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Abstract We discuss the performance characteristics of using the modification of the tree
code suggested by Barnes in the context of the TreePM code. The optimization involves
identifying groups of particles and using only one tree walk to compute the force for all
the particles in the group. This modification has been in use in our implementation of the
TreePM code for some time, and has also been used by others in codes that make use
of tree structures. We present the first detailed study of the performance characteristics
of this optimization. We show that the modification, if tuned properly, can speed up the
TreePM code by a significant amount. We also combine this modification with the use
of individual time steps and indicate how to combine these two schemes in an optimal
fashion. We find that the combination is at least a factor of two faster than the modified
TreePM without individual time steps. Overall performance is often faster by a larger
factor because the scheme for the groups optimizes the use of cache for large simulations.
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1 INTRODUCTION

Large scale structures traced by galaxies are believed to have been formed by amplification of small
perturbations (Peebles 1980; Peacock 1999; Padmanabhan 2002; Bernardeau et al. 2002). Galaxies are
highly over-dense systems; matter density ρ in galaxies is thousands of times larger than the average
density ρ̄ in the universe. The typical density contrast (δ ≡ ρ/ρ̄ − 1) in matter at these scales in the
early universe was much smaller than unity. Thus, the problem of galaxy formation and the large scale
distribution of galaxies requires an understanding of the evolution of density perturbations from small
initial values to the large values we encounter today.

Initial density perturbations were present at all scales that have been observed (Spergel et al. 2007;
Percival et al. 2007). The equations that describe the evolution of density perturbations in an expand-
ing universe have been known for several decades (Peebles 1974) and these are easy to solve when
the amplitude of perturbations is small. Once density contrast at relevant scales becomes comparable
to unity, perturbations become non-linear and coupling with perturbations at other scales cannot be
ignored. The equation for evolution of density perturbations cannot be solved for generic initial con-
ditions in this regime. N-body simulations (e.g., see Efstathiou et al. 1985; Bertschinger 1998; Bagla
& Padmanabhan 1997; Bagla 2005) are often used to study the evolution in this regime. Alternative
approaches can be used if one requires only a limited amount of information and in such a case either
using quasi-linear approximation schemes (Bernardeau et al. 2002; Zel’Dovich 1970; Gurbatov, Saichev
& Shandarin 1989; Matarrese et al. 1992; Brainerd, Scherrer & Villumsen 1993; Bagla & Padmanabhan
1994; Sahni & Coles 1995; Hui & Bertschinger 1996) or scaling relations (Davis & Peebles 1977;
Hamilton et al. 1991; Jain, Mo & White 1995; Kanekar 2000; Ma 1998; Nityananda & Padmanabhan
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1994; Padmanabhan et al. 1996; Peacock & Dodds 1994; Padmanabhan 1996; Peacock & Dodds 1996;
Smith et al. 2003) suffice. However, even the approximation schemes and scaling relations must be
compared with simulations before these can be used with confidence.

The last three decades have seen a rapid development of techniques and computing power for
cosmological simulations and the results of these simulations have provided valuable insight into the
study of structure formation. State of the art simulations used less than 10 5 particles two decades ago
(Efstathiou et al. 1988) and if the improvement had been due only to computing power then the largest
simulation possible today should have been around 10 9 particles, whereas the largest simulations done to
date have used more than 1010 particles (Springel et al. 2005). Evidently, the development of new meth-
ods and optimizations has also played a significant role in the evolution of simulation studies (Efstathiou
et al. 1985; Barnes & Hut 1986; Greengard & Rokhlin 1987; Bouchet & Hernquist 1988; Jernigan &
Porter 1989; Hernquist 1990; Makino 1990, 1991; Hernquist, Bouchet & Suto 1991; Couchman 1991;
Ebisuzaki et al. 1993; Theuns 1994; Brieu, Summers & Ostriker 1995; Suisalu & Saar 1995; Xu 1995;
Dubinski 1996; Kravtsov, Klypin & Khokhlov 1997; Macfarland et al. 1998; Bode, Ostriker & Xu 2000;
Brieu & Evrard 2000; Dehnen 2000; Knebe, Green & Binney 2001; Springel, Yoshida & White 2001;
Kawai & Makino 2001; Makino 2002; Dehnen 2002; Bagla 2002; Bagla & Ray 2003; Makino et al.
2003; Bode & Ostriker 2003; Ray & Bagla 2004; Dubinski et al. 2004; Makino 2004; Springel 2005;
Merz, Pen & Trac 2005; Yoshikawa & Fukushige 2005; Wadsley, Stadel & Quinn 2004; Thacker &
Couchman 2006). Along the way, code developers have also successfully met the challenge posed by
the emergence of distributed parallel programming.

