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Abstract In a second-order r-mode theory, Sá and Tomé found that the r-mode oscil-
lation in neutron stars (NSs) could induce stellar differential rotation, which naturally
leads to a saturated state of the oscillation. Based on a consideration of the coupling of
the r-modes and the stellar spin and thermal evolution, we carefully investigate the in-
fluences of the differential rotation on the long-term evolution of isolated NSs and NSs
in low-mass X-ray binaries, where the viscous damping of the r-modes and its resultant
effects are taken into account. The numerical results show that, for both kinds of NSs,
the differential rotation can significantly prolong the duration of the r-modes. As a result,
the stars can keep nearly a constant temperature and constant angular velocity for over a
thousand years. Moreover, the persistent radiation of a quasi-monochromatic gravitational
wave would also be predicted due to the long-term steady r-mode oscillation and stellar
rotation. This increases the detectability of gravitational waves from both young isolated
and old accreting NSs.
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1 INTRODUCTION

R-modes in a perfectly fluid star with arbitrary rotation arise due to the action of the Coriolis force with
positive feedback (Andersson 1998; Friedman & Morsink 1998), succumbing to gravitational radiation-
driven Chandrasekhar-Friedman-Schutz instability (Chandrasekhar 1970; Friedman & Schutz 1978).
In contrast, the growth of the modes can be suppressed by the viscosity of the stellar matter. Thus,
the r-mode evolution is determined by the competition between the viscous damping effect and the
destabilizing effect due to gravitational radiation. Based on the law of angular momentum conservation,
a phenomenological model describing the r-mode evolution was proposed by Owen et al. (1998) and
improved by Ho & Lai (2000). However, although the suppression of the oscillation by viscosities was
considered there, an unbounded growth of the modes would still have resulted since the model does
not include nonlinear effects. In order to avoid this problem, an artificial saturated r-mode amplitude
is usually put into the model by hand. Then, the spin and thermal evolution and gravitational wave
radiation of neutron stars (NSs) suffering from r-mode instability can be calculated (e.g., Owen et al.
1998; Levin 1999; Ho & Lai 2000; Watts & Andersson 2002; Heyl 2002).

To understand r-modes more deeply and judge their astrophysical implications, it is necessary to
take into account some nonlinear effects that could naturally give rise to a saturated r-mode amplitude
(e.g., Schenk et al. 2002; Arras et al. 2003; Brink et al. 2004a,b, 2005). As an important nonlinear
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effect, differential rotation induced by r-modes was first studied by Rezzolla et al. (2000, 2001), who
analytically used linearized fluid equations by expanding the velocity of a fluid element located at a
certain point in powers of the mode amplitude, averaging over a gyration, and retaining only the lowest-
order nonvanishing term. Soon afterwards, some numerical studies (Stergioulas & Font 2001; Lindblom
et al. 2001) confirmed the existence of such drifts. More exactly, Sá (2004) solved the fluid equations
within a nonlinear theory up to second order in the mode amplitude and described the stellar differential
rotation analytically. By extending Owen et al.’s model to this nonlinear case, Sá & Tomé (2005, 2006)
further obtained a saturated amplitude of the r-modes self-consistently. Their study also investigated
the early (millions of seconds after the birth) spin evolution of nascent NSs under the influence of
the differential rotation, but did not cover the phase during which the viscous damping effect becomes
important. In this paper, we would find that the long-term spin and thermal evolution of isolated NSs and
NSs in low-mass X-ray binaries (LMXBs) can also be remarkably influenced by the differential rotation
by prolonging the duration of the r-modes. Moreover, in view of the prolonged r-modes, gravitational
waves could be expected to be continuously emitted from both young isolated and old accreting NSs.

In the next section, we briefly review the second-order r-mode theory of Sá (2004). Then, we exhibit
the coupling thermal, r-mode, and spin evolution equations in Section 3, where some typical numerical
solutions are given for both isolated and accreting NSs. In Section 4, we estimate the detectability of
gravitational waves from NSs. Finally, a summary is given in Section 5.

