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Abstract Anomalous resistivity is critical for triggering fast magnetic reconnection in
the nearly collisionless coronal plasma. Its nonlinear dependence on bulk drift velocity
is usually assumed in MHD simulations. However, the mechanism for the production
of anomalous resistivity and its evolution is still an open question. We numerically
solved the one dimension Vlasov equation with the typical solar coronal parameters
and realistic mass ratios to infer the relationship between anomalous resistivity and
bulk drift velocity of electrons in the reconnecting current sheets as well as its non-
linear characteristics. Our principal findings are summarized as follows: 1) the rela-
tionship between the anomalous resistivity and bulk drift velocity of electrons relative

to ions may be described as ηmax = 0.03724
(

vd
ve

)5.702

Ω m for vd/ve in the range

of 1.4–2.0 and ηmax = 0.8746
(

vd
ve

)1.284

Ω m for vd/ve in the range of 2.5–4.5; 2)

if drift velocity is just slightly larger than the threshold of ion-acoustic instability,
the anomalous resistivity due to the wave-particle interactions is enhanced by about
five orders as compared with classic resistivity due to Coulomb collisions. With the
increase of drift velocity from 1.4ve to 4.5ve, the anomalous resistivity continues to
increase 100 times; 3) in the rise phase of unstable waves, the anomalous resistivity
has the same order as the one estimated from quasi-linear theory; after saturation of
unstable waves, the anomalous resistivity decreases at least about one order as com-
pared with its peak value; 4) considering that the final velocity of electrons ejected out
of the reconnecting current sheet (RCS) decreases with the distance from the neutral
point in the neutral plane, the anomalous resistivity decreases with the distance from
the neutral point, which is favorable for the Petschek-like reconnection to take place.
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1 INTRODUCTION

It is widely accepted that an eruption of a solar flare is attributed to the release of free magnetic
energy through reconnection on a timescale of 10 2 ∼ 103 s. A lot of multi-wavelength observational
signatures related to the magnetic reconnection have been revealed. For example: 1) the Yohkoh/X-
ray telescope and SOHO/EIT observations showed that this process indeed occurs above the soft
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X-ray flaring loops, and the plasmoid ejects out of the reconnection region (Tsuneta et al. 1992;
Tsuneta 1996; Masuda et al. 1994; Yokoyama et al. 2001; Zhao et al. 2008; Zhou & Ji 2009); 2)
RHESSI observations presented for the formation of a large scale current sheet in the solar flare
on 2002 April 15 (Sui & Holman 2003); 3) Huang et al. (2008) calculated the magnitude of the
transverse magnetic field and found its short-term impulsive increase during the rising phase of the
flare according to the radio data on 2002 November 1 from the Nobeyama Radio Observatory, which
may be considered as a signature of the magnetic reconnecting process.

In order to trigger such fast magnetic reconnection to take place in the high electric conductiv-
ity of the coronal plasma, anomalous resistivity caused by kinetic-scale wave-particle interactions
is usually assumed. A number of numerical resistive MHD simulations demonstrated that not only
the magnitude of anomalous resistivity but also its distribution decide the reconnection rate (Ugai
& Tsuda 1977; Yokoyama & Shibata 1994; Ugai et al. 2003; Ugai & Zhang 2005; Uzdensky 2003
and references therein). The main conclusions are that: 1) a spatially uniform resistivity triggers the
Sweet-Parker reconnection to take place on a timescale of several hours (Kulsrud 1998); 2) a locally
enhanced resistivity inside the diffusive region near the center of an X-type neutral point leads to a
Petschek-like reconnection to occur on a timescale of 102 − 103 s, and the fast reconnection drasti-
cally evolves through a positive feedback between the global reconnection flow and the anomalous
resistivity (Ugai 1984, 1999; Ugai et al. 2003; Uzdensky 2003 and references therein).