In this paper, we discuss the performance characteristics of an optimization for tree codes suggested
by Barnes (1990). We do this in the context of the TreePM method (Bagla 2002; Bagla & Ray 2003)
where the tree method is used for computing the short-range force. The TreePM method brings an
additional scale into the problem, i.e., the scale up to which the short-range force is computed and this
leads to non-trivial variations of error in force.

The paper is organized as follows: we introduce the TreePM method in Section 2, and discuss the
optimization scheme in Section 3. Performance of the optimization scheme is discussed in Section 4,
and we discuss combining this with individual time steps for particles in Section 5. We end with a
discussion in Section 6.

2 THE TREEPM ALGORITHM

The TreePM algorithm (Bagla 2002; Bagla & Ray 2003) is a hybrid N-body method which combines
the BH-Tree method (Barnes & Hut 1986) with the PM method (Bagla & Padmanabhan 1997; Merz,
Pen & Trac 2005; Klypin & Shandarin 1983; Miller 1983; Bouchet & Kandrup 1985; Bouchet, Adam
& Pellat 1985; Hockney & Eastwood 1988). The TreePM method explicitly breaks the potential into
a short-range and a long-range component at a scale r s. The PM method is used to calculate the long-
range force and the short-range force is computed using the BH-Tree method. Use of the BH Tree for
short-range force calculations enhances the force resolution as compared to the PM method.

The gravitational force is divided into a long-range and a short-range part using partitioning of unity
in the Poisson equation.
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Here φsr
k and φlr

k are the short-range and long-range potentials in Fourier space. ρ is the density, G is
the gravitational coupling constant and rs is the scale at which the splitting of the potential is done. The
long-range force is solved in Fourier space with the PM method and the short-range force is solved in
real space with the Tree method. The short-range force in real space is
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where ‘erfc’ is the complementary error function.
The short-range force is below 1% of the total force at r ≥ 5 rs. The short-range force is therefore

computed within a sphere of radius rcut � 5 rs. The short range force is computed using the BH-Tree
method. The tree structure is built out of cells and particles. Cells may contain smaller cells (subcells)
within them. Subcells can have even smaller cells within them, or they can contain a particle. In three
dimensions, each cubic cell is divided into eight cubic subcells. Cells, as structures, have attributes like
total mass, location of the center of mass and pointers to subcells. Particles, on the other hand, have the
usual attributes: position, velocity and mass.

Force on a particle is computed by adding the contributions of other particles or of cells. A cell that
is sufficiently far away can be considered as a single entity and we can add the force due to the total
mass contained in the cell from its center of mass. If the cell is not sufficiently far away then we must
consider its constituents, subcells and particles. Whether a cell can be accepted as a single entity for
force calculation is decided by the cell acceptance criterion (CAC). We compute the ratio of the size of
the cell d and the distance r from the particle in question to its center of mass and compare it with a
threshold value

θ =
d

r
≤ θc. (4)

The error in force increases with θc. A poor choice of θc can lead to significant errors (Salmon &
Warren 1994). Many different approaches have been tried for the CAC in order to minimize error as
well as CPU time usage (Salmon & Warren 1994; Springel, Yoshida & White 2001). The tree code
gains over direct summation as the number of contributions to the force becomes much smaller than the
number of particles.

The TreePM method is therefore characterized by three parameters, r s, rcut and θc. For a discussion
of the optimum choice of these parameters the reader is referred to Bagla & Ray (2003).

3 THE SCHEME OF GROUPS

We first describe an optimization scheme due to Barnes (1990), given in the paper with a curious title
A modified tree code. Don’t laugh, it runs. This scheme is easily portable to any N-body algorithm that
uses tree data structures to compute forces. The origin of the optimization is in the realization that the
tree walk used for computing forces is computationally the most expensive component of a tree code.
The idea is to have a common interaction list for a group of particles that is sufficiently small. Given that
we are working with a tree code, it is natural to identify a cell in the tree structure as a group. One can
then add the contribution of particles within the group using direct pair summation. The cell acceptance
criterion (CAC) for the tree walk needs to be modified in order to take the finite size of the group into
account. In our implementation of the TreePM method, we modified the standard CAC in the following
manner:

d ≤ (r − rm) θc, (5)

where rm is the distance between the center of mass of the group and the group member that is farthest
from the center of mass. This is calculated once before the force calculation and does not add much in
terms of overhead.

