. In this case, the derived upper limit permits researchers to impose strong constraints
on the initial rotation period of the pulsar as well as on its magnetic field. It is well known that
in the case of the Crab, the magnetic dipole breaking age (∼ 1330 yr) is higher than the “true” age
(∼ 950 yr). Such a discrepancy led Ostriker & Gunn (1969) to suggest that the gravitational radiation
contributed as an extra breaking mechanism almost forty years ago. From the equations of motion,
the ratio between the breaking age t∗ = 2P/Ṗ and the “true” age ta can be written as(

ta
t∗

)
=
(

1 + ηx2
a

ηx2
a

)[
x2

a − 1 − 1
η

ln
(

1 + ηx2
a

1 + η

)]
. (11)

In this equation, the left side is known from observations (t a/t∗ = 0.7157), xa = Pa/P0 is the ratio
between the present Pa (observed) and the initial P0 rotation periods and η is the ratio between the
breaking timescales (gravitational and magnetic dipole), explicitly given by

η =
5

768π
(B sinα)2R6P 2

0

GI2
zzε

2
. (12)

The numerical solution of Equation (11) gives pairs (xa, η) which can be converted into pairs in-
volving the ellipticity and the projection of the magnetic field along the spin axis (B sinα). Then,
using the observed upper limit for the Crab ellipticity derived from run S5, i.e., ε < 2.6 × 10 −4 and
values for the radius and moment of inertia for a “canonical” neutron star, the following parameters
are derived: initial rotation period P0 = 24.9 ± 0.6 ms and B sinα = (8 ± 1) × 1012 G.

Different scenarios leading to a distorted star have been discussed in the literature, as anisotropic
stresses from strong magnetic fields and tilting of the symmetry axis during the initial cooling phase
when the crust of the proto-neutron star solidifies. Bildsten (1998) pointed out that a NS in a state
of accretion may develop non-axisymmetric temperature variations on the surface, which produce
horizontal density patterns able to create a large mass quadrupole moment, if the elastic response of
the crust is neglected. More detailed calculations (Ushomirsky et al. 2000) indicate that the inclusion
of the crustal elasticity decreases the expected mass quadrupole by a factor of 20–50, considerably
reducing the predicted GW emission. Elastic deformations of compact objects with “exotic” equa-
tions of state have been considered by Owen (2005). He showed that solid strange stars could sustain
ellipticities as high as a few times 10−4, considerably higher than estimated values for conventional
NSs (Thorne 1980). More recently, Horowitz & Kadau (2009) have revisited the breaking strain of
the crust of neutron stars, reaching the conclusion that ellipticities up to 4 × 10−6 can be supported
by canonical neutron stars, consistent with the early analyses by Regimbau & de Freitas Pacheco
(2000, 2003).

The distortion induced by magnetic fields becomes significant in highly magnetized NSs, over-
whelming the flattening due to a fast rotation. The existence of NSs with magnetic fields in excess
of 1014 G (dubbed magnetars) was firstly suggested by Thompson & Duncan (1993). They have
shown that in fast newborn NSs, the dynamo mechanism could generate magnetic field strengths up
to 1016 G. The existence of magnetars is supported by the observation of “soft gamma repeaters”
(SGRs) and anomalous X-ray pulsars (AXPs), whose rotation periods and deceleration rates, if in-
terpreted in terms of the canonical magnetic dipole model, suggest that these objects are associated
with young highly magnetized NSs (Kouveliotou et al. 1998, 1999; de Freitas Pacheco 1998; Heyl &
Kulkarny 1998; Mereghetti 1999). On one hand, magnetars may be considered as objects having an
origin and evolutionary path different from canonical radio pulsars but, on the other hand, popula-
tion synthesis simulations by Regimbau & de Freitas Pacheco (2001, 2006) suggest that NSs are born
with a large variety of rotational periods and magnetic fields and that magnetars are objects simply
born on the high tail side of the magnetic field distribution. Figure 1 shows the observed magnetic
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Fig. 1 Magnetic field distribution of observed pulsars (dashed curve) and that for the unseen (real)
population (solid curve). Adapted from Regimbau & de Freitas Pacheco (2006).

field distribution as well as that for the “unseen” population, hidden by a different observational bias.
The mean field of the observed population is about 1.6×10 12 G and the distribution has an apparent
cutoff around 1014 G. The hidden population has an average magnetic field one order of magnitude
higher and the estimated fraction of magnetars, defined as objects with fields above 10 14 G, is about
8% of the total pulsar population, which amounts to ∼ 250 000 objects. This number should not be
identified with the total number of NSs in the Galaxy, which is evidently several orders of magnitude
higher.

The deformation of magnetized Newtonian stars was already discussed in the early fifties by
Chandrasekhar & Fermi (1953) and Ferraro (1954). The GW emission from magnetic distorted stars
was considered by Gal’tsov & Tsvetkov (1984), Bonazzola & Gourgoulhon (1996), Konno et al.
(1999, 2000), and Palomba (2001), among others. The deformation of a slowly rotating magnetized
star can be expressed as the sum of the contribution of three main terms: the first and the most
important corresponds to the Lorentz force, induced by current flows in the highly conductive NS
interior; the second term represents variations of the gravitational potential, a consequence of the
distortion itself; and, finally, the third is a purely relativistic term arising from the definition of the
circumferential radius R = L/2π, where L is the length of the equator as measured by a non-
rotating observer. In general, the ellipticity induced by magnetic field effects can be expressed by
the dimensionless ratio (Konno et al. 2000)

εB = g
B2R4

GM2
sin2 α = 1.9 × 10−8gB2

14R
4
10M

−2
1.4 sin2 α, (13)

where B, R and M are respectively the magnetic field at the surface, the radius and the mass of
the NS, α is the angle between the spin and the magnetic dipole axes, while g is a dimension-
less parameter depending both on the equation of state and on the magnetic field geometry. In the
case of an incompressible fluid star with a dipole field, the deformation parameter is g = 12.5.
Relativistic models based on a polytropic equation of state and a dipole field geometry give simi-
lar values (Konno et al. 2000). NS models built with the equation of state UV 14+TNI (Wiringa et
al. 1988) and with non-superconducting NS matter lead to deformation parameters g on the order
of the unity for currents concentrated in the crust and a few times higher if currents are concen-
trated in the core (Bonazzola & Gourgoulhon 1996). These values correspond to ellipticities of about
(2− 20)× 10−8 for fields typically on the order of 1014 G, below the limits estimated by Regimbau
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& de Freitas Pacheco (2000, 2003), to produce a detectable signal by the present generation of inter-
ferometric detectors. If NSs have a superconducting interior of type I, the magnetic field permeates
only the very outer layers of the star and distortion parameters as high as g � 520 can be obtained
(Bonazzola & Gourgoulhon 1996), corresponding to ellipticities on the order of 10 −5 for magnetic
fields of ∼ 1014 G. However, magnetars have a rather strong magnetic dipole braking and they are
only “visible” by the detector on the low frequency side for a very short time interval, considerably
reducing the detection probability.

3.2 Bar Modes

Fast rotating NSs may develop non-axisymmetric instabilities if the ratio between the rotational
and gravitational energies, β = T/|W |, is higher than a certain critical value. These instabilities
correspond to global non-radial toroidal modes with eigenfunctions ∝ e ±imφ, where m = 2 is the
so-called bar-mode, the fastest growing mode when rotation is very rapid. They are called bar-modes
since they give an elongated shape to the star. NSs may become dynamically unstable against bar
modes when βd > 0.27 (the hydrodynamic time scale determines the instability evolution) or secu-
larly unstable under dissipative processes such as viscosity or gravitational radiation when β s ≥ 0.14
(the shorter dissipation time scale determines the instability evolution). These limits have been rig-
orously derived for homogeneous and uniformly rotating Newtonian stars, but further relativistic
numerical studies using polytropic equations of state and assuming ad-hoc rotation profiles lead to
the conclusion that the onset of the dynamical instability occurs approximately at the same limit
(Houser et al. 1994; Shibata et al. 2000), but relativistic effects tend to strengthen the secular insta-
bility. In fact, Morsink et al. (1999) found that, for a wide range of “realistic” equations of state, the
critical value of βs can be fitted by the relation

βs � 0.115 − 0.048
M

Mmax
, (14)

where Mmax is the possible maximum mass of a stable non-rotating star issued from a given equa-
tion of state. On the other hand, Centrella et al. (2001) found low-β instabilities, which seem to be
associated with the presence of corotation points and that may be excited if centrifugal forces pro-
duce a density peak off the rotation center. Moreover, rotating stars with differential rotation may
also become dynamically unstable even if β ∼ 0.01 (Shibata et al. 2002, 2003).