2 THE SECOND-ORDER R-MODES

For a rotating barotropic Newtonian star, the r-mode solutions of perturbed fluid equations can be found
in spherical coordinates (r, θ, φ) to first order in α as (Lindblom et al. 1998),

δ(1)vr = 0, (1)

δ(1)vθ = αΩCll
( r

R

)l−1

sinl−1 θ sin(lφ + ωt), (2)

δ(1)vφ = αΩCll
( r

R

)l−1

sinl−2 θ cos θ cos(lφ + ωt), (3)

and to second order in α as (Sá 2004)

δ(2)vr = δ(2)vθ = 0, (4)

δ(2)vφ =
1
2
α2ΩC2

l l2(l2 − 1)
( r

R

)2l−2

sin2l−4 θ

+α2ΩArN−1 sinN−1 θ, (5)

where α represents the amplitude of the oscillation, R and Ω are the radius and angular velocity of the
unperturbed star, ω = −Ω(l+2)(l−1)/(l+1), Cl = (2l−1)!!

√
(2l + 1)/[2π(2l)!l(l + 1)], and A and

N are two constants determined by the initial condition. For simplicity, Sá & Tomé (2005) suggested
N = 2l − 1 and redefined A by introducing a new free parameter K as A = 1

2KC2
l l2(l + 1)R2−2l.

For the most unstable l = 2 r-mode of primary interest to us, the second-order solution δ (2)vφ shows a
differential rotation of the star induced by the r-mode oscillation, i.e., large scale drifts of fluid elements
along stellar latitudes. Using δ(1)vi and δ(2)vi, the corresponding Lagrangian displacements ξ (1)i and
ξ(2)i can be derived and then the physical angular momentum of the l = 2 r-mode can be calculated up
to second order in α as (Sá 2004; Sá & Tomé 2005)

Jr = J (1) + J (2) =
(4K + 5)

2
α2J̃MR2Ω, (6)

where J̃ = 1.635 × 10−2 and

J (1) = −
∫

ρ∂φξ(1)i
(
∂tξ

(1)
i + vk∇kξ

(1)
i

)
dV, (7)
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J (2) =
1
Ω

∫
ρvi

[
∂tξ

(1)k∇iξ
(1)
k + vk∇kξ(1)m∇iξ

(1)
m + ∂tξ

(2)
i

+vk
(
∇iξ

(2)
k + ∇kξ

(2)
i

)]
dV. (8)

Meanwhile, following Owen et al. (1998) and Sá (2004), we further express the energy of the l = 2
r-mode by

Er = J (2)Ω − 1
3
J (1)Ω =

(4K + 9)
2

α2J̃MR2Ω2. (9)

When K = −2, J (2) vanishes and the expressions of Jr and Er return to their canonical forms (Owen et
al. 1998), in other words, the differential rotation disappears. Both the physical angular momentum and
energy of the r-mode are increased by gravitational radiation back reaction and decreased by viscous
damping, which yields

dJr

dt
=

2Jr

τg
− 2Jr

τv
, (10)

dEr

dt
=

2Er

τg
− 2Er

τv
, (11)

where τg = 3.26Ω̃−6 s, τsv = 2.52 × 108T 2
9 s, and τbv = 6.99 × 108T−6

9 Ω̃−2 s are the timescales of
the gravitational radiation, shear viscous damping, and bulk viscous damping (for l = 2), respectively
(Owen et al. 1998), and τv = (τ−1

sv + τ−1
bv )−1. Hereafter, the convention Qx ≡ Q/10x and Ω̃ ≡

Ω/
√

πGρ̄ are adopted in cgs units. These timescales are obtained with a polytropic equation of state
as p = kρ2 for NSs, with k chosen so that the mass and radius of the star are M = 1.4 M� and
R = 12.53 km. The competition between the gravitational destabilizing effect that is dependent on Ω
and the T -dependent viscous damping effect determines an instability window in the T −Ω plane, where
a small perturbation would grow exponentially due to (τ −1

g − τ−1
v )−1 > 0.

