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Abstract Sunspot groups observed by the Royal Greenwich Observatory/US Air
Force/NOAA from 1874 May to 2008 November and the Carte Synoptique solar
filaments from 1919 March to 1989 December are used to investigate the relative
phase shift of the paired wings of butterfly diagrams of sunspot and filament activi-
ties. Latitudinal migration of sunspot groups (or filaments) does asynchronously occur
in the northern and southern hemispheres, and there is a relative phase shift between
the paired wings of their butterfly diagrams in a cycle, making the paired wings spa-
tially asymmetrical on the solar equator. It is inferred that hemispherical solar activity
strength should evolve in a similar way within the paired wings of a butterfly diagram
in a cycle, demonstrating the paired wings phenomenon and showing the phase rela-
tionship between the northern and southern hemispherical solar activity strengths, as
well as a relative phase shift between the paired wings of a butterfly diagram, which
should bring about almost the same relative phase shift of hemispheric solar activity
strength.
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1 INTRODUCTION

Sunspots distribute themselves over the Sun with complex spatial and temporal behaviors. As for
the spatial (latitudinal) evolutional behavior, they display an evolution in the course of a solar cycle
to form a Maunder “butterfly diagram” (Maunder 1904, 1913, 1922; Hathaway 2010). Regarding
the long-term temporal evolutional behavior of sunspots’ occurrence, the widely known feature is
their approximately 11-year Schwabe cycle (Schwabe 1844; Carrington 1858). It is found that the
paired wings of a Maunder “butterfly diagram” are different from each other, that is the well-known
north—south asymmetry of solar activity (Newton & Milson 1955; Li et al. 2002b; Carbonell et
al. 2007). Solar activity is found to be slightly asynchronous in its period phase between the solar
northern and southern hemispheres (Zolotova & Ponyavin 2006, 2007; Donner & Thiel 2007; Li
2008), and the north— south asymmetry of solar activity is related to the relative phase shifts of
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solar activity in the northern and southern hemispheres (Waldmeier 1957, 1971; Temmer et al. 2002,
2006). Phase shifts (or phase differences) between the northern and southern hemispherical solar
activity strength should have a consequence: the hemisphere preceding in time is more active at
the ascending branch of a sunspot cycle, whereas at the descending branch it is the hemisphere
following in time (Waldmeier 1971). However, the minima of sunspot activity are usually in phase,
which might reveal a kind of “cross-talk” between the northern and southern hemispheres at the end
of a solar cycle (Temmer et al. 2006); that is to say, phase shifts should have solar activity strength
at the end of one cycle in the preceding hemisphere to overlay that at the beginning of the next
cycle in the following hemisphere. Using the monthly number of sunspot groups respectively in the
northern and southern hemispheres in cycles 12 to 23, the number of filaments respectively in the
two hemispheres in Carrington rotations 876 to 1823 covering cycles 16 to 21, the monthly mean
northern and southern hemispheric sunspot numbers in cycles 19 to 23, the monthly mean northern
and southern hemispheric sunspot areas in cycles 12 to 23, and the monthly mean northern and
southern hemispheric flare indices in cycles 20 to 23, Li (2009) found that solar activity strength
does asynchronously occur in the northern and southern hemispheres, and there is a systematic time
delay between the two hemispheres in a cycle. It should be emphasized that the above five solar
indices reveal some kinds of solar activity “strength” (amplitude) which varies with time.

A relative phase shift of hemispherical solar activity strength should have another consequence:
“the distance from the equator of the zone of activity is smaller during the whole cycle for the hemi-
sphere preceding in time than for the hemisphere following in time” (Waldmeier 1971). However,
to validate such a consequence, it must be assumed that a relative phase shift of hemispheric solar
activity strength should be apparent in the paired wings of a butterfly diagram, namely, a relative
phase shift of the paired time series (hemispherical solar activity strength) should exist in the corre-
sponding spatial distribution of the paired wings.