For the generation of anomalous resistivity ηeff , it was often assumed that the current driven
electrostatic ion-acoustic instability was excited after a shrinkage of the current sheet in the resistive
MHD simulations. If the current density is larger than the threshold of ion-acoustic instability, the
resistivity suddenly increases several orders above the classic Spitz resistivity. Using its relation
to the effective collision frequency νeff in the presence of current driven ion-acoustic waves, i.e.,
ηeff = νeff/(ε0ω

2
pe) (Labelle & Treumann 1988), we have

ηeff =
1

ε0ωpe

ε0δE
2

2nκTe
, (1)

where ωpe is the electron plasma frequency, n is the electron number density, T e is the electron
temperature, and ε0δE

2/2 is the observed wave power of the fluctuations, and κ is the Boltzmann
constant. If the current density continues to increase, the anomalous resistivity may alternatively be
expressed as (Sagdeev 1967)

ηeff =
0.01
ε0ωpe

vde

ve

Te

Ti
(2)

in the Te
Ti

� 1 limit, where vde is the bulk drift velocity of electrons relative to ions, ve =
√

kTe
me

is

the electron thermal velocity, k is the Boltzmann constant, me is the electron mass, and Ti is the ion
temperature.

Recently, one dimensional (1D) Vlasov simulations with parameters appropriate for the magne-
topause and low-latitude boundary layer highlight the importance of the anomalous resistivity pro-
duced by the ion acoustic instability. Using a reduced mass ratio of m i/me = 25, Watt et al. (2002)
found that resistivity from Vlasov simulations is about three orders higher than the one calculated
from Equation (1), where m i is the ion mass. However, Hellinger et al. (2004) found that resistivity
from Vlasov simulations is less than one order above the one calculated from Equation (1) with a
real mass ratio of mi/me = 1836, while the other parameters are the same as Watt’s. Petkaki &
Freeman (2008) inferred a non-linear dependence of anomalous resistivity on the bulk drift velocity
of electrons with the expression

ηmax = 101.85

(
vde

θm
e

)7.474

(3)
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for vde in the range of 1.3 ∼ 1.6θm
e and Te = Ti, where θm

e =
√

2ve.
More recently, we performed 1D Vlasov simulations, including the external inductive field with

a realistic mass ratio and parameters appropriate for the solar corona for the first time, and found that
the excited electrostatic waves have the characteristics of the Buneman instability, i.e., propagating
in opposite directions as the growth rate on the order of the ion plasma frequency, and decreasing
the wave vector at the maximum growth rate with an increase of the bulk drift velocity of electrons
(Buneman 1959; Wu & Huang 2009). Those electrons trapped by the waves stopped accelerating,
and the inferred anomalous resistance of the current sheet may have been enough to explain the
energy conversion rate in solar flares.

Since anomalous resistivity is sensitive to the plasma parameters and initial white noise
(Hellinger et al. 2004; Petkaki et al. 2006; Petkaki & Freeman 2008), it is necessary to investi-
gate the nonlinear dependence of anomalous resistivity on bulk drift velocity by means of Vlasov
simulations with parameters appropriate to the reconnecting current sheet (RCS) in solar flares,
where the electrons are accelerated to several times their thermal velocity (Litvinenko 2000; Wu et
al. 2005). The paper is organized as follows. The basic equation and simulation method are pre-
sented in Section 2. The nonlinear dependence of the anomalous resistivity on bulk drift velocity is
presented in Section 3. The discussions and conclusions are respectively given in Sections 4 and 5.

2 BASIC EQUATION AND SIMULATION METHOD

Two assumptions are adopted in this paper: 1) the reconnecting and perpendicular components of
the magnetic field approach zero, i.e., Bx ≈ By ≈ 0, which are appropriate in the center-plane of
a current sheet near the X-type point, where the electrons are most effectively accelerated (Coroniti
& Eviatar 1977; Pritchett 2006; Øieroset et al. 2002); 2) the Lorentz force (J×B) is smaller than
the electric force, when the induced electric field is assumed to be along the z-component of the
magnetic field (Watt et al. 2002; Omura et al. 2003; Petkaki & Freeman 2008; Wu & Huang 2009).
Therefore, for the study of electrostatic waves, since the only force acting on the plasma is that of an
electric field, a 1D approach may be enough to investigate the evolution of the anomalous resistivity
due to the current-driven Buneman instability in RCS (Boris et al. 1970; Watt et al. 2002; Petkaki &
Freeman 2008; Wu & Huang 2009; Wu et al. 2010).