3 EVOLUTION OF NSS

3.1 Thermal Evolution Equation

Considering the temperature dependence of the viscosities, we would like to show the thermal evolution
equation of a NS first before calculating the r-mode evolution, which reads as (Shapiro & Teuklosky
1983; Yakovlev et al. 1999; Yakovlev & Pethick 2004)

dT

dt
= − 1

Cv
(Lν + Lγ − Hsv), (12)

where Cv ≈ 1039T9 erg K−1 is the heat capacity of the star. On one hand, the NS can be cooled by
neutrino and photon energy release, the luminosities of which are estimated to be L ν ≈ 1040T 8

9 erg s−1

(for the modified URCA process) and Lγ = 4πR2σT 4
s ≈ 1035T 2.2

9 erg s−1, respectively. For the
black-body luminosity Lγ , we use the relationship Ts ≈ 3.34 × 106T 0.55

9 between the interior (T ) and
surface (Ts) temperatures (Gudmundsson et al. 1983). Specifically, the temperature dependence of L ν

and Lγ indicates that the cooling of the NS at high (> 108 K) and low (< 108 K) temperatures would
be dominated by neutrino and photon emissions, respectively. On the other hand, the shear viscous
dissipation of the r-mode can gradually convert a part of the oscillation energy into heat energy. Using
the shear viscous damping timescale, we estimate the rate of this energy conversion as

Hsv =
2Er

τsv
= 2.0 × 1043(4K + 9)α2T−2

9 Ω̃2 erg s−1. (13)

During the very early ages of a nascent NS, during which the above heating effect is much weaker than
the neutrino cooling effect, an approximative temperature evolution can be solved from Equation (12) as
T = Ti(1+t/tc)−1/6, where Ti is the initial temperature and tc ≈ (20/T 6

i,10) s. However, as the r-mode
increases, the cooling of the star would be effectively resisted by the heating effect, as demonstrated by
some previous studies (e.g., Zheng et al. 2006).
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3.2 Isolated NSs

A simple phenomenological model for the r-mode evolution was proposed by Owen et al. (1998) first
and further improved by Ho & Lai (2000) based on a consideration of angular momentum conservation.
For a normal NS with a strong magnetic field (∼ 1010 − 1013 G), besides the braking effect due to
gravitational radiation, the spindown of the star resulting from magnetic dipole radiation should also be
taken into account. So, we write the decrease of the total angular momentum of the star as (Owen et al.
1998; Ho & Lai 2000; Sá & Tomé 2005)

dJ

dt
= −3α2J̃MR2Ω

τg
− IΩ

τm
, (14)

where τm = 1.35×109B−2
12 (Ω/

√
πGρ̄)−2 s is the magnetic braking timescale and I = ĨMR2 with Ĩ =

0.261 is the moment of inertia of the star. Due to the r-mode oscillation, the total angular momentum of
the star could be separated into two parts, i.e., J = IΩ + Jr. Then, Equations (10) and (14) yield

dα

dt
=

[
1 +

4
3
(K + 2)Qα2

]
α

τg
−

[
1 +

1
3
(4K + 5)Qα2

]
α

τv
+

α

2τm
, (15)

dΩ
dt

= −8
3
(K + 2)Qα2 Ω

τg
+

2
3
(4K + 5)Qα2 Ω

τv
− Ω

τm
, (16)

where Q = 3J̃/2Ĩ = 0.094. During the very early ages of nascent NSs when τg � (τv, τm), the
viscous and magnetic terms in the above two equations can be omitted. Combining this simplification
with the analytical temperature T = Ti(1 + t/tc)−1/6, Sá & Tomé (2005, 2006) obtained an analytical
solution of Equations (15) and (16) for t < 0.3 yr. For convenience, their analytical solution can also be
expressed by two asymptotic functions as follows (Sá & Tomé 2006):

α(t) ≈
{

αi exp (t/τg,i) , for t < ta
3.56√
K+2

(t/τg,i)
1/10

, for t > ta
(17)

Ω(t) ≈
{

Ωi

[
1 − 4

3 (K + 2)Qα2
i exp (2t/τg,i)

]
, for t < ta

0.63 (t/τg,i)
−1/5

, for t > ta
(18)

where αi and Ωi are the initial r-mode amplitude and angular velocity, respectively, and τ g,i =
3.26Ω̃−6

i s. The transition time ta ≈ [521−18.5 ln(K+2)]s is determined by the condition d2α/dt2 = 0
and corresponds to the amplitude α(ta) = [12(K + 2)Q]−1/2 (Sá & Tomé 2006).