Solar activity strength is usually embedded into butterfly diagrams of solar activity. A systematic
time delay between the northern and southern hemispheric solar activity strengths (e.g. the aforemen-
tioned five indices) in a cycle does not indicate the existence of a relative shift in the paired wings of
the corresponding butterfly diagram of solar activity in the cycle, which represents a spatial (latitu-
dinal) distribution of solar activity. Even if the paired wings of a butterfly diagram of solar activity
in a cycle have no relative shift, a systematic time delay can exist between the hemispheric solar
activity strengths in the cycle, and vice versa. That is to say, we cannot infer whether a phase lag (or
lead) exists in a pair of wings of solar activity from a known phase lag (or lead) of the corresponding
hemispherical solar activity strength, or vice versa. Relative phase shifts between the paired time
series of hemispheric solar activity strength may be independent of relative phase shifts between
the paired wings of the corresponding butterfly diagram of solar activity, and the above assumption
should not spontaneously be true. Therefore, researchers still need to investigate phase shifts in the
paired wings of butterfly diagrams of solar activity, although phase shifts of hemispherical solar ac-
tivity strength have already been investigated. Thus, in the present study, we will directly investigate
relative phase shifts in the paired wings of butterfly diagrams of both sunspot and filament activities,
and further compare them with the relative phase shifts in the hemispherical sunspot and filament
activity strengths.

2 RELATIVE PHASE SHIFTSOF THE PAIRED WINGSOF BUTTERFLY DIAGRAMS
2.1 Sunspot Butterfly Diagram

The observational data of sunspot groups used in the present study come from the Royal Greenwich
Observatory/US Air Force/NOAA sunspot record data set!. The data set is comprised of sunspot
groups during the period from 1874 May to 2008 November and covers solar cycles 12 to 23. Based

1 http://solarscience.msfc.nasa.gov/greenwch.shtml
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Fig.1 Butterfly diagrams of sunspot groups during the period from 1874 May to 2008 November,
coming from the Royal Greenwich Observatory/US Air Force/NOAA sunspot record data set.

on the data set, a new data set is generated, in which each of the sunspot groups is counted once
(counted in the new database is the first record of a sunspot group within the old database), even
though it might have been recorded several times (or more) in the old data set, because it was ob-
served over several days (or more) when it passed over the solar disk. We plotted individual sunspot
groups in the new data set using the latitude —time coordinate system. Figure 1 shows the result-
ing latitudinal drift of sunspot group occurrences, which is called the butterfly diagrams of sunspot
groups. The figure obviously shows some features, such as sunspot group occurrence in two zones
parallel to the solar equator whose latitudes are hardly greater than 50 °. The difference in appear-
ance between the first ten butterfly diagrams and the last three is due to the fact that latitude values
of sunspot groups are expressed in one decimal digit before the year 1976, but since then they are
given without any decimal digit.

Itis difficult to accurately divide sunspot groups into the solar cycles to which they really belong
(Harvey 1992). According to the criterion for dividing sunspots into associated cycles, proposed
by Li et al. (2001) (in which latitudes should be a function of time from sunspot cycle minimum),
sunspot groups are roughly divided into individual butterflies. The monthly mean Iatltudes of sunspot

groups in the northern and southern hemispheres, marked respectively by Xn and Xg, are calculated
and then plotted in Figure 2. Their corresponding standard errors are also calculated and marked
respectively by o,, and o,. Although we distinguish the hemispheric labeling of the monthly mean
latitudes by different marks and colors in the figure, a monthly mean latitude at north 20 ° or south
20° is plotted and will be used for calculation in the following as the same value of 20 © and so forth.
The criterion somewhat avoids the so-called “cross-talk” of solar activity between the northern and
southern hemispheres at the end of a cycle. Then we calculate the average of the AAD between the
monthly mean latitudes of sunspot groups respectively in the northern and southern hemispheres
in each of the cycles 12 to 23. Next, the wholly northern-hemispheric monthly mean latitude in
each cycle is shifted by one-month with respect to the corresponding wholly southern-hemispheric
monthly mean latitudes along the calendar time axis, and then we get a new value of AAD. Next, the
former are again shifted by two-months, and a new value of AAD is obtained again, and so on and so
forth. Resultantly, Figure 3 shows the AAD between the monthly mean latitudes of sunspot groups
respectively in the northern and southern hemispheres in each of the cycles 12 to 23, varying with
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Fig.2 Monthly mean latitudes of sunspot groups respectively in the northern (crosses) and southern
(circles) hemispheres.

