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Abstract Heavy disturbances caused mainly by wind and friction in the mount drive
system greatly impair the pointing accuracy of the Large Sky Area Multi-Object Fiber
Spectroscopic Telescope (LAMOST). To overcome this negative effect, a third order
Higher Order Sliding Mode (HOSM) controller is proposed. The key part of this ap-
proach is to design an appropriate observer which obtains the acceleration state. A
nonlinear adaptive observer is proposed in which a novel polynomial model is applied
to estimate the internal disturbances of the mount drive system. Theoretical analy-
sis demonstrates the stability of the proposed observer. Simulation results show that
this nonlinear adaptive observer can obtain a high precision acceleration signal which
completes the HOSM controller. Furthermore, the HOSM approach can easily satisfy
the position tracking requirements of the LAMOST mount drive system.

Key words: methods: analytical — methods: numerical — methods: laboratory —
telescopes

1 INTRODUCTION

With the development of astrophysics, larger aperture telescopes are greatly needed. This is where
the LAMOST telescope comes from. However, large telescopes, like LAMOST, all confront a com-
mon technical challenge–how to obtain high pointing accuracy when the mechanical structure of the
mount drive system becomes bigger and bigger. Two factors that seriously affect the performance of
the mount drive system are wind buffeting and uncertainties inside the system. The mount itself is a
massive reflecting mirror with a 6m diameter, which is supported by a giant mechanism. During as-
tronomical observations, the mirror needs to be driven on two vertical axes and exposed to the open
air to receive starlight (Xu 2000). Thus, it is very likely that stability in the motion of the mount will
suffer from wind buffeting. As for the internal uncertainties, the fluctuation of friction torque is the
main issue that should be addressed. Nowadays, the so-called friction drive is frequently utilized in
mount drive systems of contemporary astronomical telescopes, and the LAMOST telescope is no
exception. The main advantage of a friction drive is to achieve high positioning accuracy without the
nuisance of backlash which exists in many conventional gear drive systems. However, since friction
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drive itself is a complex nonlinear process, it may lead to torque fluctuation that affects the track-
ing performance. Thus, the problem is how to deal with these nonlinear disturbances and get more
accurate control.

A detailed control strategy in dealing with these nonlinear disturbances has not been well studied
in most telescope mount drive systems. A commonly used method that counteracts the disturbances
in the mount drive system is Proportional-Integral-Derivative (PID) and its transformations. The
combined PI and P controllers may be found in the Keck mount drive system, i.e. a Proportional-
Integral controller in the position loop and a Proportional controller in the velocity loop (Sirota
& Thompson 1994). Dupont (1994) has studied a Proportional-Derivative controller to restrain the
stick-slip phenomenon caused by internal nonlinear friction torque. Although the PID approach can
totally remove the effect of the step disturbance signal, it has a steady error approximating the re-
ciprocal of proportional gain when the disturbance is a slope signal (Xu & Yan 2004). The pole
displacement control used in the mount drive system of the Gemini telescope takes the main distur-
bances as part of the identified system model, while the control performance may be decreased by
new disturbances (Burns 1994). Medrano-Cerda et al. (2002) have studied an H-infinity controller
for the mount drive of a 2m telescope. With the physical plant being considered as a system clus-
ter, the H-infinity approach uses analytical forms to design the controller, which makes any plant in
the system cluster meet the desired control performance. This approach may obtain high precision
control in the mount drive of large telescopes (Erm et al. 2004; Zhou et al. 2006). Nevertheless, the
dynamic response is relatively slow.

Since the task of the control system with a friction drive involves ultra-low speed motions, non-
linear disturbances will be significant in the dynamics and nonlinear control may be necessary to
achieve the desired performance. Nowadays, nonlinear controllers like backstepping (Hirvonen et
al. 2006) and sliding mode (Bartolini et al. 2003) controllers are becoming more popular due to
the development of design methods and computer science. The most obvious way to withstand the
uncertainties in the disturbances is to keep some constraints by sufficient force, which immediately
corrects any deviation of the system from the constraints. Implemented directly, the approach leads
to the so-called sliding mode (Perruquetti & Barbot 2002). Having proved its high accuracy and ro-
bustness with respect to various internal and external disturbances, it also reveals its main drawback:
the so-called chattering effect. To avoid chattering, some approaches have been described in the lit-
erature (Feng & Fei 1998). The main idea is to change the dynamics in some small vicinity of the
discontinuous surface in order to avoid real discontinuity and, at the same time, preserve the main
properties of the whole system. However, the ultimate accuracy and robustness of the sliding mode
are partially lost (Furuta & Pan 2000).