As the temperature and angular velocity decrease, the viscous damping timescale would become
comparable to the gravitational radiation timescale. Therefore, it is necessary to completely solve the
coupling Equations (12), (15), and (16) in order to depict the long-term history of NSs. For different
values of K (≥ −5/4), we show some numerical evolution curves of the r-mode amplitude in Figure 1.
As indicated by the thin solid lines, the two increasing segments of the evolution curves can be fitted
by Equation (17) well, i.e., the amplitude first increases exponentially and then gradually reaches a
saturation value. About one tenth of a year later after the birth of the stars, the growth of the r-mode
would be stopped and instead, the amplitude nearly stays constant until an extremely fast decay due to
(τ−1

g − τ−1
v )−1 < 0. The higher the value of K is, the longer the duration of this plateau phase is.

In order to exhibit the influence of the differential rotation on the r-mode evolution, for an example,
we plot the r-mode evolution curves for K = 100 (differential rotation case) and −2 (non-differential
rotation case) in Figure 2(a). As mentioned above, the non-differential rotation model (K = −2) is
incapable of determining a saturation amplitude. So, for comparison, we put an effective saturation
amplitude in the case of K = −2 by hand, which is taken to equal the one calculated from the differential
rotation case (e.g., αsat = 1.1 for K = 100). Correspondingly, Figures 2(b) and 2(c) show the temporal
evolution of the stellar angular velocity and temperature, respectively, for both K = 100 and −2. For
a differential-rotation NS, we can divide its evolution during the r-mode oscillation into six phases
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Fig. 1 Evolution of the r-mode amplitude of an isolated NS with a magnetic field B = 1012 G for
different values of K (thick lines). For a comparison, the thin solid lines are given by the asymptotic
functions shown in Eq. (17). The initial values of the r-mode amplitude, angular velocity, and tempera-
ture are taken to be αi = 10−6, Ωi = ΩK ≡ 2

3

√
πGρ̄, and Ti = 1010 K, respectively, where ΩK is the

Keplerian angular velocity at which the star starts shedding mass at the equator.

Table 1 Different phases of evolution of a young isolated differential-rotation NS,
during which α, Ω, and T have different temporal behaviors as listed below. The
coefficient a = 4

3
(K + 2)Qα2

i .

Phases I II IIIa IIIb IV V

α(t) ∝ exp(t/τg,i) exp(t/τg,i) t1/10 t1/10 t0 decrease
Ω(t) ∝ t0 1 − a exp(2t/τg,i) t−1/5 t−1/5 t0 increase
T (t) ∝ t−1/6 t−1/6 t−1/6 t0 t0 decrease

(denoted by I-V), the temporal behaviors of which are listed in Table 1. In particular, within phase IV,
the extremely slow variation in Ω and T makes the timescales τg and τv nearly constant. Thus, the
contemporaneous r-mode oscillation can remain steady for a long period.