relative phase shifts. In the figure, the abscissa indicates the relative shift of the wholly northern-
hemispheric monthly mean latitudes with respect to the wholly southern-hemispheric monthly mean
latitudes along the calendar time axis, with negative values representing backward shifts. When we
do the above calculation, only those paired data are used, that is to say, if only one hemisphere has
one datum at a certain time, then the datum at the time is not used to calculate the average.

Figure 4 shows the relative shift corresponding to the minimum AAD in each cycle. In order to

estimate error in the relative shift, similarly, the time series X, &+ o VS. X, + o, are used to calcu-
late their AAD, and then we get the relative shift corresponding to the minimum AAD in each cycle.

X,, + o, Vs. X, & o. have four different paired combinations, finally giving four relative shifts in
each cycle. Among the four relative shifts, the maximum (minimum) one corresponds to the upper
(lower) limit of an error bar, which is shown in Figure 4. As the figure shows, the latitude migration
of sunspot groups does not synchronously occur in the northern and southern hemispheres, and there
is a relative shift between the paired wings of a butterfly diagram in a cycle. Further, the relative
shifts running from cycles 20 to 23 seem to repeat the shifts in cycles 12 to 15, implying a possible
period of about eight cycles. In such a period, the relative shifts dynamically drift from the obvious
northern hemispheric lead to the clear southern hemispheric lead. Also shown in the figure is the
systematic time delay between the monthly numbers of sunspot groups respectively in the northern
and southern hemispheres in each of the cycles 12 to 23 (Li 2009). As Figure 4 shows, the relative
shift between the monthly mean latitudes of sunspot groups respectively in the northern and southern
hemispheres in a cycle seems to have a value very close to the systematic time delay between the
monthly numbers of sunspot groups in the northern and southern hemispheres in the cycle. It is thus
inferred that hemispherical solar activity strength should evolve in a similar way within the paired
wings of a butterfly diagram in a cycle, demonstrating the paired wings phenomenon and showing
the phase relationship between the northern and southern hemispherical solar activity strengths, and
a phase difference between the paired wings of a butterfly diagram, which is shown here by a rel-
ative shift between the northern and southern hemispheric latitude migrations. This should bring
about almost the same relative phase shift of hemispheric solar activity strength.
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Fig. 3 Average of the absolute values of the differences (AAD) between the monthly mean latitudes
of sunspot groups in the southern and northern hemispheres in each of the cycles 12 to 23. The ab-
scissa indicates the shift of the wholly northern-hemispheric monthly mean latitudes in a cycle with
respect to the wholly southern-hemispheric monthly mean latitudes in the cycle along the calendar
time axis, with negative values representing backward shifts.

2.2 Filament Butterfly Diagram

Also utilized here is the Carte Synoptique solar filaments archive?, namely the catalog of solar fila-
ments from 1919 March to 1989 December, corresponding to the Carrington solar rotations 876 to
1823 and covering six complete cycles, from cycles 16 to 21 (Coffey & Hanchett 1998). The data
of filaments span 948 Carrington rotations, corresponding to 850 months, and one Carrington solar
rotation is thus about 0.897 months. Using the data archive, we plot the latitude drift of filament
occurrence, which is called the butterfly diagrams of filaments, shown in Figure 5. The normal solar
activity is usually applied to solar active events whose latitudes are less than 50° (Sakurai 1998; Li
et al. 2002a). Similarly, we count the mean latitudes of filaments whose latitudes are less than 50 ° in
each of the considered Carrington rotations, respectively in the northern and southern hemispheres.
They are shown in Figure 6.