The modified CAC can be thought of as the standard CAC with a distance dependent θ c, with the
value of θc decreasing at small r. As we require a larger number of operations for smaller θ c, each tree
walk with the modified CAC is expected to require more CPU time than a tree walk with the standard
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CAC. However, as we do a tree walk for a group of particles in one go, CPU time is saved as the time
taken for a tree walk per particle comes down.

There is an overhead as there is a pair-wise force calculation within the group. The cost of this
overhead increases as the square of the number of particles in the group. In order to keep the overhead
small, one would like the group to be sufficiently small compared to the size of the N-body simulation
and hence a maximum size cmax and an upper bound on the number of particles in the group n pmax

are used. An upper limit on the size of the group is pertinent because of the indirect effect through the
change in the CAC. The effect of the additional parameter cmax with the modified CAC will be seen
when we discuss errors in Section 4. Our implementation of the modified method by using a different
definition of groups, with the additional parameter cmax and the modified CAC (Eq. (5)) ensures that the
short-range force is extremely accurate. This is different from previous implementations (Barnes 1990;
Makino 1991; Yoshikawa & Fukushige 2005; Wadsley, Stadel & Quinn 2004) where the group scheme
was parameterized by just one parameter npmax and the standard CAC (Eq. (4)) used for tree traversal.
We note in passing that the modified CAC is crucial in order to limit errors. Indeed, we find that working
with the standard CAC leads to errors in short-range force that are orders of magnitude larger.

3.1 Estimating Speedup

We model the modified Tree/TreePM method with the aim of estimating the speedup that can be
achieved. If N is the total number of particles, np the typical number of particles in a group and ng

the number of groups then clearly we expect ng ×np = N . The total time required for force calculation
is a sum of the time taken up by the tree walk and the time taken up by pairwise calculation within the
group. Actual calculation of the force, once the interaction list has been prepared, takes very little time
and can be ignored in this estimate, as can the time taken to construct the tree structure. The time taken
is:

Tg = αng ln N + βngn
2
p = α

N

np
ln N + βNnp. (6)

Here we have assumed that the time taken per tree walk scales as O(ln N) even with the modified CAC1.
The time taken is smallest when

np =
(

α ln N

β

)1/2

; Tgmin = 2βNnp = 2α
N

np
ln N. (7)

Thus, the optimum number of particles in the group scales weakly with the total number of particles. In
the optimal situation, we expect the tree walk and the pairwise components to take the same amount of
CPU time.

For comparison, the time taken for force calculation in the standard TreePM is:

T = αN ln N, (8)

and we make the simplifying assumption that α is the same for the two cases. The expected speedup is
then given by:

T

Tgmin

=
1
2

(
α ln N

β

)1/2

. (9)

The speedup for the optimum configuration scales in the same manner as the typical number of particles
per group.

A more detailed analysis of this type can be found in Makino (1991).

1 This is an approximation as we expect the tree walk to depend on cmax, npmax and θc as well. The finite size of groups
should lead to deviations from the O(ln N) variation and the deviation should scale as the ratio of the volume of the group and
the volume of the simulation box. As this ratio becomes smaller for large simulation boxes, we feel that the approximation we
have made is justified.
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The calculation we have presented above is approximate and ignores several factors; some of these
have already been highlighted above. There are other subtleties like the role played by the finite range
rcut over which the short-range force is calculated. The size of a group (c max) cannot be varied con-
tinuously, and hence np is also restricted to a range of values. Further, the number of operations does
not translate directly into CPU time as some calculations make optimal use of the capabilities of a CPU
while others do not. For example, the pairwise calculation is likely to fare better on processors with
a deep pipeline for execution whereas a tree walk cannot exploit this feature. The finite bandwidth of
the CPU-memory connection also has an impact on the scaling with N for large N . In the following
section, we discuss the implementation of the modified TreePM method and the timing of the code with
different values of parameters.

