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Abstract The Poynting-Robertson (P-R) effect on linear stability of equilibrium points
is investigated in the generalized photogravitational Chermnykh’s problem when a bigger
primary is radiating and a smaller primary is an oblate spheroid. The positions of equi-
librium points and their linear stabilities for various values of perturbing parameters are
studied. It is found that the positions of the equilibrium points are different from the po-
sitions in the classical restricted three body problem. When the P-R effect is taken into
account, these points are unstable in a linear sense. It is also found that the equilibrium
points are unstable when the mass of the belt Mb ≥ 0.4.
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1 INTRODUCTION

The Chermnykh’s problem is a new kind of restricted three body problem which was studied for the first
time by Chermnykh (1987). This problem generalizes two classical problems of celestial mechanics: the
two fixed center problem and the restricted three body problem. This gives wide perspectives for appli-
cations of the problem in celestial mechanics and astronomy. Goździewski (1998) studied the nonlinear
stability of the Lagrangian libration points in the Chermnykh problem. The importance of the problem
in astronomy has been addressed by Jiang & Yeh (2004). In their study, they have discussed many new
discoveries of extrasolar planets which have been made recently and these events provide exciting and
important opportunities to understand the formation and evolution of planetary systems, including the
Solar System. There are similarities between extrasolar planets and planets in our Solar System. Some
planetary systems are claimed to have disks of dust and they are regarded as young analogs of the
Kuiper Belt in our Solar System. If these disks are massive enough, they should play important roles
in the origin of planets’orbital elements. Since the belt of planetesimals often exists within a planetary
system and provides the possible mechanism for orbital circularization, it is important to understand the
solutions of dynamical systems which show planet-belt interactions.

The numerical exploration of the Chermnykh’s problem has been presented by Papadakis (2005) in
which the equilibrium points and zero velocity curves are studied numerically, and also the non-linear
stability for the triangular Lagrangian points is computed for the Earth-Moon and Sun-Jupiter mass
distribution with varying angular velocities. Jiang & Yeh (2006) and Yeh & Jiang (2006) examined the
conditions for the existence of equilibrium points in the Chermnykh-like problems for different values
of mass parameter µ. They have included the potential of the belt, and found three collinear points,
two triangular points, and two other new equilibrium points. Papadakis & Kanavos (2007) presented
the numerical exploration of the photogravitational restricted five-body problem. They have found that
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the number of collinear equilibrium points in the problem depends on the mass parameter β and the
radiation factors qi, i = 0, . . . 3. They have also given critical masses associated with the number of
equilibrium points and their stability.

This paper highlights the generalization of Chermnykh’s problem by including the Poynting-
Robertson (P-R) effect which occurs because of grains of dust or small particles that absorb energy
preferentially from one direction (i.e., the Sun), but re-emit the energy equally in all directions. The P-R
effect operates by sweeping small particles from the solar system into the Sun at a cosmically rapid rate.
Poynting (1903) considered the effect of absorption and subsequent re-emission of sunlight by small
isolated particles in the solar system. That work was modified by Robertson (1937), using precise rela-
tivistic treatments of the first order in the ratio V

c
of the velocity of the particle to that of light. Taking

into account the radiation pressure and the P-R drag force, Chernikov (1970) discussed the position as
well as the stability of Lagrangian equilibrium points. Murray (1994) systematically discussed the dy-
namical effect of general drag in the planar circular restricted three body problem. Ishwar & Kushvah
(2006) examined the linear stability of triangular equilibrium points in the generalized photogravita-
tional restricted three body problem with P-R drag and found that the L 4 and L5 points became unstable
due to P-R drag. This is very remarkable and important, because they are linearly stable in classical
problems when 0 < µ < µRouth = 0.0385201. Further, the normalizations of the Hamiltonian and the
nonlinear stability of L4(5) in the presence of P-R drag have been studied by Kushvah et al. (2007a,b,c).