The newly developed higher order sliding mode (HOSM) generalizes the basic sliding mode
idea. It acts on the higher order time derivatives of the system deviation from the constraint while
the influenced counterpart is of first order in the standard sliding mode. Along with keeping the main
advantages of the original approach, at the same time, it totally removes the chattering effect and pro-
vides for even higher accuracy in its implementation (Perruquetti & Barbot 2002). A new nonlinear
adaptive observer based on Marino & Tomei (2006) is proposed, where a polynomial made up of the
lower power of the output state is used for adaptively approximating the nonlinear disturbances. In
this study, a so-called nonlinear adaptive observer is designed to obtain the acceleration state, which
completes a higher third order sliding mode controller.

2 PROBLEM STATEMENT

In the case of LAMOST, the mount is driven on two vertical axes, i.e. the azimuth transmission
and altitude transmission. These two motions are dynamically independent yet have the same major
configuration characterization. Hence, it is sufficient to study one of them while the resulting con-
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Fig. 1 Block diagram of the mount driven servo system.

clusions may apply to the other in the same way. Here, azimuth axis motion is chosen for analysis at
the preliminary research stage.

Figure 1 shows a block diagram of LAMOST’s azimuth axis drive transfer functions, where s
represents the Laplacian, u denotes drive voltage, L and R are armature inductance and resistance
of the drive motor respectively, Kt is the torque coefficient of the drive motor, K e denotes the mo-
tor’s counter electromotive force coefficient, T is the initial torque generated by the motor, J is the
moment of inertia that is converted to the motor axis, N is the angular velocity ratio between the
motor and the driven wheel, θ̇ and θ denote the driven wheel’s angular velocity and displacement
respectively, fw denotes the external disturbances (wind buffeting in particular), and f(t, θ, θ̇) de-
scribes uncertainties inside the system. In order to achieve drive performance with high precision,
it is essential to first study the properties of wind and internal uncertainties. According to Zhou et
al. (2006), a detailed description of wind buffeting and internal uncertainties is given as follows.

2.1 Wind Buffeting

The mount of LAMOST carries the reflecting Schmidt plate, which consists of 24 pieces of hexag-
onal sub-mirrors with a total diameter of about 6m. The telescope structure is erected on Xinglong
Mountain about 1000m above sea level. The local environment features seasonal high winds, which
provoke huge disturbances that might generate wind vibration and deteriorate the performance of
the mount movement. To control wind disturbance, it is first necessary to find a wind model that
can predict the disturbance. A commonly used wind model is the Davenport spectral density model,
which separates the torque of wind disturbance into two parts (Davenport 1995): one is the time-
invariant part, which brings a constant torque; the other is the time-varying part. The constant part
can be described by

Tconst = CTqAD, (1)

where CT is the wind torque coefficient, q = 1/2ρV 2 denotes the dynamic pressure, ρ is the density
of air, V denotes mean horizontal wind velocity, A represents the contact area and D is the radius
of the axis which is vertical to A. Because the period of the wind’s time-varying part is very short,
from further calculation, the torque of the time-varying part can be simplified as follows

Tvary = ρCLAV v(t), (2)

where CL is the mean wind pressure coefficient, v(t) denotes the oscillating horizontal wind velocity
with respect to the shaft. In Equation (2), all the coefficients except v(t) are constant. Therefore, it
is reasonable to use a random quantity to simulate the disturbance torque caused by wind.
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2.2 Internal Uncertainties