The bar-mode instability can be excited in a hot proto-NS a few milliseconds after the core
bounce or a few tenths of seconds later, when the star has cooled by neutrino emission and con-
tracted, with β becoming larger than the critical value. The instability develops in two steps (Houser
et al. 1994): i) after shedding mass in the form of two spiral arms which merge in the equatorial
plane and inducing angular momentum losses, the system evolves toward an axisymmetric state
(MacLaurin spheroid) which is dynamically stable but still secularly unstable; ii) the star becomes a
Dedekind or a Jacobi ellipsoid depending on whether the instability is driven by gravitational radi-
ation or viscosity. As the star evolves toward a Dedekind ellipsoid, hydrodynamic waves propagate
counterclockwise through the external layers.

Most of the numerical studies suggest that after the dynamical instability phase (if the system
was initially set beyond the limit β � 0.27), it recovers almost an axisymmetric shape, but with
β still above the secular instability threshold. In this case, the system may evolve away from the
axisymmetric configuration in a time scale determined by the gravitational radiation reaction, which
is of the order of a few seconds for β in the range 0.20–0.25, as simulations suggest. This evolution-
ary path is possible if the gravitational radiation overcomes viscosity. Then, during the evolution, the
fluid circulation is conserved (but not angular momentum) and the system evolves toward a Dedekind
ellipsoid, whose configuration is a fixed triaxial figure with an internal fluid circulation of constant
vorticity. In the opposite situation, when the viscosity drives the instability, angular momentum is
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conserved but not the fluid circulation, and the system evolves toward a Jacobi ellipsoid. The tran-
sition to a Dedekind configuration is manifested in the form of strong hydrodynamic waves in the
outer layers and mantle, propagating in the opposite direction of the star’s rotation. The frequency of
GWs is maximum at the beginning of the transition (νmax ∼ 800 Hz) and then it decreases monoton-
ically. Since GWs carry away angular momentum, the final configuration is a non-rotating triaxial
ellipsoid, which no longer emits GWs. Thus, the wave amplitude first increases, reaches a maximum
when ν ∼ 500 Hz, and then decreases to zero. Lai & Shapiro (1995) estimated that the total GW
energy radiated during the transition could be as high as 4 × 10−3 Mc2 in a typical time scale of
∼ 120 s. Estimates of the characteristic gravitational strain amplitude for the dynamical instability
phase performed by different authors (Houser et al. 1994; Houser & Centrella 1996; Brown 2000;
Shibata et al. 2000) seem to be in rough agreement, e.g., they predict a characteristic amplitude
hc � 3 × 10−22 at a distance of 20 Mpc.

More recently, the above picture, based on the behavior of an incompressible fluid star, has been
questioned by hydrodynamic simulations using a post-Newtonian approach, a polytropic equation
of state with index N = 1 and non-uniform rotation (Shibata & Karino 2004). In fact, for N > 0.8,
the Dedekind configuration may not exist because: a) the uniformly rotating Jacobi ellipsoid does
not exist for N > 0.808 (James 1964) or b) the Dedekind theorem for incompressible fluids says
that the absence of the Jacobi configuration implies the absence of the Dedeking ellipsoid. In this
case, it is possible that a secularly unstable star relaxes to a nearly axisymmetric stable rotating
star, after sufficient angular momentum losses by gravitational waves, as the simulations by Shibata
& Karino (2004) suggest. According to these authors, the characteristic frequency of gravitational
waves emitted by a secularly unstable star is

νgw � 460

(
σ

0.6ρ1/2
c

)(
Re

20 km

)−3/2(
M

1.4M�

)1/2

Hz, (15)

where σ is the angular velocity of the non-axisymmetric perturbation in units of ρ 1/2
c , the square root

of the initial central density of the star, and Re is the equatorial radius. The effective amplitude of
GWs is heff = N

1/2
c h, withNc being the number of cycles of the GW train and h is the characteristic

amplitude, e.g.

heff � 5.2 × 10−22

(
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)1/2
(
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D

)
, (16)

where ζ ∼ 0.2 is a dimensionless parameter. Under these conditions, the expected signal-to-noise
ratio is

S
N

� 2heff√
νSn(ν)

. (17)

Fixing S/N=7, the maximum luminosity-distances probed by VIRGO and LIGO are respectively
15 Mpc and 12 Mpc. The expected event rate is approximately given by the product of the type II
supernova rate inside a volume of radius 12–15 Mpc and the fraction ζ bar of NSs born with initial
periods within the instability window. The former factor, using the results by Cappellaro et al. (1999),
corresponds to about 4.0 supernova yr−1, while the latter can be estimated from the relation

ζbar =
∫ P2

P1

g(P )dP, (18)

where g(P ) ∝ exp
[−(P − P̄ )2/2σ2

]
is the probability distribution of initial rotation periods (see

Regimbau & de Freitas Pacheco 2000), whose updated parameters are P̄ = 240 ± 20 ms and σ =
80 ± 20 ms. For a canonical NS, the instability interval (0.1375 ≤ β ≤ 0.2738) corresponds to a
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very narrow interval of rotation periods, e.g., (0.82–1.14) ms. Therefore, ζ bar = 3.6× 10−6 and the
expected event rate for LIGO and VIRGO is rather small, e.g., in the range of 14 events per Myr.

For the planned advanced detectors, the maximum probed luminosity-distance (S/N=7) corre-
sponds to 144 Mpc for ad-LIGO and 742 Mpc (z � 0.152) for EGO. The expected detection rate for
ad-LIGO is still rather small (one every 230 yr) and, in the case of EGO, evolutionary effects on the
cosmic star formation rate must be taken into account. Thus, the expected event rate R bar is given
by the equation

Rbar = 4πλnsζbar
c

H0

∫ zmax

0

R(z′)
(1 + z′)

r(z′)2

E(z′)
dz′, (19)

where λns = 5.7 × 10−3M−1
� is the fraction by mass of NS progenitors (stars in the mass range

9–40M�), weighted by a Salpeter’s initial mass function. R(z) is the cosmic star formation rate
(in M� Mpc−3 yr−1 and, in our calculations, the parameterization given by Hopkins & Beacom
2006 was used), the term (1 + z) in the denominator takes into account time dilation, r(z) is the
comoving distance and E(z) =

√
ΩΛ + Ωm(1 + z)3 corresponds to a flat cosmology (ΩΛ + Ωm =

1). Performing the integral, one obtains about one event every two years, if the planned sensitivity
will in fact be achieved.

3.3 r-Modes

The r-mode (r for rotation) is a member of a class of gravitational radiation driven instabilities
(including the secular bar-mode instability) excited by the so-called CFS (Chandrasekhar-Friedman-
Schultz) mechanism. These large scale toroidal fluid oscillations are similar to the well known geo-
physical Rossby waves whose restoring force is the Coriolis force (Stergioulas 2003, and references
therein). The mechanism for the gravitational wave instability can be understood in the following
way. The eigen-frequencies of the mode are ±ω, corresponding to ±m and corresponding to the
forwards and backwards propagating modes. These two modes are affected differently by the ro-
tation of the star. The backwards mode will be dragged forwards by the stellar rotation, and if the
star spins sufficiently fast, the perturbation will move forwards with respect to the inertial frame
while still moving backwards in the rotating frame. The GWs from such a mode carry positive an-
gular momentum away from the star, but since the perturbed fluid rotates slower than it would in
the absence of the perturbation, the angular momentum of the retrograde mode is negative. Thus,
the emission of GWs makes the angular momentum of the mode increasingly negative, leading to an
instability. Once the disturbances radiate away the star’s angular momentum, the system can find a
state of lower energy and angular momentum. The fact that the emission of GWs causes a growth in
the mode energy in the rotating frame E r, despite that the decrease in the inertial frame energy E i

can be understood from the relation expressing the energy in both frames, e.g.,

Er = Ei − JΩ. (20)

This relation says that Er may increase even if both Ei and J decrease. The r-mode velocity field
measured by a co-rotating observer is approximately given by

δv(r, t) � αΩR
( r
R

)m

Y B
mmeiωrt, (21)

where α is the dimensionless amplitude of the perturbation and Y B
ml is the magnetic multipole

as defined by Thorne (1980). The r-mode (l = m) frequency ω r is related to the star’s rotation
velocity by

ωr � 2mΩ
l(l+ 1)

[
1 − 0.573

Ω2

πρ

]
. (22)
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In the first seconds after the formation of the NS, the temperature is very high (T ∼ 10 11 K)
and the bulk viscosity is expected to suppress the CFS instability, whereas the shear viscosity plays
a stabilizing role for temperatures T ≤ 109 K. Thus, there is a well defined window in which a fast
newly-born NS is unstable. As the star cools by neutrino emission and decelerates by GW emission,
it stabilizes around periods of 15–25 ms. According to this scenario, no newly-born pulsar faster than
this limit should be observed. However, these estimates depend not only on damping effects due to
different physical mechanisms, with most of them still badly understood, but also on the role played
by the crust and magnetic field.