2 EQUATIONS OF MOTION

In this work, a Sun-Jupiter system of primaries is studied in which the mass of the Sun m 1 ≈ 1.989 ×
1030 kg and the mass of the Jupiter m2 ≈ 1.8986 × 1027 kg. It is supposed that the motion of an
infinitesimal mass particle is influenced by the gravitational force from primaries and a belt of mass
Mb. Let Ox and Oy be in the equatorial plane of the smaller primary, Oz coincide with the polar
axis of m2 and the infinitesimal mass m be placed at the point P (x, y, 0). The units of mass, distance
and time are taken such that the sum of the masses and the distance between the primaries are unities,
the Gaussian constant of gravitation k

2 = 1. Then the perturbed mean motion n of the primaries is
given by n2 = 1 + 3A2

2 + 2Mbrc

(r2
c+T 2)3/2 , where T = a + b, and a, b are flatness and core parameters

respectively, which determine the density profile of the belt, r 2
c = (1 − µ)q2/3

1 + µ2, A2 =
r2
e−r2

p
5r2

is the oblateness coefficient of m2; re and rp are the equatorial and polar radii of m2 respectively, r
is the distance between primaries, µ = m2

m1+m2
(9.537 × 10−4 for the Sun-Jupiter mass distribution)

is the mass parameter, q1 = 1 − Fp
Fg

is a mass reduction factor and Fp is the solar radiation pressure
force which is exactly apposite to the gravitational attraction force F g. The coordinates of m1 and m2

are (−µ, 0) and (1 − µ, 0) respectively. The dimensionless velocity of light is cd = c = 299 792 458
which depends on the physical masses of the two primaries and the distance between them. In the
above mentioned reference system, the equations of motion of the infinitesimal mass particle in the xy-
plane are formulated by using the following perturbation force [please see Robertson (1937); Chernikov
(1970)]:

F = F 1 + F 2 + F 3, (1)

where F 1 = Fp
R
R , F 2 = −Fp

(
V ·R
cR

)
R
R , F 3 = −Fp

V
c , R is the position vector of P with respect to

the radiating primary Sun S, and V is the corresponding velocity vector.
In Equation (1), F 1 represents the radiation pressure, F 2 represents the Doppler shift of the incident

radiation and the F 3 term is due to the absorption and subsequent re-emission of the incident radiation.
The components F 2 and F 3 taken together give the P-R effect.

Considering the model proposed by Miyamoto & Nagai (1975), the potential of the belt is given by
the density profile:

ρ(r, z) =
(

b2Mb

4π

)
ar2 +

(
a + 3

√
z2 + b2

) (
a +

√
z2 + b2

)2

[
r2 +

(
a +

√
z2 + b2

)2
]5/2

(z2 + b2)3/2

, (2)
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where Mb is the total mass of the belt and r2 = x2 + y2. The potential of the belt in the xy-plane is:

V (r, 0) = − Mb√
r2 + T 2

. (3)

Using Equations (1) and (3), the equations of motion are given (Kushvah 2008a,b) as:

ẍ − 2nẏ = Ωx, (4)

ÿ + 2nẋ = Ωy, (5)

where

Ωx = n2x − (1 − µ)q1(x + µ)
r3
1

− µ(x + µ − 1)
r3
2

− 3
2

µA2(x + µ − 1)
r5
2

− Mbx

(r2 + T 2)3/2
− W1

r2
1

{
(x + µ)

r2
1

[(x + µ)ẋ + yẏ] + ẋ − ny

}
,

Ωy = n2y − (1 − µ)q1y

r3
1

− µy

r3
2

− 3
2

µA2y

r5
2

− Mby

(r2 + T 2)3/2
− W1

r2
1

{
y

r2
1

[(x + µ)ẋ + yẏ] + ẏ + n(x + µ)
}

,

Ω =
n2(x2 + y2)

2
+

(1 − µ)q1

r1
+

µ

r2
+

µA2

2r3
2

+
Mb

(r2 + T 2)1/2

+W1

[
(x + µ)ẋ + yẏ

2r2
1

− n arctan
(

y

x + µ

) ]
,

W1 =
(1 − µ)(1 − q1)

cd
.

From Equations (4) and (5), the energy integral is given below as:

C = 2Ω − ẋ2 − ẏ2, (6)

where the quantity C is Jacobi’s constant.