Figure 7 shows the AAD between the mean latitudes of filaments whose latitudes are less than
50° respectively in the northern and southern hemispheres in each of cycles 16 to 21. In the same
way, the abscissa in the figure indicates the shift of the northern-hemispheric mean latitudes with re-
spect to the southern-hemispheric mean latitudes, with negative values representing backward shifts.
The relative shift corresponding to the minimum AAD in a cycle is shown in Figure 4, and its error
bar is also indicated in the figure, which is obtained in the same way as for sunspot groups mentioned
above. As the figure shows, the latitude migration of filament activity does not synchronously occur
in the northern and southern hemispheres, and there is a relative shift (systematic time lag or lead)
between the paired wings of a filaments’ butterfly diagram in a cycle. Also shown in the figure is

2 ftp://ftp.ngdc.noaa.gov/STP/SOLAR. DATA/SOLAR FILAMENTS
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the systematic time delay between the numbers of filaments per Carrington rotation in the northern
and southern hemispheres in each of cycles 16 to 21 (Li 2009). As Figure 4 shows, the relative shift
between the mean latitudes of filaments per Carrington rotation in the northern and southern hemi-
spheres in a cycle seems to have almost the same value as the systematic time delay between the
numbers of filaments per Carrington rotation respectively in the northern and southern hemispheres
in the cycle. Thus, the inference given by the above analysis of sunspot groups is valid for filament
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Fig.4 Relative shift corresponding to the minimum value of the AAD respectively of the monthly
mean latitude of sunspot numbers (circles) and the mean latitude of filaments per Carrington rotation
(crosses) in two solar hemispheres in a cycle. Their corresponding error bars are also displayed as
thin solid vertical lines. Also shown in this figure are the systematic time delay (asterisks) between
the monthly numbers of sunspot groups in the northern and southern hemispheres in each of the
cycles 12 to 23 and that (plus signs) between the numbers of filaments per Carrington rotation in the
northern and southern hemispheres in each of cycles 16 to 21 (Li 2009).
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Fig.5 Butterfly diagram of filaments from 1919 March to 1989 December, namely from Carrington
solar rotations 876 to 1823, coming from the Carte Synoptique solar filaments archive.
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Fig.6 Mean latitudes of filaments whose latitudes are less than 50° in each of the considered
Carrington solar rotations, respectively in the northern (crosses) and southern (circles) hemispheres.
Carrington solar rotations are translated into calendar times (in year).
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Fig. 7 AAD between the mean latitudes of filaments whose latitudes are less than 50° in the northern
and southern hemispheres in each of cycles 16 to 21. The abscissa indicates the shift of the wholly
northern-hemispheric mean latitudes in a cycle with respect to the wholly southern-hemispheric
mean latitudes in the cycle along the Carrington rotation time axis, with negative values representing
backward shifts. Carrington solar rotations are translated into calendar times (in month).
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3 CONCLUSIONSAND DISCUSSION