Comparing the differential with non-differential rotation cases, we can find that: (1) The differen-
tial rotation obviously strengthens the gravitational braking effect for t < 0.3 yr (phases II and III).
However, subsequently, from one tenth to a few thousand years (phases IV and V), the spindown of the
star due to gravitational radiation would be effectively held back by an angular momentum transfer from
Jr to IΩ, although during this time, the r-mode always stays in the saturated state. Due to the existence
of this angular velocity plateau (i.e., dΩ/dt ∼ 0; phase IV), a quasi-monochromatic gravitational wave
can be expected to be persistently emitted from a young (< 10 3 yr) NS (see Sect. 4). (2) The obvious
difference in the temperature plateaus between the cooling curves with K = 100 and −2 indicates
that the heating effect due to r-mode dissipation is also strengthened dramatically by the differential
rotation. As a result, the NS with differential rotation can keep a high constant temperature for a few
thousand years. Finally, we show the evolution trajectories of isolated NSs for K = 100 and −2 in the
T −Ω plane in Figure 3, where the six evolution phases for the differential-rotation star are labeled with
their durations. The point marked by a solid circle represents phase IV, at which the star would stay for
a thousand years. From this figure, we can clearly see that the differential-rotation star can accelerate
its rotation without any external cause (e.g., accretion) within phase V. In other words, the star would
experience a self-acceleration phase.
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Fig. 2 Evolutionary curves of α, Ω, and T of an isolated NS with a magnetic field B = 1012 G for K =
100 (solid lines; differential rotation case) and K = −2 (dashed lines; non-differential rotation case).
The initial conditions are the same as those in Fig. 1. For the differential-rotation star, its evolution can
be divided into several phases (denoted by I-V) by the vertical dotted lines, and the temporal behaviors
of α, Ω, and T during these phases are listed in Table 1.

To summarize, during the early part of the r-mode evolution (phases I, II, and III), the rotation
energy of the star ( 1

2IΩ2) is converted into oscillation energy, internal energy, and the energy of gravi-
tational waves. In contrast, during the later parts (phases IV and V), the energy deposited in the r-mode
would be released gradually via heating the star and accelerating the stellar rotation due to viscosity.

3.3 NSs in LMXBs

For NSs in LMXBs, whose magnetic fields are usually found to be relatively weak (∼ 10 8−109 G), their
angular velocity could be increased by accreting materials from their companion star. Then, the evolu-
tion of the stellar angular momentum would be determined by the competition between the gravitational
radiation and accretion as (Levin 1999; Zhang & Dai 2008)

dJ

dt
= −3α2J̃MR2Ω

τg
+ ṀR2ΩK, (19)
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Fig. 3 Evolutionary trajectories of an isolated NS with B = 1012 G in the T − Ω plane for K = 100
(solid line; differential rotation case) and K = −2 (dashed line; non-differential rotation case). The ini-
tial conditions are the same as those in Fig. 1. The shaded region exhibits the r-mode instability window.
For the differential-rotation star, its evolution phases are labeled by their durations in the brackets.

where Ṁ is the accretion rate and the velocity of the accretion disk is assumed to be equal to the
Keplerian velocity ΩK. Combining Equations (10) and (19), we can get

dα

dt
=

[
1 +

4
3
(K + 2)Qα2

]
α

τg
−

[
1 +

1
3
(4K + 5)Qα2

]
α

τv
− 1

Ĩ

ΩK

Ω
α

2τa
, (20)

dΩ
dt

= −8
3
(K + 2)Qα2 Ω

τg
+

2
3
(4K + 5)Qα2 Ω

τv
+

(
1
Ĩ

ΩK

Ω
− 1

)
Ω
τa

, (21)

where τa = M/Ṁ is defined as an accretion timescale.
We plot the evolutionary trajectories of accreting NSs in the T − Ω plane for K = 100 and −2 in

Figure 4. Different from the case of the isolated NSs shown in Figure 3, the spin-up by accretion can be
more effective than the spin-down by magnetic dipole radiation for the accreting stars during their old
age (∼ 105 − 106 yr). In particular, if the accretion rate is high enough, cyclic evolution could be found
(black lines). This is qualitatively consistent with the results in Levin (1999) and Heyl (2002). However,
for Ṁ = 10−8 M� yr−1 specifically, we do not obtain the cycle as Levin (1999) did. There are two
reasons for this difference: (1) In the calculations of Levin (1999), an effective shear viscous damping
timescale τsv = 1.03 × 106T 2

9 s was taken by hand in order to fit the observational data, whereas we
adopt a theoretical value of τsv = 2.52 × 108T 2

9 s from Owen et al. (1998); (2) The cooling effect due
to thermal radiation, which can effectively pull the star away from the r-mode instability window in the
T − Ω plane, was ignored in Levin (1999).