3 POSITIONS OF EQUILIBRIUM POINTS

The orbital plane Oxy is divided into three parts x ≤ −µ, −µ < x < 1 − µ and 1 − µ ≤ x with
respect to the primaries. For simplicity, µ = 9.537× 10−4, T = 0.01, and c = 299 792 458 are used for
numerical calculations.

The equilibrium points are given by substituting Ωx = Ωy = 0, i.e.

n2x − (1 − µ)q1(x + µ)

r3
1

− µ(x + µ − 1)

r3
2

− 3

2

µA2(x + µ − 1)

r5
2

− Mbx

(r2 + T 2)3/2
+

W1ny

r2
1

= 0, (7)

n2y − (1 − µ)q1y

r3
1

− µy

r3
2

− 3

2

µA2y

r5
2

− Mby

(r2 + T 2)3/2
− W1n(x + µ)

r2
1

= 0. (8)

From Equations (7) and (8), we obtained:

r1 = q
1/3
1

⎧⎨
⎩1 − nW1

6(1 − µ)y
− A2

2
+

(1 − 2rc)Mb

[
1 − 3µA2

2(1−µ)

]
3 (r2

c + T 2)3/2

⎫⎬
⎭ , (9)

r2 = 1 +
µ(1 − 2rc)Mb

3 (r2
c + T 2)3/2

+
nW1

3µy
, (10)
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x = −µ ±

���
��
� q1

n2

�2/3

�
�1 +

nW1

2(1 − µ)y
+

3A2

2
−

(1 − 2rc)Mb

�
1 − 3µA2

2(1−µ)

�
(r2

c + T 2)3/2

�
	

−2/3

− y2


��
��

1/2

, (11)

x = 1 − µ ±
��
�

1 − nW1

µy
(1 − 5

2
A2) − µ(1 − 2r0)Mb

(r2
c + T 2)3/2

�−2/3

− y2


�
�

1/2

. (12)

The equilibrium points L4(5) (the triangular equilibrium points in a classical case) are given by Ωx =
Ωy = 0; y �= 0. From Equations (4) and (5), the positions of L 4(5) are given as follows:

x = −µ +
q
2/3
1

2
(1 − A2) −

nW1

[
µq

2/3
1 − 2(1 − µ)

]
6µ(1 − µ)y0

+
(1 − 2rc)Mb

{[
1 − 3µA2

(1−µ)

]
q
2/3
1 − 1

}
3 (r2

c + T 2)3/2
, (13)

y = ±q
1/3
1

2

⎧⎨
⎩4 − q

2/3
1 + 2

(
q
2/3
1 − 2

)
A2 −

2nW1

(
q
2/3
1 − 2

)
3µ(1 − µ)y0

−
4(2rc − 1)Mb

[(
q
2/3
1 − 3

)
− 3µA2

�
q
2/3
1 −3

�

2(1−µ)

]
3 (r2

c + T 2)3/2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1/2

. (14)

3.1 Positions of L1 and L4(5)

Using an iteration process, the positions of L1 and L4(5) in region (−µ, 1−µ) are obtained. The possible
values of coordinates x and y of L1 are presented in Table 1, and the corresponding plots are given in
Figure 1 and frame (a) of Figure 2 for various values of A 2, Mb and q1. In the classical case (q1 =
1, A2 = 0, Mb = 0) abscissa x = 0.93237, ordinate y = 0; so L1 lies on the x–axis. In other cases,
the abscissa x decreases with the mass of the belt Mb, the oblateness coefficient A2 and the radiation
pressure increase (i.e. q1 decreases and the P-R effect is taken into account), while the ordinate y is
negative lying below the line joining two primaries. It is found that y decreases when M b, A2 and
the radiation pressure increase. The possible values of x and y for the equilibrium point L 4 are given
in Table 2, and the corresponding curves are presented in Figure 1 and in frame (d) of Figure 2. In
the classical case, it has been observed that the coordinates (x, y) = (0.499046,±0.866025) of the
triangular equilibrium points for the Sun-Jupiter mass distribution. When q 1 decreases (the P-R effect
increases) then x and y decrease (i.e. when the P-R effect is very high then L 4(5) coincides with the
Sun). The positions of these points are no longer triangular.