The 1D electrostatic Vlasov equation is written as (Petkaki & Freeman 2008; Wu & Huang
2009)

∂fα

∂t
+ vz

∂fα

∂z
+

qα

mα
Ez

∂fα

∂vz
= 0, (4)

where fα is the particle distribution function (α ∈ {i, e}), mα and qα are respectively the mass and
charge of particles, and Ez is the turbulent electric field strength, which may be integrated forward
in time, using Ampere’s law given by (Horne & Freeman 2001)

(∇× B)z = μ0(J + ε0
∂Ez

∂t
). (5)

The electric current density is expressed by

J(z, t) =
∑

qα

∫
vzfα(z, vz, t)dvz , (6)

which may be divided into two parts consisting of a spatially-averaged component and a fluctuating
component, with the former being assumed to be balanced by the gradient of an external magnetic
field B at all times, i.e., (∇ × B)z = μ0〈J〉 (Omura et al. 1996; Watt et al. 2002), and the latter
being related to the turbulent electric field, which is given by Ĵ = J − 〈J〉.
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Table 1 Summary of Simulation Parameters

Parameters Symbol Value

Ion to electron mass ratio mp/me 1836
Plasma density n = ni = ne 1014m−3

Temperature T = Te = Ti 106 K
Number of space grid points Nz 2000
Number of velocity grid points Nve , Nvi 2500, 400
Resolution of spacial grid Δz 0.5 λDe

Resolution of velocity grid Δve, Δvi 0.01ve0, 0.05vi

Resolution of time Δt 0.003 w−1
pe

The anomalous resistivity may be calculated at each time step using the following expression
(Petkaki et al. 2003):

ηeff = − me

nee2

(
1
〈J〉

d〈J〉
dt

)
. (7)

In the initial situation, the large current density, i.e., the large electron drift velocity v d, is as-
sumed. When vd is large enough for the the current-driven micro instabilities to be excited, the bulk
drift energy is transferred into random energy due to the wave-particle scattering. With the decrease
of space-averaged current density, Equation (7) can be employed to estimate the anomalous resis-
tivity.

With the periodic boundary conditions and simulation method described in Horne & Freeman
(2001), Equation (4) is integrated forward in time, with initial unstable waves which originated in a
white noise electric field applied at t = 0 (see eqs. (4) and (5) in Petkaki et al. 2003). The simulation
parameters are summarized in Table 1, where v i is the ion thermal velocity (vi =

√
kT/mi ), and

λDe is the plasma Debye length. The initial ion and electron populations are respectively Maxwellian
distribution functions, drifting backward to each other, i.e.,

fi = n/[(2π)1/2vi] exp[−v2/(2v2
i )] ,

and
fe = n/[(2π)1/2ve] exp[−(v − vd)2/(2v2

e )] .

The space, velocity space, time step, and the numbers of grid points are carefully selected to ensure
the numeric stability and accuracy of the integration algorithm (Horne & Freeman 2001; Petkaki et
al. 2003).

3 THE NONLINEAR DEPENDENCE OF THE ANOMALOUS RESISTIVITY ON THE
DRIFT VELOCITY

As stated in Petkaki et al. (2006, 2008), that the anomalous resistivity during the nonlinear phase
of unstable waves is highly variable in time, and sensitive to the initial noise fields, we numerically
solved Equations (4)∼(7) for different initial drift velocities (see Table 2), and used an ensemble
of 10 Vlasov simulations for each set of initial conditions, which differ from that in Petkaki et
al. (2006, 2008) only in the initial electric field noise. The time evolution of the ensemble Vlasov
simulations for vd/ve = 1.5, 1.8, 2.0, 4.0 are respectively plotted in Figure 1(a)–(d). The resistivity
is represented by the mean of peak value ηmax, the sensitivity to the initial noise field is represented
by standard deviation σ(ηmax) and relative error σ(ηmax)/ηmax, and tmax denotes the peak time of
anomalous resistivity (see Table 2 and Fig. 2).