In the plane Ω–T , the instability limit region can roughly be estimated by imposing that the
energy rate balance of the mode is zero, e.g.,

1
τ

=
1
τgr

+
1
τb

+
1
τs

= 0, (23)

where τgr, τb and τs are respectively the gravitational radiation, and the bulk and shear viscosity
damping time scales. For the m = 2 mode, these time scales are approximately given by Andersson
& Kokkotas (2001)

τgr = −22
(

1.4M�
M

)(
10 km
R

)4(
P

1 ms

)6

s, (24)

τb � 2.7 × 1011

(
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)6

s, (25)

and

τs � 1.2 × 108

(
1.4M�
M

)5/4 (
R

10 km

)23/4(
T

109 K

)2

s, (26)

where P is the rotation period of the star. These time scales depend on both the angular velocity and
the temperature, and the condition τ < 0 defines the region in the space Ω − T where the mode is
unstable. In order to cross the instability window, the star must be hot and be a fast rotator. Only NSs
born with initial rotation periods in the interval PK − Pf are unstable. Here, PK � 8.05(πGρ)−1/2

is the Keplerian period below which matter is ejected from the equator (Friedman et al. 1989) and,
for a canonical NS of mass 1.4M� and radius R = 10 km, PK � 0.68 ms. Using the relations
above, the corresponding temperature at which the star enters its instability region is ∼ 6 × 10 10 K.
When the star cools to a temperature ∼ 4 × 109 K, corresponding to a critical rotation period
of 20.8 ms, the shear viscosity stabilizes the star. Thus, three main phases can be identified in the
evolutionary path of the star. Initially, the amplitude of the r-mode undergoes a rapid exponential
growth, on a time scale of the order of one minute, without significantly affecting the rotation of
the star. In this regime, the linearized hydrodynamic equations are a good approximation. After a
few minutes, the amplitude α becomes so large that the linear theory is insufficient to describe the
evolution of the mode. Non-linear studies suggest that the amplitude “saturates,” halting the growth
of the mode at some amplitude of order unity, although the details of these non-linear effects are
as yet poorly understood. In this “saturation phase,” the amplitude is treated as a phenomenological
constant parameter (α ≤ 1); gravitational waves carry away the angular momentum of the star at
a rate dJ/dt ∝ Ω7 while the star continues to gradually cool. This saturation phase is the most
likely to be detected and lasts about 104 − 105 s for a crusted NS and about 106 − 107 s for a fluid
star. As the star spins down, the gravitational radiation gets much weaker, viscous damping becomes
stronger and the star enters its “decay phase” when r-modes are stabilized by viscosity and the mode
amplitude slowly dies away.

For purposes of detection, the most important characteristics of the GW signature from r-modes
are: i) at the first order in the angular velocity of the star, the r-mode frequency for m = 2 is
νgw = 4νrot/3 (Eq. (28)); ii) the emission is connected with mass-current multipoles instead of
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mass multipoles and the expected strain amplitude in the saturation phase, calculated for a polytropic
equation of state withN = 1 (P ∝ ρ2) and for a canonical NS of 1.4M�, is Andersson & Kokkotas
(2001)

h(t) � 9.2 × 10−25α

(
20 Mpc
D

)
. (27)

In order to estimate the expected S/N ratio, the usual matched-filtering approach is adopted,
although it must be recognized that such a technique is unlikely to be possible for this kind of signal.
In this case (

S
N

)2

= 4
∫ ∞

0

(
hc

hn

)2

dlgν, (28)

where hn = [νSn(ν)]1/2 and hc is the characteristic amplitude defined by

hc = h(t)
[
ν2
∣∣∣ dt
dν

∣∣∣]1/2

. (29)

This last relation is a consequence of the stationary phase approximation, meaning that the de-
tectability of a quasi-periodic signal is improved as the square root of the number of cycles at a
given frequency ν increases. Under these conditions, for S/N=7, the maximum distances probed by
VIRGO and LIGO are 0.54αMpc and 0.40αMpc respectively. For the planned EGO which requires
the same S/N ratio, the maximum distance is about 23α Mpc.

An estimate of the expected number of events requires a previous estimate of the fraction of NSs
born within the instability window. Performing a similar analysis as in the preceding section, one
obtains ζr � 1.7 × 10−3. Using the local rate by Cappellaro et al. (1999), the expected rate of type
II supernovae within the volume probed by EGO is 6.4 yr−1 and multiplying by the fraction ζr, one
obtains a rate of one event every 92 yr.

Besides the rather low expected event rates, the relevance of r-modes is still in doubt, since they
also face other difficulties. First, the r-mode instability might not be confirmed after all complicated
physical processes that occur in NSs are taken into account. Second, the amount of angular momen-
tum removed from the star and the strength of the GWs depend critically on the maximum amplitude
α that can be reached by the r-mode, which might be limited by magnetic field effects (Rezzola et
al. 2001) or by the leakage of energy to other damped modes by way of nonlinear couplings. Some
of these issues have been investigated within a Newtonian framework by Lindblom et al. (2001).
The picture which emerged from these simulations is quite different from that described above. The
r-mode spin-down phase is faster (only a few minutes) and the frequency of GWs remains remark-
ably constant as the angular velocity of the star decreases. Even after the emission of GWs, the star
continues to lose energy. This energy loss is probably related to density perturbations proportional
to Y B

32, which appear as waves with four crests (two in each hemisphere) on the surface of the star.
As the amplitude reaches its maximum, these propagating crests turn into large, breaking waves, and
the edges of the waves develop strong shocks that dump kinetic energy into thermal energy, thus
killing the r-mode (Vallisneri 2003).

3.4 Quasi-Radial Oscillations

The new field of asteroseismology provides a wealth of information about the interiors of stars. For
NSs in particular, a large number of pulsation modes are possible, but they are very difficult to ob-
serve in the electromagnetic spectrum. However, the analysis of X-ray data on hyperflares associated
with the soft gamma repeaters (SGRs) 1806–20 and 1900+14 revealed the presence of quasi-periodic
oscillations respectively in the range 18–93 Hz and 28–155 Hz for these objects. These oscillations
can be interpreted as toroidal modes (Watts & Strohmayer 2007), allowing an estimation of the crust
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thickness. Horvath (2005) raised the possibility that oscillations could be generated in the cracking
of a solid quark star and that a substantial fraction of the released energy could be emitted in the form
of GWs. More recently, Traylor et al. (2007) examined LIGO data obtained around the hyperflare
event of 2004 December 27 associated with SGR 1806–20, concluding that the energy released in
the form of GWs was less than 7.7 × 1046 erg for the 92.5 Hz mode.