3.2 Positions of L2

When x ∈ (1 − µ,∞) all the possible values of x and y for L2 are presented in Table 3, and the
corresponding plots are given in Figure 1 and frame (b) of Figure 2 for various values of A 2, Mb, and
q1. In the classical case (q1 = 1, A2 = 0, Mb = 0), the abscissa x = 1.06883, ordinate y = 0; and
in other cases, y is negative which lies below the line joining two primaries. The abscissa x increases
and the ordinate y decreases when A2 increases, while x and y decrease when Mb increases and q1

decreases.
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Table 1 Positions of L1 when T = 0.01, c = 299 792 458, µ = 9.537×10−4

Mb = 0.0 Mb = 0.2 Mb = 0.4

A2 q1 x y x y x y

0.0 1.0 0.93237 0.0 0.916738 0.0 0.900954 0.0
0.75 0.884161 −1.32662 × 10−9 0.865462 −2.47036 × 10−9 0.852505 −3.70164 × 10−9

0.50 0.785873 −1.70904 × 10−8 0.787977 −1.96215 × 10−8 0.789182 −2.18655 × 10−8

0.25 0.626836 −1.42486 × 10−7 0.682241 −1.01072 × 10−7 0.709627 −8.66699 × 10−8

0.50 1.0 0.775012 0.0 0.776826 0.0 0.778294 0.0
0.75 0.72677 −2.10496 × 10−9 0.73634 −1.96187 × 10−9 0.743233 −1.87805 × 10−9

0.50 0.647546 −1.43508 × 10−8 0.675909 −1.06294 × 10−8 0.694216 −8.74871 × 10−8

0.25 0.518629 −9.47861 × 10−8 0.588491 −4.9532 × 10−8 0.627896 −3.34487 × 10−8

Table 2 Positions of L4 when T = 0.01, c = 299 792 458, µ = 9.537×10−4

Mb = 0.0 Mb = 0.2 Mb = 0.4

A2 q1 x y x y x y

0.0 1.0 0.499046 0.866025 0.499046 0.807757 0.499046 0.771992
0.75 0.411787 0.809399 0.417404 0.772863 0.420608 0.751208
0.50 0.314026 0.728525 0.313985 0.728636 0.343182 0.715491
0.25 0.19747 0.597895 0.313863 0.608757 0.34489 0.622967

0.50 1.0 0.343352 0.755027 0.344046 0.747635 0.344532 0.742483
0.75 0.283264 0.698324 0.281106 0.707572 0.279649 0.713786
0.50 0.215945 0.621895 0.200455 0.65786 0.190387 0.680385
0.25 0.135683 0.504585 0.0642497 0.590149 0.0210436 0.633638
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Fig. 1 Positions of equilibrium points when µ = 9.537 × 10−4, T = 0.01, c = 299 792 458, Mb =
0.0−0.8, where the colors indicate different values of q1 as red: 1.0, blue-violet: 0.75, cyan: 0.50, lime:
0.25, dark-orange: 0.0, in frame (I) A2 = 0 and (II) A2 = 0.5.

3.3 Positions of L3

For x ∈ (−∞−µ), all the possible values of x and y for L3 are presented in Table 4 and the correspond-
ing plots are given in Figure 1 and frame (c) of Figure 2 for various values of A 2, Mb and q1. It is found
that for all values of parameters, the abscissa x has constant value –0.500954; so it is less affected by
the parameters. Except for the classical case (where y = 0), y is positive. The ordinate y is a decreasing
function of mass of the belt Mb. When the radiation pressure (the P-R effect) increases i.e. q1 decreases
and the oblateness coefficient A2 increases, the ordinate y increases.
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Fig. 2 Positions of equilibrium points when µ = 9.537 × 10−4, T = 0.01, c = 299 792 458, Mb =
0.0 − 0.8, A2 = 0, where the colors indicate different values of q1 as red: 1.0, blue-violet: 0.75, cyan:
0.50, lime: 0.25, first frame (a) for the positions of L1, frame (b) for the positions of L2, frame (c) for
the positions of L3, and frame (d) for the positions of L4.