In our simulations, if we take vd/ve < 1.4, there are not any unstable waves that can be excited.
It is consistent with previous linear theory that the critical drift velocity for the onset of ion-acoustic
instability with Te/Ti = 1 is about 1.35ve. When vd/ve = 1.4, the current driven unstable waves
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Table 2 Relationship between the Anomalous Resistivity and the Bulk Drift Velocity

vd/ve tmax(ω−1
pe ) ηmax (Ω m) σ(ηmax)(Ω m) σ(ηmax)/ηmax

1.4 1542.8 0.1705 0.1905 1.1173
1.5 827.1 0.3015 0.1350 0.4478
1.6 673.0 0.5774 0.1699 0.2943
1.8 411.8 1.1647 0.3879 0.3330
2.0 292.5 1.8981 0.5396 0.2843
2.5 175.6 3.8192 0.6077 0.1591
3.0 91.9 2.9772 0.2939 0.0987
3.5 67.6 3.5808 0.4320 0.1206
4.0 53.4 5.5430 0.4149 0.0749
4.5 48.4 7.0528 1.0437 0.1480

Fig. 1 Anomalous resistivity plotted as a function of time for vd/ve = 1.5, 2.0, 3.0 and 4.0,
respectively in (a)–(d), where dotted lines mark each of the 10 initial noise fields and the solid line
denotes mean η .

Fig. 2 Anomalous resistivity (a) and its peak time (b) plotted as a function of bulk drift velocity of
electrons.
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Fig. 3 Comparing the anomalous resistivity calculated respectively from Eqs. (1) and (7), where the
solid line marks the one from Eq. (7) and the dotted line denotes the one from Eq. (1), and vd/ve =
1.5, 1.6, 2.0 and 3.0, respectively in (a)–(d).

are excited and the averaged maximum anomalous resistivity due to the wave-particle scattering is
about 0.1705 Ω m. It is enhanced by about five orders compared with the classic resistivity due to

Coulomb collisions, which can be calculated from the formula η ≈ 10−3 T
− 3

2
e (eV)=10−6 Ω m with

Te =100 eV. When vd/ve varies from 1.4 to 4.5, the anomalous resistivity continues to increase by
about two orders of magnitude (see Fig. 2(a)).

In previous investigations, Equation (1) is usually used to estimate the anomalous resistivity
due to the ion-acoustic turbulence (Smith & Priest 1972; Wu et al. 2005). The ratio of the turbulent
energy to thermal energy is often assumed to be 0.01, and the corresponding anomalous resistivity is
2.0 Ω m. Considering the nonlinear development of unstable waves, we may plot the evolution of the
anomalous resistivity calculated from Equation (1), and compare it with the one from Equation (7)
(see Fig. 3). It is shown that: 1) in the rising phase of unstable waves, the anomalous resistivity
obtained in two ways has the same order of magnitude; 2) in the maximum phase of unstable waves,
the difference between them increases with an enhancement of vd/ve; 3) after saturation of unstable
waves, because of stochastic energy exchanges among the waves and particles, the averaged total
energy of unstable waves or particles changes little, and the electron distribution in velocity space
also hardly changes. Since the wave-particle interaction is very dynamic, Equation (1) is too simple
to describe the evolution of anomalous resistivity.

In order to find the relationship between the anomalous resistivity and the bulk drift velocity,
we use the function of ηeff = a(vd/ve)b to fit the data with MATLAB’s cftool function. Setting
(weights)i= 1.0/σ(ηmax)

2
i , which transform the response variances to a constant value, we obtain

the fitting parameters of a = 0.0372±0.0378Ω m, b = 5.702±1.557 for vd/ve in the range of 1.4–
2.0 and a = 0.8746± 1.3934 Ω m, b = 1.284 ± 1.131 for vd/ve in the range of 2.5–4.5. Therefore,
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the relationship between them may be described as

⎧⎪⎨
⎪⎩

ηmax = 0.03724
(

vd
ve

)5.702

, for 1.4 ≤ vd/ve ≤ 2.0,

ηmax = 0.8742
(

vd
ve

)1.284

, for 2.5 ≤ vd/ve ≤ 4.5 .
(8)

4 DISCUSSION

In principle, the anomalous resistivity and its distribution in RCS may be fully understood only when
the 3D self-consistent dynamic reconnection is solved. However, due to the limit of the run time and
storage memory of computers, a simplified model and unrealistic plasma parameters are often used
to get some insight into its physical nature. In the present paper, we numerically solve the 1D Vlasov
equation with parameters appropriate for the solar corona and the real mass ratio of an electron to
an ion, and investigate the evolution of anomalous resistivity due to wave-particle scattering and its
dependence on bulk drift velocity of electrons relative to ions. These results are appropriate to the
center of RCS, where the Lorentz force may be ignored.