Since the exhaustive work by Cowling (1941) was published, the “classical” (non-relativistic)
approach to identify the main stellar oscillation modes was based on the restoring force that influ-
ences the fluid motion. Well known modes are the high frequency pressure p-modes and the low
frequency gravity g-modes. Pressure is the restoring force for p-modes and frequencies associated
with these modes depend on the travel time for acoustic waves to cross the star. The fundamen-
tal p-mode, whose eigenfunction has no nodes in the star, is usually referred to as the f-mode and,
for NSs, the related frequencies are in the range 1.0–2.5 kHz. The g-modes, restored by gravity,
sensitively depend on the internal composition and temperature distribution throughout the star and
have frequencies of a few hundred Hz. Other common fluid modes are the shear (s-mode), toroidal
(t-mode) and interface (i-mode). The interplay of all these modes in a NS is quite complex, since
these objects may have a solid crust and a fluid core. The modes p and g belong to the class of polar
modes, but if the shear modulus in the crust is non-zero, axial modes should exist as well as i-modes
associated with the interface between distinct phases of matter inside NSs. The Newtonian picture
has significantly changed in the past decades thanks to relativistic calculations, which have shown
the existence of purely spacetime modes, the gravitational wave modes (w-modes), which are not
present in the Newtonian approach (Kokkotas & Schultz 1986; Kojima et al. 1995; Andersson et al.
1996). These w-modes arise because of the trapping of a GW by the spacetime curvature generated
by the background density. The w-modes exist for both polar and axial perturbations since they do
not depend on fluid perturbations and have frequencies above 7 kHz, damped on time scales shorter
than one millisecond. Moreover, axial modes, which were thought not to exist for non-rotating stars,
do exist (Chandrasekhar & Ferrari 1991), have a frequency spectrum similar to w-modes and emit
as much energy in the form of GWs as oscillating BHs.

Radial modes, by their simplicity, have been the first to be extensively investigated since they
can provide information about the interior of stars. However, only non-radial oscillations produce
GWs and early calculations concentrated mainly on the fundamental mode, through which most of
the mechanical energy of the star is radiated away (Thorne & Campolattaro 1967; Thorne 1969;
Lindblom & Detweiler 1983; Kokkotas & Schultz 1992). Since pure radial modes do not emit GWs,
these oscillations are essentially damped by viscous forces. However, the situation is quite different
if the star rotates (Chau 1967); since the degeneracy in the index m is removed, prograde (m < 0)
modes are now distinct from retrograde (m > 0) modes and a non-rotating l-mode is split into 2l+1
different modes (Stergioulas 2003). Moreover, rotation couples a polar l-term to an axial l ± 1 term
and the coupling to the l + 1 term is strongly favored over the coupling to the l − 1 term. Similar
conclusions follow from the analysis of axial modes (Chandrasekhar & Ferrari 1991; Kojima 1992;
Stergioulas & Friedman 1998). As a consequence of these rotational couplings, even the lowest
(l = 0) quasi-radial mode may radiate gravitational waves.

In rotating stars, Quasi-Normal Modes (QNMs) have been studied mainly in the slow rotation
limit, in the post-Newtonian and in the Cowling approximation, which takes into account fluid dis-
placements and neglects metric perturbations. The solution of the fully relativistic perturbation equa-
tions for a rapidly rotating star is still a very challenging task (see, Stergioulas 2003 and references
therein). Quasi-radial modes in rotating relativistic stars have been studied by Hartle & Friedman
(1975) and by Datta et al. (1998) in the slow rotation approximation. Yoshida & Eriguchi (2001)
analyzed quasi-radial modes of rapidly rotating stars in the Cowling approximation and found that
intersections between quasi-radial and other axisymmetric modes can appear near the Keplerian
limit. Vincent (2008), using a linear theory, including both fluid and metric perturbations, computed
the fundamental and the first overtone frequencies of rapidly rotating neutron star models based on
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“realistic” equations of state, characterized by different nuclear compressibilities. Non-perturbative
approaches have been developed recently by Font et al. (2000, 2002) and Dimmelmeier et al. (2006),
who have used a relativistic code able to solve the coupled set of Einstein equations and the general
3D relativistic hydrodynamic equations, to study the long-term dynamical evolution of neutron stars.

A major problem concerning the emission of gravitational waves by an oscillating NS is the
absence of a convincing excitation mechanism. Once the solid crust is formed, stresses produced
by strong magnetic fields and/or rotation will be present and will induce tectonic activity. In this
case, the stored elastic energy can be released as a consequence of star-quakes, which may excite
radial and non-radial modes. However, the maximum elastic energy that can be channeled into os-
cillation modes is likely to be on the order of 1045 erg, restricting the detection of gravitational
waves produced by those modes to galactic objects (de Freitas Pacheco 1998). Other more promis-
ing mechanisms able to excite oscillations have been proposed, such as the delayed collapse of the
object resulting from the merger of two neutron stars (Shibata 2000) or the quake induced by a
phase transition in the core (Cheng & Dai 1998; Miniutti et al. 2003). The contraction of a neutron
star, induced by a first order phase transition occurring in the core, is a possible scenario in which
quasi-radial oscillations may be excited. Neutron stars in low-mass X-ray binaries are spun up by
accreting matter from the companion. In this case, the neutron star may accrete an amount of mass
ΔM ≥ 0.5M� in a timescale of about 108 yr, becoming a massive millisecond pulsar and having a
central density high enough for the nuclear matter to undergo a phase transition. In fact, data on some
binary millisecond pulsars located in globular clusters indicate that the associated neutron stars have
masses significantly higher than the canonical value of 1.4M� (Freire et al. 2008a,b). Examples
of these phase transitions are the formation of a kaon condensate and the deconfinement of quarks
(Glendenning 2000), which soften the equation of state and produce a mini-collapse of the star.
Pion and kaon condensates are likely to appear at densities above (6–7)n 0 (n0 = 0.16 fm−3 is the
nuclear saturation density) (Brown et al. 1994; Waas et al. 1997). At these supra-nuclear densities,
the deconfinement of quarks might also occur. Initially, the quark matter will be composed of two
flavors, u, and d and, subsequently, of three flavors u, d and s, forming the so-called strange quark
matter (SQM), expected to be more stable than non-strange quark matter (Witten 1984). Because
of the high degeneracy of matter constituents, temperature effects can be neglected and the phase
transition occurs at a well defined Pc accompanied by an energy density jump at the phase interface.
Stability requires that the Seidov (1971) criterion, e.g., the energy density jump across the transition
surface, must satisfy the condition

εq
εH

<
3
2

(
1 +

Pc

εH

)
, (30)

where εq and εH are respectively the energy densities of quark and hadron matter at the transition
surface. A first-order phase transition allows for a metastability of the hadron phase for P > P c.
Thus, a metastable core could form during the NS evolution in which the central pressure increases
due either to spin-down or accretion. In the metastable core, quarks can appear through a nucleation
process leading to the formation of quark droplets inside the hadron matter. The energy barrier
resulting from the surface tension at the quark-hadron interface delays the nucleation process until
the pressure reaches a critical value at which the energy barrier vanishes. Above such a critical
pressure, the core becomes unstable and converts immediately into the quark phase. The formation
of a quark core (as well as the formation of a pion/kaon condensate) softens the equation of state,
reducing the maximum stable mass and rendering the star unstable. Under these conditions, the
NS may undergo a “mini-collapse” and the energy difference between the initial and the final star
configuration is transformed into heat and/or mechanical energy in the form of oscillations, damped
either by viscous forces or by the emission of GWs (Marranghello et al. 2002; Zdunik et al. 2006). It
is worth mentioning that some authors have considered the excitation of the quadrupole mode during
the the birth of a pure quark-star as a possible GW emission mechanism (Xu 2006). The same author,
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assuming that millisecond pulsars are wobbling quark stars, estimated upper limits for their radius
and mass using recent LIGO data.

The dynamics of the collapse induced by the hadron-quark phase transition was investigated
by Lin et al. (2006), who performed simulations using a 3D Newtonian hydrodynamic code. They
assumed the existence of an initial seed of SQM inside the core of the NS and that the conversion
process occurs in a time scale much shorter than the dynamical time scale. At the end, the star has
a core constituted by a mixed phase of nuclear and quark matter surrounded by a mantle of normal
nuclear matter. Their “reference” model has a baryonic mass of 2.2M�, a rotation period of 1.2 ms
and an equatorial radius of 17.95 km. The resulting waveform is composed by two main modes: a
quasi-radial mode of frequency 2.82 kHz and a quadrupole mode of frequency 2.08 kHz. The damp-
ing of the oscillations is of the order of a few milliseconds and is due essentially to the growth
of the differential rotation and dissipation by strong shock waves. More recently, Abdikamalov et
al. (2009) performed 2D relativistic calculations on the dynamics of the collapse also based on a
polytropic equation of state, concluding that the observed damping by Lin et al. (2006) is probably
dominated by numerical effects and is not due to the transfer of energy to rotation. Moreover, they
conclude that the total energy emitted in the form of gravitational waves is considerably less than
the values derived by Lin et al. (2006).