From the above results, it is observed that for the Sun-Jupiter mass distribution (µ = 9.537× 10−4)
and for the radiation pressure coefficient q1 = 1, the positions of equilibrium points Li(i = 1, 2, 3) lie
on the x–axis line joining the primaries, for any values of A 2, Mb in [0,1). For q1 �= 1, the positions
of L1 and L2 are displaced below the x–axis, but the position of L3 is displaced up the line joining
the primaries, and L3 is less affected by A2 and Mb. In the classical case, the coordinates of L4(5) are

x = 0.499046 = 1
2 − µ, y = ±0.866025 = ±

√
3

2 . For q1 �= 1, the distances from the Sun to L4(5)

decrease and from Jupiter they increase [i.e. when the P-R effect is very high, the test particle ultimately
spirals into the radiating body (the Sun)]. All the above results are similar to the results of Szebehely
(1967), Ragos & Zafiropoulos (1995) and Kushvah (2008a,b).

4 LINEAR STABILITY

In this section, the P-R effect on the linear stability conditions is examined. The notion of Lyapunov’s
stability occurs in the study of dynamical systems. In simple terms, if all solutions of the dynamical
system that start out near an equilibrium point L i (i = 1, 2, 3, 4, 5) stay near Li forever, then Li is
called Lyapunov stable. Let the position of any equilibrium point be (x ∗, y∗) taking x = x∗ + α,
y = y∗ + β, where α = ξeλt, β = ηeλt are small displacements, and ξ, η, λ are parameters. Then, the
equations of perturbed motion corresponding to the system of Equations (4) and (5) are as follows:

α̈ − 2nβ̇ = αΩ∗
xx + βΩ∗

xy + α̇Ω∗
xẋ + β̇Ω∗

xẏ , (15)

β̈ + 2nα̇ = αΩ∗
yx + βΩ∗

yy + α̇Ω∗
yẋ + β̇Ω∗

yẏ , (16)
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where superscript ‘∗ ’corresponds to the equilibrium points.

(λ2 − λΩ∗
xẋ − Ω∗

xx)ξ + [−(2n + Ω∗
xẏ)λ − Ω∗

xy]η = 0, (17)

[(2n − Ω∗
yẋ)λ − Ω∗

yx]ξ + (λ2 − λΩ∗
yẏ − Ω∗

yy)η = 0 . (18)

Equations (17) and (18) have singular solutions if,∣∣∣∣ λ2 − λΩ∗
xẋ − Ω∗

xx −(2n + Ω∗
xẏ)λ − Ω∗

xy

(2n − Ω∗
yẋ)λ − Ω∗

yx λ2 − λΩ∗
yẏ − Ω∗

yy

∣∣∣∣ = 0 .

From the above, we obtained the characteristic equation:

λ4 + aλ3 + bλ2 + cλ + d = 0 , (19)

where

a = 3
W1

r2
1∗

, (20)

b = 2n2 − f∗ − 3µA2

r5
2∗

+
3MbT

2

(r2∗ + T 2)5/2
+

2W 2
1

r4
1∗

, (21)

c = −a(1 + e), (22)

e =
µ

r5
2∗

A2 +
µ

r2
1∗r

5
2∗

(
1 +

5A2

2r2
2∗

)
y2
∗ +

3Mb

(
µ2y2

∗
r2∗

− T 2
)

(r2∗ + T 2)5/2
, (23)

Table 3 Positions of L2 when T = 0.01, c = 299 792 458, µ = 9.537×10−4

Mb = 0.0 Mb = 0.2 Mb = 0.4

A2 q1 x y x y x y

0.0 1.0 1.06883 0.0 1.04908 0.0 1.03964 0.0
0.75 1.04975 −1.13857 × 10−10 1.03965 −6.91819 × 10−11 1.03386 −4.94368 × 10−11