Using the data of sunspot groups observed by the Royal Greenwich Observatory/US Air
Force/NOAA from 1874 May to 2008 November and the Carte Synoptique solar filaments from
1919 March to 1989 December, we have found that the latitudinal migration of hemispheric so-
lar activity (sunspot groups and filaments) does asynchronously occur in the northern and southern
hemispheres, and there is a relative shift between the two hemispheres in a solar cycle, that is to
say, the paired wings of a butterfly diagram have a relative shift between the northern and southern
hemispheres along the time scale, making the paired wings spatially asymmetrical on the solar equa-
tor. Further, for the latitudinal migration of both sunspot and filament activities, phase shifts running
from cycles 20 to 23 seem to repeat those in cycles 12 to 15, implying the existence of a possible
period of about eight cycles. Waldmeier (1971) once analyzed the difference between the mean dis-
tance of the northern sunspots to the solar equator and that of the southern sunspots to the equator
and also found the existence of a possible period of about eight cycles. The relative shift between the
monthly mean latitudes of sunspot groups (or filaments) in the northern and southern hemispheres
in a cycle seems to have almost the same value as the systematic time delay between the monthly
mean numbers of sunspot groups (or filaments) in the northern and southern hemispheres in the cy-
cle. It is thus inferred that hemispherical solar activity strength of both sunspot groups and filaments
should evolve in a similar way within the paired wings of a butterfly diagram in a cycle, justifying
the the paired wings conclusion, which is related to the phase relationship between the northern and
southern hemispherical solar activity strengths. A phase difference between the paired wings of a
butterfly diagram, shown here by a relative shift between the northern and southern hemispheric lat-
itude migrations of sunspot groups or filaments, should bring about almost the same relative shift of
hemispheric solar activity strength. At present, solar dynamo theory attempts to explain the north—
south asymmetry of solar activity strength (Goel & Choudhuri 2009), in which exists a characteristic
scale of about 12 cycles. In the future, it is an important issue for solar dynamo theory to interpret
the relative phase shift of the paired wings of butterfly diagrams and the relative phase shift of the
paired time series of hemispheric solar activity strength.

Through wavelet scale-resolved phase coherence analysis of hemispheric sunspot activity (the
monthly mean numbers of sunspot areas), Donner & Thiel (2007) gave, in their figure 4, the phase
difference between sunspot areas respectively in the northern and southern hemispheres, which is
the continuous phase shifts of sunspot areas in the frequency (period) band of 8 to 14 yr. For sunspot
areas, phase differences are only coherent within a narrow range of frequencies, which corresponds
to time scales of about 8 to 14 yr, therefore, phase coherence is frequency-dependent. The continu-
ous phase shifts are found to be essentially similar to the relative shift of the hemispheric latitude
migration shown in Figure 4 and to that of the hemispheric sunspot and/or filament activity strength
(Li 2009); the reason why the first is similar to the latter two is inferred from the property that
hemispheric solar activity periodically fluctuates with the quasi 11-year cycle. The phase difference
between the paired wings of a butterfly diagram of solar activity should lead to phase asynchrony
(shifts) of hemispheric solar activity strength, and it should be an obvious reason which causes the
asynchronization of hemispheric solar activity strength.

Long-term observations of solar activity indicate that solar activity strength is asymmetrically
distributed in the northern and southern hemispheres, and the north — south difference (asymmetry)
of solar activity strength is a real phenomenon and not due to random fluctuations (Li et al. 2009
and references therein), that is to say, the paired wings of a butterfly diagram are different from each
other in activity strength. The north-south asymmetry of sunspot latitudes has the same regularity
as that of sunspot numbers and areas (Pulkkinen et al. 1999; Li et al. 2002b), so, the hemisphere
with more activity would feature that activity at higher latitudes. A long-term characteristic time
scale of about 12 cycles should exist in the north — south asymmetry of solar activity strength
(and latitudes), and the dominant hemispheres of solar activity strength (or hemispheres with higher
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latitudes) in a cycle regularly vary with solar cycles (Verma 1993; Li et al. 2002b), namely, the long-
term solar activity strength and hemispheric relative average latitude regularly repeat in the solar
hemispheres, with a possible period of about 12 cycles. However, the phase difference of the paired
wings (spatial distribution) of a butterfly diagram repeats in the hemispheres with a possible period
of about eight cycles. The cyclic variation of the dominant hemisphere of solar activity strength
seems to have little relation with the cyclic variation of the systematic time delay of solar activity
(strength or latitudinal migration), and the systematic time delay of solar activity seems to have
little relation with hemispheric relative latitudes; but within a cycle, the north-south asymmetry of
solar activity strength may be strengthened by the systematic time delay between the northern and
southern hemispheric solar activity strengths (Waldmeier 1971; Li 2009) or by the phase difference
in the paired wings of the butterfly diagram of solar activity in the cycle.
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