The temporal behaviors of α, Ω, and T within one cycle are exhibited in Figure 5. In order to show
the detailed features of the cycle clearly, the time-axes in the left- and right-hand panels of Figure 5
are drawn on normal and logarithmic scales, respectively. To be specific, the left-hand panel shows
that the period of the cyclic evolution is mildly shortened by the differential rotation (4.5 × 10 5 yr vs.
5.6 × 105 yr), and the right-hand panel indicates that the duration of the r-mode oscillation within one
cycle is prolonged significantly (3900yr vs .65 yr). Similar to the early evolution of young isolated NSs
shown in Figure 2, the evolution during the r-mode oscillation within one cycle of the old (> 10 5 yr)
accreting NSs can be divided into five phases. A comparison between Figures 2 and 5 shows that: (1)
during phases I′ and II′, the spin-down of accreting NSs is very similar to that of isolated NSs during
phases I and II, but the thermal evolution of the two kinds of NSs are completely contrary to each
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Fig. 4 The same as Fig. 3 but for a NS with B = 108 G in a LMXB. The black and grey lines correspond
to the accretion rates Ṁ = 10−7 M� yr−1 and 10−8 M� yr−1, respectively.

Fig. 5 Evolutionary curves of α, Ω, and T during the cyclic evolution of a NS with B = 108 G in a
LMXB for K = 100 (solid lines; differential rotation case) and K = −2 (dashed lines; non-differential
rotation case). The beginning of the cycle is set at point A that is marked in Fig. 4, and the age of the
star at point A is denoted by tcycle,0.
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other during these phases. (2) the temporal behaviors of young isolated and old accreting NSs during
phases IIIb, IV, and V seem to be nearly identical except for the durations of the specific phases. This
indicates that the young isolated and old accreting NSs may be able to produce some of the same
astrophysical phenomena, e.g., self-acceleration and monochromatic gravitational wave radiation (see
the next section).

4 DETECTABILITY OF GRAVITATIONAL WAVES

Using the obtained r-mode amplitude and angular velocity, we can estimate the amplitude of the emitted
gravitational waves as follows (Owen et al. 1998; Sá & Tomé 2006):

|h(t)| = 1.3 × 10−24α(t)
[
Ω(t)
ΩK

]3 (
20 Mpc

dL

)
, (22)

where dL is the distance to the star. Then, the frequency-domain gravitational wave amplitude (i.e., the
Fourier transform of h(t), h̃(f) =

∫ ∞
−∞ e2πifth(t)dt) can be calculated by (Owen et al. 1998; Sá &

Tomé 2006)

|h̃(f)| =
|h(t)|√
df/dt

, (23)

where f = 2Ω/(3π) is the frequency of the gravitational waves for the l = 2 mode. From the above two
equations, we know that NSs with a relatively large r-mode amplitude and a nearly invariable angular ve-
locity (e.g., NSs during phases IV and I ′1) may be able to produce monochromatic gravitational radiation
with a relatively high value of |h̃(f)|. In order to analyze the possibility of detecting gravitational waves
with the laser interferometer detectors LIGO and Virgo, in Figure 6, we compare the characteristic am-
plitude of the signal, hc(f) = f |h̃(f)|, with the rms stain noise in the detectors, hrms(f) =

√
fSh(f),

for both isolated (left-hand panel) and accreting (right-hand panel) NSs. For the noise spectral density
of the detectors, Sh(f), some approximative expressions can be found in Sá & Tomé (2006) for LIGO,
Virgo, and advanced LIGO.