0.50 1.03965 −1.16998 × 10−10 1.03372 −8.61453 × 10−11 1.02983 −6.83734 × 10−11

0.25 1.03357 −1.07833 × 10−10 1.02966 −8.89477 × 10−11 1.02686 −7.56684 × 10−11

0.50 1.0 1.15428 0.0 1.14656 0.0 1.1405 0.0
0.75 1.14932 −1.14631 × 10−10 1.1426 −1.01356 × 10−10 1.13722 −9.13642 × 10−11

0.50 1.14495 −1.98151 × 10−10 1.13905 −1.79064 × 10−10 1.13423 −1.63983 × 10−10

0.25 1.14107 −2.60133 × 10−10 1.13584 −2.39457 × 10−10 1.1315 −2.22313 × 10−10

Table 4 Positions of L3 , when T = 0.01, c = 299 792 458, µ = 9.537 × 10−4

x = 0.500954

A2 q1 y : Mb = 0.0 y : Mb = 0.2 y : Mb = 0.4 y : Mb = 0.6

0.0 1.0 0.0 0.0 0.0 0.0
0.75 1.06633 × 10−10 1.02729 × 10−10 19.81981 × 10−11 9.38157 × 10−11

0.50 3.7017 × 10−10 3.13147 × 10−10 2.76314 × 10−10 2.50019 × 10−10

0.25 1.75207 × 10−9 9.40281 × 10−10 6.83146 × 10−10 5.54448 × 10−10

0.50 1.0 0.0 0.0 0.0 0.0
0.75 1.75825 × 10−10 1.51585 × 10−10 1.35055 × 10−10 1.22896 × 10−10

0.50 6.87953 × 10−10 4.94413 × 10−10 3.96932 × 10−10 3.37618 × 10−10

0.25 8.1313 × 10−9 1.7223 × 10−9 1.06253 × 10−9 7.86714 × 10−10
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Table 5 Zero Velocity Curves when T = 0.01, µ = 0.025

Frame I (q1 = 1 ) II (q1 = 0.5) III (q1 = 0.0)
closed oval around L4(5) oval around L4(5) , L4(5) ,
linearly stable stability stability

A (A2 = 0.0, Mb = 0 ) yes, the classical case no oval, unstable affected by radiation pressure
B (A2 = 0.5, Mb = 0) yes, affected by the oblateness no oval, unstable unstable
C (A2 = 0.0, Mb = 0.2 ) yes, affected by the belt no oval, unstable unstable
D (A2 = 0.5, Mb = 0.2) affected by the belt, the oblateness no oval, unstable unstable

Table 6 Roots of the Characteristic Equation when A2 = 0.0, T =
0.01, rc = 0.9999, c = 299 792 458, µ = 9.537 × 10−4

Mb q1 ω1 ω2

0.0 1.0 0.0 ± 0.137114i 0.0 ± 0.990555i
0.75 −1.52439 × 10−9 ± 0.141116i 1.05214 × 10−11 ± 0.989993i
0.50 −3.99678 × 10−9 ± 0.145481i 2.93194 × 10−11 ± 0.989362i
0.25 −9.521 × 10−9 ± 0.150542i 7.47926 × 10−11 ± 0.988606i
0.0 Indeterminate Indeterminate

0.2 1.0 0.0 ± 0.646245i 0.0 ± 1.05546i
0.75 1.29446 −4.01728 × 10−10 ± 1.73126i
0.50 1.60178 −1.13096 × 10−9 ± 1.82678i
0.25 2.04762 −2.62876 × 10−9 ± 1.59591i
0.0 Indeterminate Indeterminate

0.4 1.0 1.80764 ∓ 2.09382i −1.80764 ± 2.09382i
0.75 5.7348 −5.59117 × 10−10 ± 5.90277i
0.50 2.13073 −1.17407 × 10−9 ± 1.17407i
0.25 2.17613 −2.35604 × 10−9 ± 1.70915i
0.0 Indeterminate Indeterminate