With respect to the internal uncertainties, the variable load torque caused by the friction drive will
be the dominant factor. The friction mechanism applied in the main axes structure of astronomical
telescopes can generally be simplified as a pair of wheels in contact along a common cylindrical
generatrix. One wheel in the pair is the driving wheel and the other is the driven wheel with radially
applied force supplying a close contact between the two wheels. The friction in the contact area
between the driving wheel and the driven wheel features complex motions such as pre-sliding dis-
placement, break-away, and stick-slip, etc., thus making friction an important aspect of high quality
servo systems. Model-based friction compensation schemes resort to a suitable friction model to pre-
dict the friction without adopting high gain control loops. The representative LuGre friction model
has been applied to many friction compensation control systems. It is derived from the bristle model
assuming that the friction interface is thought of as a contact between bristles. By introducing a
nonlinear internal friction state, the friction force can be described by (Canudas De Wit 1998)

F = σ0z + σ1ż + σ2θ̇,

ż = θ̇ − (|θ̇|/g(θ̇))z,

σ0g(θ̇) = FC + (FS − FC)e−(θ̇/θ̇S)2 , (3)

where z and θ are the internal states of the friction model and the position of the system respectively,
σ0 and σ1 are terms of the bristle model, σ2 is the viscous friction coefficient, FC and FS repre-
sent Coulomb friction and static friction respectively, θ̇S denotes the Streibeck velocity, and σ0g(θ̇)
describes the Streibeck behavior. Figure 2 shows the friction torque against the corresponding ve-
locity by simulation in a Matlab language, which approximately reflects the nonlinearity of internal
uncertainties in the mount drive system.
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Fig. 2 Simulation of friction torque against velocity.

2.3 System Differential Equation Description

In Figure 1, fw is used to describe the nonlinear external disturbances, specifically wind buffeting; at
the same time, f(t, θ, θ̇) and an additional term ∆(t, θ, θ̇) (which considers the unmodeled dynamics
between the actual system and the model) calculates the uncertainties inside the system. Letting
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x1 = θ, x2 = θ̇, and x3 = T , the LAMOST main axes servo system state space differential equation
description has the form

ẋ1 = x2,

ẋ2 =
1

JN
x3 − 1

JN
[fw + f(t, x1, x2)],

ẋ3 = −R

L
x3 − NKeKt

L
x2 +

Kt

L
u. (4)

Note that, in Equation (4), f(t, x1, x2) = f(t, θ, θ̇) + ∆(t, θ, θ̇). It is easy to form a conventional
sliding mode control with the above mentioned system state space differential equation. To do this,
an error system will first be defined. Letting k(t) denote the tracking reference signal, e 1 = x1−k(t),
e2 = x2 − k̇(t), and e3 = 1

JN x3 − 1
JN [fw + f(t, x1, x2)] − k̈(t), then the error system differential

equation can be written in the form
ė1 = e2,

ė2 = e3,

ė3 = −NKeKt

JNL
x2 − R

JNL
x3 − 1

JN
[ḟw + ḟ(t, x1, x2)] − k̈(t) +

Kt

JNL
u. (5)

Based on the differential Equations (4) and (5), a higher third order sliding mode controller is de-
signed for LAMOST’s main axes in the subsequent section.

3 HIGHER ORDER SLIDING MODES CONTROL

The basic control idea of HOSM is actually movement of a discontinuous set of dynamic systems
understood in the Filippov sense (Levant 1998), and the sliding order characterizes the degree of
smoothness in the dynamics in the vicinity of the mode. If s is a smooth function and the task is to
keep a constraint defined by s = 0, the sliding order is the number of continuous total derivatives of
s (including the zero one) in the vicinity of the sliding mode. Therefore, the rth order sliding mode
is determined by

s = ṡ = s̈ = . . . = s(r−1) = 0, (6)

forming an r-dimensional condition on the state of the dynamic system. The standard sliding mode,
on which most variable structure systems are based, is of first order (ṡ is discontinuous). While the
standard modes feature finite time convergence, convergence to HOSM may be asymptotic as well.