On one hand, as found by Sá & Tomé (2006), the spike of h c(f) at fmax = 2ΩK/(3π) that was
predicted by Owen et al. (1998; see the thick dashed lines in Fig. 6) disappears under the influence of
the differential rotation, and the numerical results of h c(f) for f > 100Hz in Figure 6 can be perfectly
fitted by the following analytical expression

hc(f) =
5.5 × 10−22

√
K + 2

√
f

fmax

(
20 Mpc

dL

)
. (24)

On the other hand, surprisingly, a new remarkable spike emerges within the range of ∼ 60 − 90Hz,
where the approximative analysis in Sá & Tomé (2006) is inapplicable. From Figures 2 and 5, we know
that the angular velocity of the NSs is nearly invariable and thus |df/dt| → 0 during phase IV, while the
r-mode stays in the saturated state all the time. As a result, both young isolated and old accreting NSs
could emit quasi-monochromatic (∼ 70Hz) gravitational waves for several hundred years. Similarly,
due to the existence of Phase I′, another weaker spike at ∼ 220Hz would also be predicted for accreting
NSs, which is shown in the right-hand panel of Figure 6.

Using matched filtering, the power signal-to-noise ratio (S/N)2 of a detection from t0 to tdet is given
by (Owen et al. 1998; Sá & Tomé 2006)(

S
N

)2

= 2
∫ tdet

t0

[
f(t)h(t)

hrms(f(t))

]2

dt, (25)

1 During both phases IV and I′, the braking and accelerating effects cancel each other and thus the NSs can have a steady
rotation.



Long-term Evolution of Neutron Stars 1033

where t0 is the beginning of the observation. In Table 2, we list some values of S/N with different t det

and K for an isolated NS by setting t0 at the birth of the star.
Since the spike of hc(f) within ∼ 60 − 90Hz would appear about 0.3 yr after the increase of the

r-mode, the signal-to-noise ratio obtained from a long-term detection could be much higher than that
from a short-period detection (i.e., the case focused on in Sá & Tomé 2006).

Table 2 Signal-to-noise ratios of gravitational wave detections for different detectors, differ-
ent values of K, and different detection durations for an isolated NS at dL = 20 Mpc. The
beginning of the detection is set at the birth of the star.

LIGO Virgo Advanced LIGO

tdet − t0 K = 1 10 100 1 10 100 1 10 100

0.3 yr 0.65 0.33 0.11 0.51 0.26 0.01 9.18 4.62 1.59
1 yr 0.67 0.34 0.12 0.54 0.27 0.01 9.63 4.90 1.69
10 yr 0.81 0.44 0.15 0.77 0.42 0.15 13.53 7.46 2.63
30 yr 0.91 0.55 0.20 1.06 0.62 0.22 18.60 10.98 3.93

Fig. 6 A comparison of the characteristic amplitudes of gravitational waves (thick lines) with the rms
strain noise in the detectors (thin dotted lines). The details of the curves of hc(f) within ∼ 60 − 90 Hz
are shown in the insert panel, where solid and dashed lines correspond to K = 100 and K = −2,
respectively.

5 SUMMARY

A second-order r-mode theory was developed by Sá (2004) and Sá & Tomé (2005). This theory pre-
dicts that the r-mode oscillation could naturally induce differential rotation in neutron stars, which can
determine a saturation amplitude of the r-mode. In the framework of this theory, we investigate the
long-term spin and thermal evolution of isolated NSs and NSs in LMXBs. In our calculations, the ef-
fects of heating due to r-mode dissipation, gravitational and magnetic braking, and accretion are taken
into account. Our results show that, to a certain extent, the linear r-mode evolutionary model using
an artificial saturation amplitude can describe the basic features of the evolution of NSs qualitatively,
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but predicts an obviously underestimated r-mode duration. By considering the differential rotation, we
may obtain a slight self-acceleration and an enhanced temperature plateau for NSs. In particular, due to
an effective transfer of angular momentum from J r to IΩ, the spindown of NSs can be stopped for a
few hundred years, whereas the gravitational radiation still exists during this period. As a result, long-
lasting quasi-monochromatic gravitational wave radiation is predicted, which increases the detectability
of gravitational waves from both young (< 10 3 yr) isolated and old (> 105 yr) accreting NSs.
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