0.6 1.0 1.00792 ∓ 1.58918i 1.00792 ± 1.58918i
0.75 1.05708 ∓ 1.57568i 1.05708 ± 1.57568i
0.50 6.67049 ∓ 6.74474i 6.67049 ± 6.74474i
0.25 2.22229 −2.15946 × 10−9 ± 1.97335i
0.0 Indeterminate Indeterminate

d = (n2 − f∗)
[
n2 + 2f∗ − 3µA2

r5
2∗

+
3MbT

2

(r2∗ + T 2)5/2

]

+9µ(1 − µ)y2
∗

{
q1

r5
1∗r

5
2∗

+
3Mb

(r2∗ + T 2)5/2

⎡
⎣µq1

r5
1∗

+
(1 − µ)

(
1 + 5A2

2r2
2∗

)
r5
2∗

⎤
⎦
}

−6µnW1y∗
r4
1∗

{
(x∗ + µ)(x∗ + µ − 1) + y2

∗
r5
2∗

+
3Mb[x∗(x∗ + µ) + y2

∗]

(r2∗ + T 2)5/2

}
, (24)

f∗ =
(1 − µ)q1

r3
1∗

+
µ

r3
2∗

(
1 +

3
2

A2

r2
2∗

)
+

3Mb

(r2∗ + T 2)5/2
. (25)

Taking y → 0, W1
y → 0 because y 
 W1 and x 
 W1, from Equation (9), we have r1 ≈ [

q1
n2

]1/3
.

At equilibrium points Li (i = 1, 2, 3), f∗ > 1. Thus, the characteristic Equation (19) has roots with
a positive real part, which shows that these points are unstable in a linear sense. The same results are
shown in the zero velocity curves of Figure 3, where it is found that there is no closed curve (oval)
around L1, L2 and L3.
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Fig. 3 Zero velocity curves for µ = 0.025, T = 0.01, rc = 0.9999, frames (A-I to III) q1 = 1, q1 =
0.5, q1 = 0.0, A2 = 0.0, Mb = 0, (B-I to III) q1 = 1, q1 = 0.5, q1 = 0.0, A2 = 0.5, Mb = 0, (C-I to
III) q1 = 1, q1 = 0.5, q1 = 0.0, A2 = 0.0, Mb = 0.2, (D-I to III) q1 = 1, q1 = 0.5, q1 = 0.0, A2 =
0.5, Mb = 0.2.

Now, using Ferrari’s theorem, the roots of characteristic Equation (19) are given as:

λ1,2 = −a
(
1 +

√
1 + 8α1

)
4

±
√

a2
(
1 +

√
1 + 8α1

)
16

− B1, (26)

λ3,4 = −a
(
1 −√

1 + 8α1

)
4

±
√

a2
(
1 −√

1 + 8α1

)
16

− B2, (27)
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Fig. 4 xy-complex plane shows the values of ω1 in frame (a) when A2 = 0, in frame (c) when A2 =
0.02 and the values of ω2 in frame (b) when A2 = 0, in frame (d) when A2 = 0.02 curve labeled I:
Mb = 0.0, II: Mb = 0.2, III: Mb = 0.4, IV: Mb = 0.6, for µ = 9.537 × 10−4, T = 0.01, rc =
0.9999, c = 299 792 458, q1 = 1.0 to 0.0.

where

α1 =
(1 + e)(1 + e2 − b) + d

2(b2 − 4d)
> 0,

B1 =
(

b

2
+ α1a

2

) (
1 +

√
1 + 8α1

) − 1 + e√
1 + 8α1

,

B2 =
(

b

2
+ α1a

2

) (
1 −√

1 + 8α1

)
+

1 + e√
1 + 8α1

.