4 A MODIFIED TREEPM ALGORITHM WITH THE SCHEME OF GROUPS

Tests of the TreePM method have shown that 95%–98% of the time goes into the short-range force
calculation. Keeping this in mind, the scheme of groups was introduced to optimize the short-range
force calculation in terms of speed. A welcome feature is more accurate force computation. Since the
optimum set of TreePM parameters has been discussed in Bagla & Ray (2003), we now look for the
optimum choice of the additional parameters, cmax and npmax, which describe the modified TreePM
algorithm. The analysis that follows is divided into two parts. First we look at the optimum values of
cmax and npmax which minimize the time for short-range force computation. Second, we study errors
in total and short-range forces with this new scheme.

4.1 Optimum Parameters of the Modified TreePM Algorithm

We choose rs = 1, rcut = 5.2 rs and θc = 0.5 for the discussion that follows. With this choice, the
error in force for 99% of the particles is less than a few percent (Bagla & Ray 2003). We present an
analysis of the performance of the modified TreePM for two different particle distributions taken from
an N−body simulation, with N = N 3

box = 2003.

– An unclustered distribution that corresponds to the initial conditions of an N−body simulation.
– A clustered distribution taken again from the same N−body simulation. The scale of non-linearity

for the clustered distribution is eight grid lengths.

We have verified that the nature of the results does not change significantly for simulations with the
number of particles ranging from 323 to 2563.

In Figure 1, we show the time taken for computing the short-range force (solid line) and deter-
mine the values of (cmax, npmax) for which this timing is a minimum. Two leading contributions to the
calculation of short-range force are shown separately:

– Intra-group particle-particle contribution (dashed line).
– Time taken for the tree-walk and the related force calculation (dot-dashed line).

Given that a group is a cell with maximum width

cmax =
Nbox

2m
, (m is an integer), (10)

cmax can therefore only take discrete values. We choose to restrict up to cmax ∼ 2 rcut. As for larger
cells, the dominant contribution to force on a given particle arises from the intra-group particle-particle
interaction and the time taken for this is a sensitive function of the amplitude of clustering.

The time taken for computing the short-range force in both, unclustered (left panel) as well as
clustered (right panel), distributions is qualitatively described by our model (see Eq. (6)). The pairwise
force increases linearly with npmax, where npmax is the maximum number of particles in a group and
scales as np which is the average number of particles in a group. The time taken for the tree-walk
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Fig. 1 Time taken for computation of the short term force in the modified TreePM method for an
unclustered (left panel) and a clustered (right panel) distribution. Solid lines represent the time taken
by a complete short-range force calculation. Dashed lines are the contribution to the force due to pairs
within a group, the intra-group contribution. Dot-dashed lines are the contributions to force due to the
tree walk. Purple, black and blue lines are for cmax = 3.125, 6.25 and 12.5, respectively.

decreases as n−0.65
pmax , reaches a minimum and then increases with npmax (blue line) for the largest cmax

used here. For other values of cmax, we see the timing leveling off near the minimum. The scaling as
n−0.65

pmax is different from 1/np which we used in the analytical model and the reason for this is likely to be
in the approximations we used. We find that the scaling approaches 1/n pmax as we consider simulations
with a larger number of particles. One crucial reason for the different scaling is the modified CAC we
use here. This effectively leads to a smaller θc for cells closer to the group and the number of such cells
increases with cmax.

In both cases, the total time is still dominated by the treewalk. The plateaus in the plots often
indicate that the number of particles in a group of maximum size cmax has been saturated. At initial
times where the fluctuations are small, there is also a lower bound on the number of particles contained
in a group. In the clustered distribution there is no such lower bound, but an upper bound, larger than
the corresponding upper bound in the case of the unclustered distribution, exists and is dictated by the
amplitude of clustering in the distribution of particles.

From Figure 1, we see that the optimum values of (cmax, npmax) = (12.5, 1024) & (6.25, ≥ 1024)
given by the minima of the solid blue line and the plateau of the solid black line respectively. In the
latter case, the time taken does not change for npmax ≥ 1024 and we consider this to be a useful feature
that makes cmax = 6.25 a better choice as fine tuning of npmax is not required. For the optimum (cmax,
npmax), one can see that force computation takes the same time for the clustered and the unclustered
distributions. Table 1 lists optimum values for (cmax, npmax) for N-body simulations with different
numbers of particles. These numbers indicate that a good choice for c max is one which is closest to
rcut, i.e. cmax ∼ rcut. The parameter npmax can be taken to be 103 ≤ npmax as we find little variation
beyond this point.