Based upon the observations in the impulsive phase of a solar flare, the total HXR flux exhibits
a temporal correlation with both the HXR source separation speed and the reconnection rate, i.e.,
the induced electric field strength. The reconnection electric field has an order of 1–10 V cm −1, it
is strongly correlated to the hard X-ray flux and anti-correlated to the spectral index, which support
the electron acceleration by the electric field generated in the reconnecting current sheet (Lin et al.
2003; Liu et al. 2008; Liu & Wang 2009).

Since the reconnecting electric field is much larger than the classical Drecier one (on the order
of 10−5 V cm−1) during the eruptive phase of solar flares, the electrons are freely accelerated near
the center of the RCS before the unstable waves are excited; the acceleration time is only limited by
the transverse component of the magnetic field (Litvinenko 1996, 2000). In the 3D electromagnetic
field of the RCS, the orbits of electrons are extensively studied with test particle methods (Litvinenko
1996, 2000; Wu et al. 2005). It is found that B⊥, the component of the magnetic field perpendicular
to the sheet plane, leads the electrons out of the sheet without being further accelerated. Usually,
B⊥ is assumed to be proportional to the distance from the center of RCS, and the final velocity
and acceleration time after electrons are ejected out of the RCS decrease with the increase of the
distance from the center of the RCS (see fig. 1 of Wu et al. 2005). With the induced electric field of
5 V cm−1 in the RCS, it will take about 5×10−8 s for the electron velocity enhancement of Ve. Since
the acceleration time is larger than 10−6 s near the center of the RCS, it takes 2× 10−7s for the drift
velocity of the electrons to be larger than 4 ve, and takes another 10−7 s for the unstable waves to
reach the peak (see Fig. 2(b)). Hence, the unstable waves have enough time to be excited and scatter
the energetic electrons before the electrons are ejected out of the RCS (Wu et al. 2008 ). While away
from the center of the RCS, the acceleration time decreases, and the time for development of unstable
waves increases. There may not be enough time for unstable waves to be well developed and scatter
the energetic electrons before electrons are ejected out of the RCS. In other words, that anomalous
resistivity decreases with the increase of the distance from the center of the RCS. The nonuniform
distribution of resistivity is favorable for Petschek-like reconnection to take place (Uzdensky 2003;
Ugai et al. 2003; Ugai & Zhang 2005).

On the other hand, it was shown from MHD simulations that once a thin current sheet is formed,
extreme current sheet thinning (current concentration) occurs around the X-neutral point (Ugai
1986). The positive feedback between the global reconnection flow and the anomalous resistivity
(Ugai et al. 2003) can sustain fast reconnection and electron acceleration. So, this result may be fun-
damental for discussing the triggering of fast reconnection in the solar corona in the present paper.
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5 CONCLUSIONS

The localized anomalous resistivity is solved with 1D Vlasov simulations near the center of the RCS.
The main results are summarized as follows:

(1) The anomalous resistivity may be described as the power of the bulk drift velocity of electrons.

For vd/ve in the range of 1.4–2.0, ηmax = 0.03724
(

vd
ve

)5.702

Ω m , and for vd/ve in the range

of 2.5–4.5, ηmax = 0.8746
(

vd
ve

)1.284

Ω m.

(2) If vd
ve

is just slightly larger than the threshold of ion-acoustic instability, ηmax=0.1705 Ω m, while
the classic resistivity due to Coulomb collisions is about 10−6 Ω m. Thus it is enhanced by about
five orders of magnitude due to the wave-particle interactions. With the increase of drift velocity
from 1.4ve to 4.5ve, the anomalous resistivity continues to increase 100 times.

(3) In the rise phase of unstable waves, the anomalous resistivity is the same order of magnitude as
the one estimated from quasi-linear theory. In the maximum phase of unstable waves, the dif-
ference between them increases with an enhancement of vd/ve. After the saturation of unstable
waves, the anomalous resistivity decreases at least an order of magnitude as compared with its
peak value. Since the wave-particle interaction is very dynamic, Equation (1) is too simple to
describe the evolution of anomalous resistivity.

(4) Considering that the final velocity and acceleration time of electrons ejected out of RCS de-
creases with the distance from the neutral point in the neutral plane and the time for unstable
waves to be excited increases with the decrease of drift velocity, the anomalous resistivity de-
creases with the distance from the neutral point, which is favorable for the Petschek-like recon-
nection to take place.
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