From the above Equations (26) and (27), the roots are λ 1,2 = ±ω1 are λ3,4 = ±ω2; where ωi (i =
1, 2) are complex numbers (long/short -periodic frequencies), presented in Figure 4 in the xy-complex
plane corresponding to Tables 6 and 7, and the corresponding curve plots of ω 1 are shown in frame (a) for
A2 = 0 and in frame (c) for A2 = 0.02. The corresponding curve plots of ω2 are shown in frame (b) for
A2 = 0 and in frame (d) for A2 = 0.02. The curves, which are labeled I, II, III and IV, indicate different
values of Mb as I: 0.0, II: 0.2, III: 0.4, IV: 0.6, for µ = 9.537 × 10−4, T = 0.01, c = 299 792 458,
q1 = 1.0 − 0.0. It is found that for A2 = 0.0, 0.02, q1 = 1, 0.0 ≤ Mb < 0.4, ωi (i = 1, 2) are purely
imaginary, hence the triangular equilibrium points are conditionally stable in the Lyapunov sense. For
A2 = 0.0, 0.02, q1 �= 1 and Mb = 0.4, 0.6, ωi (i = 1, 2) are complex numbers having at least one
positive real part, so L4(5) points are unstable in the linear sense. They are also unstable for Mb ≥ 0.4
even if q1 has any value in [0,1]. The stability of equilibrium points is less affected by the oblateness
coefficient A2. The same results are presented by the zero velocity curves C = 2Ω(x, y) in various
frames of Figure 3 for the entire range of parameters q 1, A2, and Mb (please see Table 5). It is found
that for q1 = 1, there are closed curves around L4(5) and the radiation pressure may increase the size
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Table 7 Roots of the Characteristic Equation when A2 = 0.02, T =
0.01, rc = 0.9999, c = 299 792 458, µ = 9.537 × 10−4

Mb q1 ω1 ω2

0.0 1.0 0.0 ± 0.0959401i 0.0 ± 1.01389i
0.75 −1.52674 × 10−9 ± 0.142645i −8.6941 × 10−12 ± 1.00904i
0.50 −4.01198 × 10−9 ± 0.181649i −8.08359 × 10−12 ± 1.00349i
0.25 −9.58469 × 10−9 ± 0.219817i 2.35833 × 10−11 ± 0.996711i
0.0 Indeterminate Indeterminate

0.2 1.0 0.0 ± 0.355149i 0.0 ± 1.19752i
0.75 1.36357 −4.23604 × 10−10 ± 1.79011i
0.50 1.63501 −1.16304 × 10−9 ± 1.85862i
0.25 2.06369 −2.67091 × 10−9 ± 1.60078i
0.0 Indeterminate Indeterminate

0.4 1.0 1.69572 ∓ 2.00141i 1.69572 ± 2.00141i
0.75 3.7197 ∓ 3.85022i 3.7197 ± 3.85022i
0.50 2.17618 −1.19613 × 10−9 ± 2.44471i
0.25 2.19103 −2.38507 × 10−9 ± 1.70955i
0.0 Indeterminate Indeterminate

0.6 1.0 0.997688 ∓ 1.5873i 0.997688 ± 1.5873i
0.75 1.03688 ∓ 1.56591i 1.03688 ± 1.56591i
0.50 6.58926 ∓ 6.66469i 6.58926 ± 6.66469i
0.25 2.2346 −2.18146 × 10−9 ± 1.9735i
0.0 Indeterminate Indeterminate

of the ovals, which implies that the instability range increases, i.e the region for oscillation of the points
becomes very large. For very high radiation pressure, ovals disappear [please see (III) frames of Fig. 3]
and the points can move freely in space, so they ultimately spiral into the Sun. The above results are
similar to the results in Chernikov (1970) and Kushvah (2008b).

5 CONCLUSIONS

It has been found that the collinear points L1, L2 and L3 no longer lie along the line joining the pri-
maries and they are linearly unstable even in the classical case. The position of L 3 is less affected by
the oblateness coefficient A2. Because of the P-R effect, the L4(5) no longer remains in the triangular
position with respect to the primaries. The L4(5) value is stable in a linear sense for the mass reduction
factor q1 = 1, mass of the belt Mb in [0, 0.4) and any value of A2 in [0,1). These points are linearly
unstable due to the P-R effect (q1 �= 1) for all values of Mb, and A2 in [0,1). Furthermore, it is observed
that L4(5) are unstable in a linear sense for Mb ≥ 0.4 even if q1 could assume any value in [0,1]. Thus,
we conclude that the position and linear stability of equilibrium points are different from the classical
restricted three body problem due to the P-R effect, influence from the belt and the oblateness effect of
the second primary.
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