One can get an estimate of the overheads for the group scheme by looking at the limit of n pmax → 1.
Here we compare the performance of the TreePM with the modified code by plotting the time taken by
the former as a large dot on the same panel where the time taken for the modified code is shown in the
form of curves. The difference between these timings is around 0.1%.
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Table 1 Optimum values of (cmax, npmax) for simu-
lations of various sizes which have the same TreePM
parameters: rs = 1, rcut = 5.2 rs, θc = 0.5.

Nbox = N1/3 copt
max nopt

pmax

64 4.0 ≥1024
128 4.0 ≥1024
160 5.0 ≥1024
200 6.25 ≥1000

Fig. 2 Time taken for short-range force calculation per particle per step for N = 323 to N = 2563 for
the TreePM (thick line) and the Modified TreePM (thin line). The solid line shows the performance of the
codes on a single core of an Intel 5160 (3.0 GHz) processor and the dashed line shows the performance
on a single core of the AMD Barcelona (2.1 GHz) processor.

The speedup for the optimal configuration of the modified TreePM, as compared with the base
TreePM code, is ∼ 83. This is a huge gain and has to do with better utilization of the CPU cache. The
speedup is less impressive for smaller simulations, and is larger for bigger simulations. This is shown
in Figure 2 where we plot the time taken for force calculation per particle per step as a function of
the total number of particles in the simulation. This is shown for the TreePM as well as the modified
TreePM codes. Performance on two different types of processors is shown here to demonstrate that the
optimization works equally well on both. One can see that the TreePM code becomes (CPU-memory)
bandwidth limited for simulations with more than 643 particles and the time taken increases more rapidly
than O(ln N). This does not happen in case of the modified TreePM where the scaling is O(ln N)
throughout. It is this difference that leads to impressive speedup for large simulations. For simulations
with up to 643 particles, we get a speedup of a factor of four.

4.2 Errors in the Modified TreePM Force

We now study errors in force for the modified TreePM force. Errors are calculated with respect to a
reference force computed with very conservative values of TreePM parameters: θ c = 0.01, rs = 4.0,
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rcut = 5.2 rs. With these values, the reference force is accurate to 0.1% (Bagla & Ray 2003).

ε =
|f ref − f |
|f ref | , (11)

where ε, f ref , and f are the relative error, reference force and the typical force in a simulation, respec-
tively. We calculate errors for two distributions of particles:

– A uniform (unclustered) distribution.
– A clustered distribution taken from an N−body simulation.

Both distributions have N 3
box = N = 1283 particles. The exercise we follow is similar to Bagla & Ray

(2003) but now we wish to highlight the effect of groups on errors in force.
Figure 3 shows the distribution of errors for different values of θ c. The results are shown for both

kinds of distributions being studied here: the unclustered distribution (left panels) and the clustered
distribution (right panels). The top row is for cmax = 2.0 and the lower row is for cmax = 4.0. We used
rs = 1.0 and rcut = 5.2 rs for this figure. In the case of the unclustered distribution, the error decreases
with θc but saturates at θc = 0.3 and does not decrease as θc is decreased further. The situation is
different for the clustered distribution where the errors are not sensitive to θ c. This suggests that the
errors are dominated by the long-range force. The unclustered distribution has larger errors than the
clustered distribution. This is because the net force on each particle in the unclustered distribution is
small, whereas the force due to a cell with many particles is large and many such large contributions
have to cancel out to give a small net force. Numerical errors in adding and subtracting these large
numbers seem to systematically give a large net error. Larger cells contribute for larger θ c, hence the
variation with θc is more dramatic in the unclustered case. This effect is apparent in the discussion of
the short-range force. With θc = 0.3, 1% of particles have errors in total force greater than 4% in the
unclustered case and 1.6% in the clustered case.

The effect of the modified CAC (Eq. (5)) is seen by comparing the plots of Figure 3 for the unclus-
tered distribution. The modified CAC is more stringent for larger values of cmax and this is clearly seen
in the error for θc = 0.5. There is a lack of variation in errors with θc for θc < 0.5 indicating that at
this stage, the dominant contribution to errors is from the long-range force calculation. The short-range
force is more accurate with a larger cmax due to two reasons:

– The modified CAC has an r dependent opening angle threshold and requires a smaller θ c at small
distances. This is likely to reduce errors.