Stars, in these simulations of the collapse induced by a core phase transition, were modeled by
assuming a polytropic equation of state, which explains the relatively high oscillation frequencies
derived for the quasi-radial mode in spite that the considered star is quite massive. However, it is
worth mentioning that the relativistic treatment by Abdikamalov et al. (2009) gives lower frequen-
cies than those computed by Lin et al. (2006) for models of similar masses. In fact, for neutron star
models built with “realistic” equations of state, one should expect that the quasi-radial mode fre-
quencies decrease as the mass (or the central energy density) increases (Vincent 2008). Vincent &
de Freitas Pacheco (2010) built a sequence of hadronic rotating neutron stars having a fixed baryonic
mass (1.965M�), based on a “realistic” equation of state describing interactions in non-symmetric
nuclear matter constituted by neutrons, protons, hyperons and leptons. Sequences of rotating hybrid
models, including a quark core were also computed, based on the equation of state of deconfined
matter given by de Freitas Pacheco (1999). As the rotation of the hadronic star decreases, the central
density increases until the critical value for deconfinement is reached, corresponding to a pressure
of 0.422 Gev fm−3. At this point, the rotation period of the star is 2.16 ms, its equatorial radius is
10.29 km and its gravitational mass is 2.30M�. Once the transition point is attained, the star suffers
a small collapse, forming a core of deconfined matter having a mass of ∼ 7.8 × 10−4M� and a
radius of only 0.253 km. The total (equatorial) radius of the hybrid star is now 10.18 km, indicating
that the star has shrunken by about 110 m! The variation of the gravitational mass corresponds to an
energy release of approximately 2×1052 erg. The frequency of the quasi-radial mode at the moment
of the transition is 510 Hz for the hadronic phase and 670 Hz for the hybrid phase. Notice that the
expected oscillation frequency is considerable smaller that those predicted from polytropic models,
being closer to the maximum sensibility of ground based laser interferometers.

Table 2 compares the main properties of the resulting hybrid models of similar rest mass com-
puted by Vincent & de Freitas Pacheco (2010) and Abdikamalov et al. (2009). In Table 2, the first

Table 2 Comparison of the physical parameters of hybrid stars: model
A1 by Abdikamalov et al. (2009) and HY2 by Vincent & de Freitas
Pacheco (2010).

Model M0 (M�) Mg (M�) F (Hz) P (ms)

A1 1.980 1.810 870 1.00
HY2 1.965 1.804 670 2.16
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column identifies the model, the second gives the rest mass, the third gives the gravitational mass and
the last two columns give respectively the frequency of the quasi-radial mode and the rotation period.

Supposing that the waveform of the quasi-radial mode is approximately given by a damped
sinusoid, the signal-to-noise ratio for a matched-filtering of the signal is given by Equation (6). In
this case, the wave amplitude is related to the energy Egw released under the form of gravitational
waves by

h0 =
2

πDνgw

√
GEgw

τgwc3
, (31)

whereD is the distance to the source, νgw is the gravitational wave frequency and τgw is the damping
timescale. When the quality factor of the oscillation Q = πντ is greater than one (the present case),
the maximum distance that a source can be detected for a given S/N ratio does not depend on the
damping timescale. Combining the equation above for the amplitude with Equation (6), one obtains

Dmax =
9.43 × 10−21

νgw

√
E50

Sn(νgw)
, (32)

where E50 is the energy released in the form of gravitational waves in units of 10 50 erg and the
numerical factor was calculated for a signal-to-noise ratio S/N=5.

The fraction of the released energy which is channeled into gravitational radiation is still quite
uncertain. According to the computations by Bhattacharyya et al. (2006), the deconfinement occurs
in two distinct steps: in the first step, hadrons are converted in two-flavor (u, d) matter, quite a fast
process with a timescale of about 1ms. In the second step, the weak interaction reactionu+d↔ u+s
takes place converting the quark matter in “strange” matter. This reaction is quite slow and the core
conversion into “strange” matter takes tens to hundreds of seconds, depending on the mass of the
deconfined core. In this situation, one should expect that most of the released energy will be radiated.
The Newtonian calculations by Lin et al. (2006) suggest that only 10% of the released energy is
radiated away while the relativistic computations by Abdikamalov et al. (2009) indicate still lower
values, i.e., approximately 0.034% of the released energy is emitted in the form of gravitational
waves. If the latter estimates are correct, then even with advanced detectors, only galactic sources
or those located in M31 could be detected. An “optimistic” estimate can be obtained assuming that
most of the released energy is radiated and that the quasi-radial mode carries a similar energy as the
quadrupole mode. In this case, from the model by Vicent & de Freitas Pacheco (2010), advanced-
Ligo would be able to detect a signal up to a distance of 15 Mpc while EGO would see sources up
to 100 Mpc, corresponding to an event rate of about one detection every 3–4 yr if the specific rate is
about 10−5 yr−1 (Fryer et al. 1999; Pfahl et al. 2003).

4 BINARY SYSTEMS

4.1 NS-NS Binaries

The merger of two compact objects (NS-NS, BH-BH, NS-BH) are among the most important sources
of GWs, since a huge amount of energy is released in the process. In particular, the coalescence
of NS-NS binaries may radiate about 1053 erg in the last seconds of their inspiral trajectory, at
frequencies up to 1.4–1.6 kHz, the range covered by most of the ground-based interferometers. To
understand the process dynamics, the prediction of its signal waveform, the released power and the
event rate, many theoretical investigations have been performed in the past years.

The dynamics of the inspiral and, in particular, the study of tidal effects in the very last orbits of
an NS-NS system may put strong constraints on the equation of state of dense matter. Rosswog et
al. (2000) performed 3D Newtonian hydrodynamic calculations of the last stages of the inspiral and
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of the final coalescence of an NS-NS binary system, constituted by stars having masses of 1.3M�
and 1.4M�. Almost immediately after contact, a fast rotating massive central object is formed,
with a mass above 2.3M�. From the simulations by Rosswog et al., it is not possible to decide the
fate of the central object. It might collapse to a BH, but also the formation of a supermassive NS
with ∼ 2.7M� cannot completely be excluded. In the case of a larger mass difference between
the components, the less massive star gets disrupted and engulfs the other object, that stays rather
unaffected by the process. A fraction of the mass of the disrupted star is lost and the amount of
ejected material depends on the adopted equation of state, whereas a thick disk containing between
0.051M� and 0.23M� forms around the central star. Full relativistic 3D simulations of the merger
of two NSs were performed by Shibata et al. (2005) in a restricted mass ratio range (0.9 ≤ q ≤ 1).
These simulations suggest that if the total mass of the system is larger than∼ 2.5–2.7M� (depending
on the adopted equation of state), a BH is promptly formed irrespective of the initial mass ratio. In
the other case, the outcome is a hypermassive NS of large ellipticity. According to the simulations
by Shibata et al. (2005), in the formation of the hypermassive NS, quasiperiodic gravitational waves
of a large amplitude and with frequencies in the range 3–4 kHz are emitted. The emission time scale
is typically around 100 ms, after which the star collapses to a BH.

The coalescence of a system consisting of a BH and an NS was simulated by Lee (2000) using
Newtonian hydrodynamics. The final inspiral phases were followed up to separations on the order of
the stellar radius. For an equation of state with an adiabatic index γ = d logP/d log ρ = 3, after an
initial phase of intense mass transfer, the NS is not completely disrupted and a remnant core remains
in orbit around the BH in a stable binary configuration. For γ = 2.5, the tidal disruption process is
more complex. The core of the NS survives the initial phase of mass transfer, but is totally disrupted
during the next periastron passage. The resulting accretion disc formed around the BH contains a few
tenths of a solar mass. The estimated efficiency ε = (E/Mtotc

2) of the gravitational wave emission
is typically ∼ 3.3 × 10−3. Simulations in the framework of the GRT were performed by Faber et
al. (2006), who considered the merger of an NS with a Schwarzschild BH. The results obtained
by Faber et al. (2006) indicate that the mass transfer begins when the NS orbit is still outside the
innermost stable orbit and is more unstable than expected by some crude analytical studies. This
mass loss process is the driving mechanism determining the subsequent evolution of the orbit. The
NS is disrupted after a few orbital periods and most of the mass transferred onto the BH is promptly
accreted, but a fraction of about 30% of the mass is shed outward and finally ejected from the system.