To develop the general procedures for a nonlinear plant, one may first use a diffeomorphism to
obtain a canonical representation of the plant dynamics. Assuming that there exists a diffeomorphism
that could change the dynamics of our servo system into an affine nonlinear system with the form

ẋ = α(t, x) + β(t, x)u, s = s(t, x) (7)

where x ∈ Rn, u ∈ R, and α, β and s are smooth functions. If the system has a relative degree r, the
control signal first appears in the rth full time derivative of s with ds(r)

du �= 0 and the Lie derivatives

Lαs = LβLαs =, ..., = LβL
(r−2)
α s = 0 in the vicinity of the given point. The control task is to

constrain the system dynamics exactly on the manifold s(t, x) = 0 through discrete switching. The
relevant motions correspond to an rth sliding mode for s, ṡ,..., s (r−1) are continuous functions with
respect to t and x.

Let y1 = s, y2 = ṡ,..., yr = s(r−1). Under these above assumptions, we have

ẏ1 = y2, ẏ2 = y3, . . .

ẏr−1 = yr, ẏr = Lr
αs + LβLr−1

α u. (8)
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For the general nonlinear problem, one may choose an equivalent control u eq = −Lr
α

LβLr−1
α s

to meet

the control requirement. In ordinary sliding mode control, we can choose u = −K sign(s), where
K is a constant, the value of which is greater than the upper bound of the absolute value of u eq.
The solution of the corresponding differential equation is the rth sliding mode when we substitute
u = ueq into Equation (7). However, such a mode is usually unstable because L βLr−1

α s = d
dus(r),

and h = Lr
αs is the time total derivative of s when u = 0. So, the problem is transformed into

finding a discrete feedback u = U(t, x) to constrain the system dynamics on the rth sliding mode.
Defining

s = e1 = x1 − k(t) = 0,

α(t, x) = x2
∂

∂x1
+

1
JN

[x3 − f(t, x1, x2)]
∂

∂x2
+

1
L

(−NKeKtx2 − Rx3)
∂

∂x3
,

β(x) = Kt/L
∂

∂x3
, (9)

we get
Lβs = 0, LβLαs = 0, LβL2

αs �= 0. (10)

It is trivial that there is a third order sliding mode relative degree in the system Equation (4). From
further calculation, we can find some positive numbers Km, KM and C, which satisfy

0 < Km ≤ ∂

∂u
s(r) ≤ KM , |Lr

αs| ≤ C. (11)

According to Levant (2003), the high third order sliding mode controller for the drive system is given
by

u = −asign(s̈ + 2(|ṡ|3 + |s|2) 1
6 sign(ṡ + |s| 23 sign(s)), (12)

where a is a positive number denoting the motor control voltage and the sign is a symbolic func-
tion. In practical implementations, the velocity and position are measurable signals such that s
and ṡ are obtained. The only unknown signal is acceleration which is concealed in s̈ in controller
Equation (12).

4 DESIGN OF THE NONLINEAR ADAPTIVE OBSERVER

The major problem of designing an observer has to do with those unknown nonlinear uncertainties
fw and f(t, x1, x2). A commonly used approach to cope with a nonlinear function is linearization at
some given point. Although the uncertainties cannot be modeled exactly, just like in the linearization
process, they may be approximated by a combination of lower order items. Letting k be a constant,
a parameterized model for the uncertainties may be given by

fw + f(t, x1, x2) ≈ β(t, x)ϑ = [k kx1 kx2 x1x2 x2
1 x2

2]ϑ, (13)

where ϑT = [ϑ1, ..., ϑ6], β(t, x) = [k kx1 kx2 x1x2 x2
1 x2

2]. Apparently, ϑ is the optimal
parameter for estimating uncertainties fw and f(t, x1, x2). If some ϑ̂ is found with an appropriate
adaptive law that best approximates ϑ, then the nonlinear adaptive observer could be used to estimate
the acceleration signal. The following is the design process of the nonlinear adaptive observer.