– The number of particles in a group is larger for larger cmax. As the contribution of force from these
particles is computed by direct summation over pairs, the errors are negligible.

One may raise the concern that the errors in the present approach are likely to depend on the location of
a particle within the group. We have checked for anisotropies in error in the force calculations in groups
that may result and we do not find any noteworthy anisotropic component.

Next, in Figure 4, we look at the errors in short-range force for the same distributions (unclustered
and clustered) of particles for various values of θ c. The reference short-range force was computed with
θc = 0.01, rs = 1.0, rcut = 5.2 rs and cmax = 4.0. We only varied θc and continued to use rs = 1.0,
rcut = 5.2 rs, and cmax = 4.0 for computing the short-range force and then the errors. For the purpose
of computing errors in the short-range force, we cannot vary r s between the reference and the test model.

The effect of decreasing θc is more dramatic on errors in the short-range force. For the unclustered
case, the errors for 1% of the particles decrease by nearly 2.5 decades from 6 × 10 −2% to 2 × 10−4%
for θc = 0.1. In the clustered case, the errors for 1% of the particles decrease by nearly 1.5 decades
from 10−1% to 3.4 × 10−2% for θc = 0.1. One can obtain very high accuracy in short-range force by
taking θc = 0.2. As the short-range force is the dominant one at small scales, the TreePM code can be
used to follow the local dynamics fairly well by using a smaller θ c. The impact of a small θc on CPU
time, however, remains to be seen.
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Fig. 3 Distribution of errors in total force for different values of θc with cmax = 2.0 for unclustered (top
left) and clustered (top right) distributions. Dashed, dot-dash-dot-dashed, dotted, dash-dot-dot-dotted
lines are for θc = 0.1, 0.2, 0.3 and 0.5 respectively. We used rs = 1.0, rcut = 5.2 rs for these plots.
The corresponding plots for cmax = 4.0 are shown in the lower left and lower right panels.

In Figure 5, we look at how the CPU time for force calculation scales with θ c for the TreePM
(left panel) and the modified TreePM (right panel). We compute the time taken for short-range force
calculation per particle per timestep. We have seen in Figure 1 and the corresponding discussion that
clustering does not seriously affect the performance of the TreePM code. We therefore do not repeat
the exercise for distributions with different levels of clustering. We performed the short-range force
timing on a clustered distribution taken from an N−body simulation with N 3

box = N = 1283. We
used rs = 1.0 and rcut = 4.0 for the TreePM and the modified TreePM. In addition, cmax = 4.0 and
npmax = 1024 were used for timing the modified TreePM. When θc is decreased from 0.5 to 0.2, the
time for force computation per particle increases by 7.2% for the TreePM and 21% for the modified
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Fig. 4 Distribution of errors in short-range force for different values of θc for unclustered (left panel)
and clustered (right panel) distributions. Dashed, dot-dash-dot-dashed, dotted, and dash-dot-dot-dotted
lines are for θc = 0.1, 0.2, 0.3 and 0.5, respectively. cmax = 4.0, rs = 1.0, and rcut = 5.2 rs were
used for these plots.

Fig. 5 Scaling of the time taken for short-range force calculation with θc for the TreePM (left panel)
and the modified TreePM (right panel).

TreePM. The speedup of the modified TreePM over the TreePM when θ c is reduced from 0.5 to 0.2
decreases from 22.2 to 19.6, respectively. A nice feature of TreePM codes is that unlike tree codes, the
CPU time taken by TreePM codes is less sensitive to θc

2. Thus, one can obtain much higher accuracy
for the short-range force with a TreePM code for a considerably smaller cost in terms of the CPU time.

2 For example, the variation in CPU time for a tree code increases by about 500% for the same change in θc for a simulation
with N ≈ 104, and the increase in CPU time is larger for simulations with a larger number of particles (Hernquist 1987).
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5 A HIERARCHY OF TIMESTEPS