If these simulations are now giving a more consistent scenario for the last evolutionary phases
of the merging of two NSs or an NS and a BH, there is still some tension concerning the expected
event rates.

Theoretical evaluations of the coalescence rate of NS-NS binaries are always performed in two
main steps: firstly, the merging rate in our Galaxy is estimated and then, assuming that this rate
is typical, an estimate is performed for the volume of the universe sampled by a given detector,
using some adequate scaling. The galactic merging rate has been estimated either by using binary
population synthesis models (Potergies-Zwart & Spreew 1996; Potergies-Zwart & Yungelson 1998;
Belczynski et al. 2002) or from the statistics of the observed NS-NS binaries (Phinney 1991; van
den Heuvel & Lorimer 1996; Kalogera et al. 2001; Kalogera et al. 2002; Kim et al. 2003). These
estimates may differ by one order of magnitude, ranging in general from 10 −6 yr−1 up to a few
times 10−5 yr−1, but values as high as 3 × 10−4 yr−1 have been reported in the literature (Tutukov
& Yungelson 1993; Lipunov et al. 1997). Once the present galactic merging rate has been evaluated,
the expected detection rate can be estimated by scaling the total luminosity within the volume probed
by the detector with respect to the luminosity of the Galaxy at the same wave-band. Within the local
universe (z < 0.01), the distribution of galaxies is not homogeneous and if the actual distribution is
not taken into account, the expected detection rate may be seriously underestimated. For instance,
the inclusion of the huge concentration of galaxies in the direction of Norma-Centaurus (the “Great
Attractor”) may considerably increase the detection rate of these events (de Freitas Pacheco 1977).



Gravitational Waves from Compact Objects 1089

Let R∗(t) be the star formation rate (in M� yr−1) and P (τ) be the probability per unit of dis-
rupted time for a newly formed NS-NS binary to coalesce in a time scale τ . Under these conditions,
the coalescence rate of NS-NS pairs at instant t in a given galaxy is

νc(t) = fbβnsλ

∫ t−τ∗−τ0

τ0

P (τ)R∗(t− τ∗ − τ)dτ, (33)

where fb is the fraction of massive binaries formed among all stars, βns is the fraction of formed
binaries which remain bounded after the second supernova event and λ = 5.7 × 10 −3M−1

� is the
fraction per unit mass of formed stars in the mass interval 9–40M�; a Salpeter initial mass function
was adopted. The mean evolutionary time scale required for the system to evolve into two neutron
stars is τ∗, typically on the order of 107 − 108 yr, whereas τ0 is the minimum time scale required
for an NS-NS binary to coalesce. According to the simulations reported by de Freitas Pacheco et
al. (2006a), τ0 � 2 × 105 yr. From the aforementioned simulations, the authors derived for the
coalescence probability, P (τ) = 0.087/τ , normalized in the interval τ0 = 20 Gyr, βns = 0.024
and fb = 0.136. The fraction βns of bound binaries depends on the natal kick imparted to the
nascent NS. Natal kicks may unbind binaries which otherwise might have remained bound or, less
probable, conserve bound systems which without the kick would have been disassociated. Recent
investigations on the spin period-eccentricity relation for NS-NS systems (Dewi et al. 2005) indicate
that such a correlation can only be obtained if the second NS receives a kick substantially smaller
than those commonly assumed for single radio pulsars, supporting the fact that de Freitas Pacheco
et al. (2006a) assumed a natal kick velocity distribution with a 1D velocity distribution of about
80 km s−1. Using the galactic star formation rate derived from observations (Rocha-Pinto et al.
2000), the present galactic NS-NS coalescence rate is νS = (1.7 ± 1.0) × 10−5 yr−1.

Elliptical galaxies also contribute to the morphological composition of galaxies in the local
universe. However, excluding the Milky Way, no direct information is available for the NS population
and the star formation history for other galaxies. Thus, the coalescence rate in extragalactic objects
can only theoretically be estimated. Assuming for a typical E-galaxy the model 3 by Idiart et al.
(2003), and the same parameters fb and βns derived for the Galaxy, de Freitas Pacheco et al. (2006a)
estimated a present coalescence rate of νE = 8.6× 10−5 yr−1. Adopting fractions of 35% and 65%
respectively for ellipticals and spirals within the local universe, the result for the mean weighted
coalescence rate is νc = 3.4 × 10−5 yr−1. The coalescence rate within a volume of radius D can
now be estimated by using the scale factor K(< D), defined by the ratio between the total B-
luminosity within the considered volume, derived from LEDA, and the Milky Way B-luminosity.
Figure 2, taken from de Freitas Pacheco et al. (2006a), shows the resulting coalescence rate within a
volume of radius D.

The strength of a given signal is characterized by the S/N ratio, which depends on the source
power spectrum and on the noise spectral density Sn(ν) of the detector. For the merging of NS-NS
pairs, the optimum S/N ratio is obtained by the matched-filtering technique, e.g.,(

S
N

)2

= 4
∫ ∞

0

| h̃(ν) |2
Sn(ν)

dν , (34)

where | h̃(ν) |2 is the sum of the square of the Fourier transform of both polarization components.
Following the approach by Finn (1996), the equation above can be recast as

S
N

= 8Θ
(r0
D

)( M
1.2M�

)5/6

ζ(νmax) , (35)

where D = (1 + z)r is the luminosity distance to the source and the parameter r0 is given by the
relation

r0 = 9.25 × 10−22
√
I7/3Mpc, (36)
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Fig. 2 Total expected NS-NS coalescence rate within a volume of radius D. The positions of the
Virgo cluster and of the super-cluster dubbed. The Great Attractor are also indicated.

with

I7/3 =
(ν�
π

)1/3
∫ ∞

0

dν

ν7/3Sn(ν)
, (37)

where ν� = 202.38 kHz. The term ζ(νmax) is defined by the equation

ζ(νmax) =
(ν�/π)1/3

I7/3

∫ 2νmax

0

dν

ν7/3Sn(ν)
. (38)

The inspiral phase ends when the pair separation is such that tidal effects disrupt the stars or when the
last stable orbit is reached, corresponding to a maximum orbital frequency νmax ∼ 750 Hz. The other
parameter in Equation (45) is the chirp mass M = μ3/5M2/5, with μ and M being respectively the
reduced and the total mass of the system. The angular function Θ depends on geometrical projection
factors of the detector and on the inclination angle i between the orbital angular momentum of the
binary and the line of sight, namely

Θ2 = 4
[
(1 + cos2 i)2F 2

+ + 4 cos2 iF 2
×
]
. (39)

According to Finn & Chernoff (1993), the probability distribution of Θ can be approximated with
quite a good accuracy by the relation

P (Θ) =
5Θ(4 − Θ)3

256
if 0 ≤ Θ ≤ 4. (40)

From these equations, for a given S/N ratio and detector sensibility, the maximum distance
probed by the instrument can be evaluated. Under these conditions, the parameter r 0 is 7.6 Mpc
for VIRGO, 8.0 Mpc for LIGO and 120 Mpc for advanced-LIGO. Adopting S/N=7.0, the typical
threshold for a false alarm rate of about one per year; the maximum probed distances are 13, 14 and
207 Mpc for VIRGO, LIGO and advanced-LIGO respectively. Using data from Figure 2, the mean
expected event rates are one each 125 yr for LIGO, one each 148 yr for VIRGO and 6 events yr −1

for advanced-LIGO.
Spallicci (2003) and Spallicci et al. (2005) analyzed the spectral noise density of VIRGO in

the context of chirp signal detection. These studies suggest that the reduction of the mirror thermal
noise may provide the highest gain in the S/N ratio. The direct dependence of the mirror thermal
noise power spectrum on the temperature points to the use of already existing cryogenic techniques.
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In parallel, also the pendulum thermal and shot noise should be reduced in such a frequency band.
If the mirror thermal noise is reduced by a factor of 10, a gain by a factor of 8 can be obtained,
increasing the maximum distance probed by VIRGO up to 110 Mpc and allowing an expected de-
tection rate of about 3 events every 2 yr. These results suggest that only the planned sensibility of
advanced interferometers will permit researchers to probe the local universe deep enough for at least
a few events to be seen during a monitoring period of 1–2 yr. An alternative strategy for the present
(and future) generation of laser interferometers is the search of these events by using a network of
detectors, since for a given false alarm rate, the detection threshold is lowered as the number of
detectors increases. Data analysis of chirp signals detected by a network of gravitational antennas,
in particular that constituted by the two LIGO (Hanford and Livingston) and VIRGO detectors was
recently considered by Pai et al. (2002). Those authors estimated the increased detection sensibility
for such a combination of detectors and, for a false alarm rate equal to one per year and a detection
probability of 95%, the maximum probed distance turns out to be around 22 Mpc, corresponding to
an event rate of about one every 26 yr and implying a gain of a factor of 5 with respect to a single
interferometer.