Given some shorthand, a1 = 1
JN , a2 = −NKeKt

L , a3 = −R
L , and g = Kt

L , Equation (4) may be
rewritten in the form

ẋ = f(x) + g(x, u) +
p∑

i=1

ϑiqi(x, u),

y = h(x), (14)
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where f(x) = x2
∂

∂x1
+ a1x3

∂
∂x2

+ (a2x2 + a3x3) ∂
∂x3

, g(x, u) = g ∂
∂x3

, and q(x, u) =
− 1

JN β(t, x)ϑ ∂
∂x2

. Based on Marino & Tomei (2006), it is easy to find a global diffeomorphism

T =

⎡
⎣ −a1a2x1 − a3x2 + a1x3

−a3x1 + x2

x1

⎤
⎦ , (15)

which transforms system Equation (14) into the following

ż =

⎡
⎣ 0 0 0

1 0 0
0 1 0

⎤
⎦

=A0

z +

⎡
⎣ a1gu

a1a2y
a3y

⎤
⎦ +

⎡
⎣

a3
JN β(t, y, u)ϑ

− 1
JN β(t, y, u)ϑ

0

⎤
⎦ ,

y = c0z = z3, (16)

where z = [z1 z2 z3]T denotes the new state variable, y is the output of the system, c0 = [0 0 1].
Assume that all zeros of the polynomial x2 + b2x+ b1 have negative real parts, where x denotes

an unknown variable, and b = [b1 b2 1]T is some positive vector. A transform filter is defined by

η1 = z1 − ξ1ϑ, η2 = z2 − ξ2ϑ, η3 = z3, (17)

where the dynamic equation of ξ is

ξ̇ =
[

0 − b1

1 − b2

]
ξ +

[
1 0 − b1

0 1 − b2

] ⎡
⎣

a3
JN β(t, y, u)ϑ

− 1
JN β(t, y, u)ϑ

0

⎤
⎦ ,

i.e.

ξ̇1 = −b1ξ2 +
a3

JN
β(t, y, u)ϑ, ξ̇2 = ξ1 − b2ξ2 − 1

JN
β(t, y, u)ϑ,

so we get
η̇1 = ż1 − ξ̇1ϑ = a1gu + b1ξ2ϑ,

η̇2 = ż2 − ξ̇2ϑ = z1 + a1a2y − ξ1 + b2ξ2ϑ = η1 + a1a2y + b2ξ2ϑ,

η̇3 = ż3 = z2 + a3y − ξ2ϑ + ξ2ϑ = η2 + ξ2ϑ. (18)

The filter (17) transforms system (16) into an observable normative form:

η̇ =

⎡
⎣ 0 0 0

1 0 0
0 1 0

⎤
⎦

=A0

η +

⎡
⎣ a1gu

a1a2y
a3y

⎤
⎦ +

⎡
⎣ b1

b2

1

⎤
⎦ ξ2ϑ,

y = c0η = η3. (19)

THEOREM: Let λ be an arbitrary positive number, k = −(A0b + λb), and Γ be an arbitrary
positive definite symmetrical matrix. The system with normative form (19) has an adaptive observer
as follows

˙̂η =

⎡
⎣ 0 0 − λb1

1 0 − (b1 + λb2)
0 1 − (b2 + λ)

⎤
⎦

=A

η̂ +

⎡
⎣ a1gu

a1a2y
a3y

⎤
⎦ +

⎡
⎣ b1

b2

1

⎤
⎦ ξ2ϑ̂ − ky,

˙̂
ϑ = Γξ2(y − c0η̂). (20)
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Proof: Defining η̃ = η − η̂, ϑ̃ = ϑ − ϑ̂, we can write the error equation of the observer

˙̃η =

⎡
⎣ 0 0 − λb1

1 0 − (b1 + λb2)
0 1 − (b2 + λ)

⎤
⎦

=A

η̃ + bξ2ϑ̃,

˙̃
ϑ = −ΓξT

2 c0η̃. (21)

Because all zeros of the polynomial based on b have negative real parts, each eigenvalue of matrix A
may be characterized as being the same. Hence, the Lyapunov matrix equation A T P + PA = −Q
has only one symmetric positive definite solution P with respect to the symmetric positive definite
matrix Q, where Pb = cT

0 .
Let a Lyapunov candidate be

V = η̃T P η̃ + ϑ̃T Γ−1ϑ̃.

Differentiating both sides of the above equation with respect to time, we obtain that

V̇ = (Aη̃ + bξ2ϑ̃)T P η̃ + η̃T P (Aη̃ + bξ2ϑ̃) + (−ΓξT
2 c0η̃)T Γ−1ϑ̃ + ϑ̃T Γ−1(−ΓξT

2 c0η̃)

= η̃T (AT P + PA)η̃ = −η̃T Qη̃.