Due to the existence of a large range of dynamical time scales in a simulation of large scale structures,
computing forces for slowly moving particles at every timestep is not required. It is better to integrate
the orbits of rapidly moving particles with a smaller timestep than those that move relatively slowly; this
reduces the number of force calculations that are required. As force calculation is the most time con-
suming component of an N-body code, this results in a significant reduction of the CPU time required.
We have implemented a hierarchical time integrator similar to that used in GADGET-2 (Springel 2005),
in which particle trajectories are integrated with individual timesteps and synchronized with the largest
timestep. As we allow the block time step3 to vary with time, we work with the so called KDK approach
(Kick-Drift-Kick) in which velocities are updated in two half steps whereas position is updated in a full
step. It can be shown that with a variable time step, KDK performs better than DKD (Drift-Kick-Drift)
(see the GADGET-2 paper (Springel 2005) for details.). In our implementation of the hierarchy of time
steps, the smaller time steps differ by an integer power (n) of 2 from the largest, block time step. An
array is then used to store the value n which determines the timestep of the particle. The code drifts all
the particles with the smallest timestep to the next time, where a force computation is done for particles
that require a velocity update (Kick). We have tested the robustness of the hierarchical KDK integrator
by successfully integrating the 3−body problem discussed by Szebehely & Peters (1967).

Solving the equation of motion with a hierarchy of time steps can be combined with the group
scheme. Since tree construction takes a small fraction of the total time, a new tree can be constructed
whenever particles require a velocity update. The groups that contain such particles can then be iden-
tified and particles within each group can be reordered into two disjoint sets: ones that need velocity
updates and others that do not. Force is computed only for particles in the first set. Since each group
represents a very small fraction of the total number of particles, the overhead for reordering the particles
is negligible.

Table 2 lists the time taken for a complete simulation run for the unoptimized TreePM, TreePM
with hierarchical time steps, TreePM with the group scheme, and finally the TreePM with the group
scheme as well as the hierarchical time steps and their speedup with respect to the base TreePM. The
model used for this comparison is a power law model with n = −1.0 and N 3

box = N = 643. We used
rs = 1.0, rcut = 5.2 rs, θc = 0.5 and ε = 0.2 in all the runs. Here ε is the softening length. We used
cmax = 4.0 and npmax = 1024 for the modified TreePM.

Table 2 Time taken for a complete simulation run for the unoptimized TreePM, TreePM with
hierarchical time steps, TreePM with the group scheme, and finally the TreePM with the group
scheme as well as the hierarchical time steps and their speedup with respect to the base TreePM.

Run Groups Individual Timesteps Time (s) Speedup w.r.t Run 1

1 No No 401983 1.0
2 No Yes 145240 2.77
3 Yes No 67639 5.94
4 Yes Yes 31612 12.72

We note that the hierarchical integrator gives a speedup of better than a factor 2, irrespective of
whether the scheme of groups is used or not. The speedup is larger if the softening ε is smaller, as the
number of levels in the hierarchy increases with decreasing ε. The scheme of groups on the other hand
gives a speedup of 4 or better for small simulations, and a much larger speedup for bigger simulations.
This speedup has little dependence on the TreePM parameters, i.e. θ c, rs, and rcut. The combination of
the two optimizations gives us a speedup of 10 or more even for small simulations.

3 Same as the largest time step.
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6 DISCUSSION

The scheme of groups when combined with a hierarchical integrator for the equation of motion guaran-
tees a speedup of better than 10 for any N−body code which uses tree structures for computing forces.
From an algorithmic point of view, one does not expect a much larger speedup for larger N . However,
as seen in Figure 2, the scheme also allows us to make better use of the cache on CPUs and the effective
speedup can be even more impressive. We have demonstrated that memory overhead is negligible, and as
was observed in Barnes (1990), this optimization just takes around 200 extra lines of code. A welcome
feature is more accurate force computation than the code without this modification. This modification,
in principle, introduces two additional parameters (cmax, npmax), but these are not independent and we
have found that cmax ∼ rcut and npmax ≥ 103 are good choices across a range of simulation sizes.

Our analysis of the optimization has been restricted to fixed resolution simulations. In the case
of zoom-in simulations, the range of time scales is much larger and a more complex approach for
combining the group scheme with the hierarchy of time steps may be required. The relative efficacy of
the two optimizations may be very different in such a case when compared with the example studied in
the previous section.

In summary, we would like to point out that the scheme of groups leads to a significant optimization
of the TreePM method. The amount of CPU time saved is significant even for small simulations, but the
cache optimization aspect leads to even more significant gains for large simulations. We have shown in
this paper that it is possible to incorporate the scheme in a simple manner in any tree based code. The
overall gain is very impressive as we are able to combine this with the use of a hierarchy of time steps.
The possibility of combining the two optimizations has been explored in this work for the first time.
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