4.2 BH-BH Binaries

Investigations on binary systems consisting either of two BHs or a BH and an NS have received
great attention in the past years, in particular because of effects from the spin-orbit interaction.
The detection of binary BHs in laser interferometer data requires adequate waveform templates and
therefore, an accurate knowledge of the orbital evolution. Three regimes in the inspiral motion can be
recognized: a) the adiabatic regime, in which the two bodies gradually approach each other through a
sequence of quasi-circular geodesic orbits; b) the transition regime, near the innermost stable circular
orbit (ISCO) and c), the plunge regime, in which the compact star travels on a geodesic from slightly
below the inner stable circular orbit into the BH’s horizon or, when the system consists of two BHs,
the two horizons merge.

Recently, re-summation techniques have made it possible to accelerate the convergence of
asymptotic post-Newtonian series and derive waveforms beyond the adiabatic approximation
(Damour et al. 2001). This approach permits the calculation of waveforms that extends beyond
the inspiral regime into the plunge phase, followed by the quasi-normal mode ringing. Baker et
al. (2001) used a technique that combines the full numerical approach to solve Einstein equations,
applied in the true non-linear regime, and linearized perturbation theory around the final distorted
single BH at later times. They have also computed plunge waveforms, which show a nonnegligible
signal lasting for over 100GM c−3. For a system with a total mass of 35M�, a frequency decom-
position of the waveform shows two dominant components at 600 Hz and 900 Hz, which are close to
the most weakly damped quasi-normal modes m = ±2. Baker et al. (2001) estimated that the total
radiated GW energy after ISCO is about 4%–5% of the total mass, coming almost entirely from the
m = ±2 modes and larger than the estimates by Buonanno & Damour (2000). The upper bound on
the amount of angular momentum lost in the event is around 0.1%, confirming early expectations
that not much angular momentum is lost during the plunge and ring-down.

Concerning estimates of the expected event rate, the situation is still more uncertain than the
merging rate of two NSs. Theoretical studies have been carried out most often via population syn-
thesis methods, that allow for a self-consistent evolution of massive stars leading to the formation of
different populations of compact objects. Extensive calculations have been performed by Belczynsky
et al. (2006 and references therein) on population synthesis of compact star binaries. Their reference
model predicts a galactic merger rate for NS-NS binaries of (1.2 − 1.9) × 10−5 yr−1, in quite good
agreement with the results of de Freitas Pacheco et al. (2006a) reported in the previous section. The
model by Belczynsky et al. (2006) also predicts a galactic merger rate of (7 − 11) × 10−8 yr−1 for
NS-BH binaries and of (2.0 − 3.0) × 10−8 yr−1 for BH-BH binaries.
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The expected event rate can be estimated by using the same procedure developed in the previous
section and using the above merger rates. Assuming that BH-BH binaries are constituted by two
objects of 9M�, the maximum distances probed by VIRGO and LIGO are respectively 48 Mpc and
52 Mpc, corresponding to an expected rate of about one event every 6 000 yr. For advanced LIGO,
the maximum probed distance is ∼ 820 Mpc and one event every 3.6 yr is expected, while for EGO
the predicted rate is about 54 times higher, e.g., 15 events yr−1 (these estimates for the theoretical
event rates suppose a S/N = 7).

4.3 Supermassive Black Holes and Compact Stars

Presently, there is a general consensus that most, if not all, galaxies host supermassive black holes
(SMBHs) with masses ranging from ∼ 106M� up to a few 109M�. These SMBHs are generally
embedded in dense stellar environments and, consequently, they may capture stars which either will
promptly be swallowed through the horizon or will inspiral by emitting GWs. Interactions between
stars and SMBHs in dense galactic nuclei have been the focus of many investigations in the past
years, since these events are potential sources for the space mission LISA.

The planned LISA noise spectral density is minimized around frequencies ∼ (3 − 30) mHz,
setting the BH mass interval of interest in the range ∼ 105 up to a few ×106M�. Main sequence
stars, which dominate a given stellar population, will be disrupted by tidal forces if the BH mass is
less than ∼ 2 × 108M�, since the Roche limit will be inside their gravitational radius. Thus, only
the capture of compact objects like white dwarfs (WDs), neutron stars and stellar mass black holes
may produce a gravitational signal relevant for LISA.

Because of the complexity of the energy and angular momentum transfer during stellar encoun-
ters inside the influence sphere, a region where the orbits are dominated by the gravitational poten-
tial of the central BH, predicted capture rates may vary by orders of magnitude. An early Monte
Carlo simulation of the stellar random walk in J-space was performed by Hills & Bender (1995),
using parameters appropriate for the core of the dwarf elliptical M32, resulting in a capture rate
of 1.9 × 10−8 yr−1, if compact stars are assumed to represent 10% of the total stellar population.
Similar simulations were performed by Freitag (2003) but for parameters appropriate to the galactic
center. In this case, the capture rate of WDs was found to be ∼ (2 − 3) × 10−7 yr−1 and those
of NSs and BHs about one order of magnitude lower. Analytical estimates of the capture rate were
performed by Sigurdsson & Rees (1997), who have found, in particular for M32, a rate comparable
to that obtained by Hills & Bender (1995). Analytical and Monte Carlo methods were adopted by
Hopman & Alexander (2005) and from their approach a typical event rate of a few ×10 −9 yr−1 per
galaxy was derived. If coherent interactions are taken into account, capture rates can be enhanced
up to one order of magnitude in comparison with a current of stars driven only by non resonant
relaxation (Hopman & Alexander 2006).

Estimates of capture rates including resonant and non resonant relaxation effects were performed
by de Freitas Pacheco et al. (2006b). The stellar density in the influence sphere was estimated from
brightness profiles derived from Hubble Space Telescope observations (Faber et al. 1997) and the
fraction of compact objects as a function of the galaxy’s luminosity was derived from an upgraded
version of the evolutionary models developed by Idiart et al. (2003). The derived WD capture rate
as a function of the SMBH mass is

Rwd =
0.86

(Mbh/M�)1.048
yr−1. (41)

In the first approximation, the capture rate of NSs and BHs can be obtained by multiplying the
equation above by 0.0511 and 0.00916 respectively.

The number of events expected to be detected by LISA demands a previous evaluation of the
volume of the universe probed by the detector or, in other words, an evaluation of the maximum
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Fig. 3 Maximum redshift at which a gravitational signal resulting from an inspiral capture can be
detected by LISA operating as a Michelson interferometer. An S/N=5 was adopted and the WD-WD
galactic binary confusion noise was included. Typical masses, mwd = 0.7 M�, mns = 1.4 M� and
mbh = 10 M� were adopted in the calculations. Adapted from de Freitas Pacheco et al. (2006b).

redshift at which a given inspiral gravitational signal can be seen. For the inspiral up to the last
stable orbit, theoretical templates of the waveform will probably be available and the method of
matched filtering can be used. In this case, averaging over source positions and orientations, the
resulting S/N ratio is (Cornish 2001)(

S
N

)2

= 2
∫ ∞

0

Sh(ν)R(ν)
Sn(ν)

dν , (42)

whereR(ν) is the response function of the detector averaged over all sky directions and polarizations
and | h̃(ν) |2= Sh(ν)R(ν). Using the spectral density of the gravitational signal derived from
the quadrupole approximation, which is adequate to estimate the signal-to-noise ratio, and setting
S/N=5, the value adopted in the LISA community, the maximum redshift as a function of the SMBH
mass, for a given compact object mass, can be estimated.