The positive definite Q satisfies V̇ < 0 which guarantees uniform stability around origin (η̃, ϑ̃) = 0.
Therefore, the correctness of the given adaptive observer described by Equation (20) is transparent
and the acceleration signal θ̈ could be found with the form

θ̈ = η̂1 +a3η̂2 +((a3 +λ)b2 +a3λ+ b1)(y− η̂3)+ (a2
3 +a1a2)y +(a3ξ2 + ξ1 − 1

JeqN
∆)ϑ̂. (22)

5 SIMULATION EXPERIMENT

The detailed parameters of the LAMOST main axis and drive motors may be found in our earlier
research (Zhou & Xu 2008). In this study, we will continue to use them. Based on subsections 2.1 and
2.2, we found simulation models of external and internal nonlinear disturbances to approximate the
practical disturbances in the real drive system. From calculation, the maximum disturbance torque
caused by wind under 10m per second is about 300Nm, so we add random numbers between –300
and +300 to simulate wind disturbance.

The typical sine wave and slope signals are chosen as the expected position references to test
the tracking performance of the proposed adaptive observer based HOSM position control. One is
10′′ sin t + 10′′, and the other is 1′′t + 1′′ (1′′ = 1 arcsec= 4.81× 10−6 radian). Figure 3 shows the
observed disturbances vs. the real disturbances when position tracking these two signals respectively.
It is obvious that the proposed nonlinear adaptive observer can exactly capture the real disturbances
in the system. Figure 4 shows the observed acceleration signals of the two typical references respec-
tively. One can clearly see from the figure that the observed signals are constrained in a very small
vicinity of the references as time goes by. Therefore, it is sufficient to use the adaptive observer to
estimate the required acceleration signals in HOSM control.

The tracking performance of the third order sliding mode controller based on the proposed
nonlinear adaptive observer is shown in Figures 5 and 6 with a given sine wave reference signal. In
order to simulate real situations, noise is added to both the position and velocity measurements. It
can be seen from the simulation results that the main axis moves smoothly with a position error of
about 0.01 arcsec, which is much better than the optimal 0.05 arcsec of the other control strategies
that we simulated at an earlier time.
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Fig. 3 (a) Observed disturbance vs. real disturbance when position tracking a sine wave reference.
(b) Observed disturbance vs. real disturbance when position tracking a slope reference.
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Fig. 4 (a) Observed acceleration signal vs. a sine wave reference. (b) Observed acceleration signal
vs. a slope reference.
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Fig. 5 (a) Velocity tracking of a sine wave reference. (b) Velocity tracking error.
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Fig. 6 (a) Position tracking of a sine wave reference. (b) Position tracking error.

0 2 4 6 8 10
−4

−2

0

2

4
x 10

−4

time [s]
(a)

ve
lo

ci
ty

 [r
ad

/s
]

 

 

0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

x 10
−6

time [s]
(b)

ve
lo

ci
ty

 [r
ad

/s
]

reference
real

Fig. 7 (a) Velocity tracking of a slope reference. (b) Velocity tracking error.
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Fig. 8 (a) Position tracking of a slope reference. (b) Position tracking error.

Figures 7 and 8 show the tracking performances of the given approach with a slope reference.
They also reveal nice tracking results where chattering phenomena are totally removed. The position
error is restricted to less than 0.01 arcsec in the same way. It is not surprising that there are rather
large velocity tracking errors in both cases because some noise is added to the measured velocity
signals.
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6 CONCLUSIONS

Due to the giant moment of inertia, nonlinear external wind disturbances and uncertainties in the
system, it is difficult to control the main axes of the drive system of LAMOST when it runs at an
ultra-low velocity. Though the general sliding mode may meet the position tracking requirements,
it usually leads to a chattering phenomenon which can easily attain higher order terms or even
result in instability. When properly designed, the higher order sliding mode can totally eliminate the
chattering while requiring all system states to be available. Hence, a nonlinear adaptive observer is
designed to obtain the acceleration signal for a third order sliding mode controller which could be
used in the drive system of LAMOST. Simulations are done in Matlab which show excellent tracking
performances that satisfy the demands.
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