Figure 3 shows the resulting curves for different compact objects and for cosmological param-
eters ΩΛ = 0.7 and Ωm = 0.3. The farthest spiral signal resulting from the capture of a WD
corresponds to a redshift zmax ∼ 0.76 and an SMBH mass of about 3.9 × 105M�, that resulting
from the capture of an NS corresponds to zmax ∼ 1.2 and an SMBH of 3.1 × 105M� whereas the
signal resulting from the capture of a stellar BH by an SMBH of mass 1.3× 105M� can be seen up
to z ∼ 3.7.

Once the maximum redshift at which a given inspiral signal can be detected is known, the
expected number of events Γ in a time interval T can be estimated from the equation

Γ = T

∫ M2

M1

R(M)
(1 + z)

dN (M, z)
dM

dM

∫ z(M)

0

dV

dz
dz. (43)

In this equation,R(M) is the capture rate of a given compact object as a function of the SMBH mass;
the term (1 + z) in the denominator corrects for the time dilation and dN (M, z)/dM is the SMBH
mass distribution taken from Aller & Richstone (2002). The upper limit M 2 in the second integral
corresponds to the critical mass (� 8 × 106M�) beyond which the relaxation time is larger than
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12 Gyr and, consequently, a steady stellar current cannot be established (de Freitas Pacheco et al.
2006b). The lower mass cutoff M1 is uncertain since, up to the present time, observational searches
for intermediate mass BHs have been discouraging. Presently, the smallest known central BH is
located in the dwarf elliptical M32, having a mass ∼ 1.4 × 106M�. This leads to a conservative
estimate of the number of events that can be obtained if this value is taken as the minimum mass.
From an observational point of view, the existence of SMBHs with masses lower than such a limit
is still controversial. Analyses of dynamical data on the dwarf galaxies M33 and NGC 205 lead to
robust upper limits respectively of ∼ 3 × 103M� and ∼ 4 × 104M� for the putative BHs living in
the center of these objects (Merrit et al. 2001; Gebhardt et al. 2001; Valluri et al. 2005). Moreover,
searches for intermediate mass BHs in dwarf-spheroidal satellites of the Milky Way have also been
negative (Maccarone et al. 2005). However, these small galaxies were captured by our Galaxy and,
in the process, collective effects may transfer energy to their central BHs, enough to move them
far away from the core, thus escaping detection. If direct dynamical evidences of SMBHs in such a
mass range are missing, indirect signals of their presence in narrow-line Seyfert-1 nuclei exist. Using
the line-width-luminosity-mass scaling relation established for broad-line AGNs, SMBH masses
were estimated by Greene & Ho (2004) for a sample of 19 galaxies, all in the range 8 × 10 4 up to
8×106M�. An “optimistic” estimate can also be performed if the lower mass cutoffM 1 is extended
down to 2 × 105M�, corresponding to host galaxies and bulges brighter than MB = −14. Under
these conditions, in the conservative case 9 inspiral events are expected to be detected by LISA. The
estimated probability to have a WD capture is 84.5% and those for the capture of a NS or a stellar BH
are 8.0% and 7.5% respectively. Early-type galaxies are expected to contribute to about 53.8% of the
total number of events, Sa+Sb bulges contribute to about 26.9% and Sc bulges contribute to about
19.3%. If the lower mass integration limit is reduced down to 2×10 5M�, there is a dramatic increase
in the expected number of events. This occurs because the capture rate increases for lower SMBH
masses as well as the volume of the universe probed by LISA. In the optimistic case, the expected
number of events is 579. The contribution of the various compact objects is now rather different:
stellar BHs are expected to represent about 47.4% of the total number of events, NSs will contribute
to about 33.5% and WDs, to about 19.1%. The contribution of the different morphological types
remains practically unchanged, e.g., E+S0 will contribute to about 53.2%, Sa+Sb, to about 20.5%
and Sc to about 26.3%.

5 FINAL CONCLUSIONS

The first direct detection of gravitational waves will constitute an extraordinary scientific accom-
plishment, which will give further support to the General Relativity Theory and will open a new
window to explore the universe.

If detected, gravitational waves from oscillating neutron stars or from the very last phases of
the coalescence of an NS-NS binary will yield major insights into the properties of nuclear mat-
ter. Moreover, the eventual detection of gravitational waves from the ring-down phase of a newly
formed black hole will permit researchers to directly probe their properties like mass and angular
momentum. The observed rate of these rare events will impose severe constraints on the last evo-
lutionary phases of massive stars; the detection of the GW background produced by these sources
will teach us about the star formation activity in the past history of the universe as well as the very
early phases of the big-bang, when radiation and matter were still strongly coupled. A still more fas-
cinating possibility is related to theories describing our world such as a brane embedded in a higher
dimensional space, having the purpose of solving the huge energy gap that separates the electroweak
scale from the Planck scale, the so-called hierarchy problem. In this scenario, gravitational waves
are produced by coherently excited radions (with the geometric degree of freedom controlling the
size or curvature of the extra dimensions) and Nambu-Goldstone modes. According to estimates
by Hogan (2000), the typical gravitational wave frequency is 0.1 mHz (out of the frequency range
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covered by ground-based interferometers) and the amplitude corresponds to an equivalent density
parameter Ω ∼ 8 × 10−5.

Different investigations performed in the past years indicate that the present generation of
ground-based interferometers does not have a sensitivity high enough to probe a large volume of
the universe and, therefore, the predicted event rates are quite small. However, it is worth mention-
ing that most of our models are still in their infancy and a large number of (astrophysical) parameters
required for modeling remains quite uncertain. Planned ground-based advanced detectors will prob-
ably detect, for the first time, a gravitational wave signal. The dynamics of the inspiral of two neutron
stars down to the last stable orbit is well understood and different estimates of the galactic merging
rate are now quite consistent. Therefore, the prediction of a few events per year (case of advanced-
LIGO) seems to be reliable. The situation is similar for the merging of two stellar black holes. Our
knowledge of the inspiral and plunge dynamics has considerably improved in the past years but
merging rates are still uncertain by one order of magnitude. Nevertheless, even with such an uncer-
tainty, the planned sensitivity of EGO is high enough to expect that 2–15 events per year would be
seen. The physics of the bar-mode instability requires further investigations and, in particular, the
gravitational wave emission during the evolution of the star in its secularly unstable phase. Predicted
event rates depend not only on the sensitivity of the detector but also on the fraction of neutron
stars born in the instability interval. Present models suggest that EGO will be able to detect one
event every two years (comparable to the expected ring-down produced during BH formation, e.g.,
one event every 5.5 yr). These numbers should be taken cautiously because, besides uncertainties in
the physics of the considered transition, the initial rotation period distribution within the instability
window is still not well known.

In space, the sensitivity of LISA will be enough to detect, even within a “pessimistic” per-
spective, a few stellar captures per year by supermassive black holes. Studies performed a few
decades ago have pointed out that close binary systems should be potential sources of low fre-
quency (νgw < 0.1 mHz) GWs and, thus, potential targets for LISA. However, more detailed anal-
yses (Meliani et al. 2000) indicate that these binaries, in particular those belonging to the class of
Cataclysmic Variables, are not above the “confusion noise” generated by all galactic binary systems.

Appendix A:

Fits for the sensitivity curves of advanced interferometers used in the estimates performed in the
present work are given below. They are available and updated, as the different projects evolve, at the
web site http://carina.astro.cf.ac.uk/geo/advligo/.

A.1. Advanced LIGO

Sn(x) = 10−49

[
111

(1 − x2 + x4/2)
(1 + x2/2)

+ x−4.14 − 5x−2

]
Hz−1, (A.1)

where x = ν/ν0 and ν0 = 215 Hz. This fit can be used in the frequency interval 10–6000 Hz.

A.2. EGO

Sn(x) = 1.62 × 10−51

[
x−4.05 + 185.62x−0.69 + 232.56

N(x)
D(x)

]
Hz−1, (A.2)
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where x = ν/ν0 and ν0 = 200 Hz. The functionsN(x) and D(x) are defined respectively as

N(x) = 1 + 31.18x− 64.72x2 + 52.24x3 − 42.16x4 + 10.17x5 + 11.53x6, (A.3)

and
D(x) = 1 + 13.58x− 36.46x2 + 18.56x3 + 27.43x4. (A.4)
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