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Abstract In the fireball model, it is more physically realistic that gamma-ray burst (GRB)
ejecta have a range of bulk Lorentz factors (assuming M ∝ Γ−s). The low Lorentz factor
part of the ejecta will catch up with the high Lorentz factor part when the latter is de-
celerated by the surrounding medium to a comparable Lorentz factor. Such a process will
develop a long-lasting weak reverse shock until the whole ejecta are shocked. Meanwhile,
the forward shocked materials are gradually supplied with energy from the ejecta that are
catching-up, and thus the temporal decay of the forward shock emission will be slower
than that without an energy supply. However, the reverse shock may be strong. Here,
we extend the standard reverse-forward shock model to the case of radially nonuniform
ejecta. We show that this process can be classified into two cases: the thick shell case
and the thin shell case. In the thin shell case, the reverse shock is weak and the temporal
scaling law of the afterglow is the same as that in Sari & Mészáros (2000). However, in
the thick shell case, the reverse shock is strong and thus its emission dominates the af-
terglow in the high energy band. Our results also show slower decaying behavior of the
afterglow due to the energy supply by low Lorentz factor materials, which may help the
understanding of the plateau observed in the early optical and X-ray afterglows.

Key words: gamma-rays: bursts — hydrodynamics — radiation mechanisms: nonther-
mal — shock waves

1 INTRODUCTION

The central engine and surrounding environment provide the most important insights to the mystery of
gamma-ray bursts (GRBs), the most violent explosions in the universe. Thanks to BeppoSAX, owing to
its ability to accurately locate objects, the first afterglow of a GRB was discovered in 1997 (Costa et
al. 1997). Afterwards, broad band data of afterglows were achieved, and were fitted using the standard
fireball-shock model (Rees & Mészáros 1992, 1994; Mészáros & Rees 1993, 1997; for reviews, see
Zhang 2007). The parameters of GRBs, such as the total burst energy, the type (ISM or wind) and
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number density of the environment, and the electron and magnetic field equipartition factors, were then
constrained (e.g., Wu et al. 2003; Fan et al. 2002; Zhang et al. 2003). Early afterglows can even be used
to constrain the initial Lorentz factors of GRB fireballs (Molinari et al. 2007; Xue et al. 2009). It is
believed that early afterglows are produced by reverse-forward shocks when relativistic ejecta interact
with the circum-burst medium, which was first studied by Rees & Mészáros (1992) and Sari & Piran
(1995). Then GRB 990123, a remarkable event with a bright early optical flash, was discovered (Akerlof
et al. 1999), which was interpreted by the reverse-forward external shock model well (Sari & Piran
1999). Consequently, much attention focused on early afterglow radiation, considering the effects of
circum-burst environments and non-relativistic reverse shocks (Kobayashi 2000; Wu et al. 2003; Zou et
al. 2005). Subsequently, more optical flashes were observed, e.g., GRBs 021211, 050525a, 060111B,
060117B and 080319B (Wei & Jin 2003; Shao & Dai 2005; Klotz et al. 2006; Jelinek et al. 2006;
Racusin et al. 2008). These works were based on the assumption that the Lorentz factor does not change
in the shell. The whole light curve from the reverse-forward external shock has two types: re-brightening
(Type I) and flattening (Type II) (Zhang et al. 2003). In some GRBs, such as GRBs 050319, 060206,
060210 and 060313, the early optical light curves have a plateau which is difficult to explain within the
uniform ejecta model (UEM). Meanwhile, the shallow decay of the canonical X-ray afterglow behavior
discovered in the Swift era (Nousek et al. 2006; Zhang et al. 2006; O’Brien et al. 2006) remains a matter
of debate.

Because of the above problems, we reconsider the baryon-dominated energy injection model in
which the ejecta have a wide Γ-distribution: the part of the ejecta with lower Lorentz factors lags behind
the one with higher Lorentz factors. The low-Γ part catches up with the high-Γ part when the latter
is decelerated to a comparable Lorentz factor, so the reverse shock is usually mildly relativistic and
mainly contributes to the far-IR or millimeter band (Rees & Mészáros 1998; Sari & Mészáros 2000).
Once the reverse shock starts, it will travel through the whole ejecta from the front highest-Γ part to
the rear lowest-Γ part. Based on the treatment widely adopted in the UEM, we reconsider this issue by
assuming a given distribution of Lorentz factors in the ejecta. We calculate the dynamic evolution of
the reverse-forward shocks produced by this radially structured ejecta propagating into the circum-burst
medium, and present the analytical and numerical results.

We organize our paper as follows. In Section 2, we describe the dynamics of the reverse-forward
shocks including the thick shell case and the thin shell case, respectively. We discuss the reverse shock
emission in Section 3. The numerical results are shown in Section 4. Finally, we present a brief discus-
sion in Section 5.

2 DYNAMICS OF THE EJECTA WHICH HAVE A Γ-DISTRIBUTION

As Rees & Mészáros (1998) postulated, the central engine of GRBs may eject relativistic shell-like
ejecta with a range of Lorentz factors

M(> Γ) ∝ Γ−s. (1)

Such ejecta have energies ΓMc2 ∝ Γ−s+1. Applying the model to observations shows that the value
of the index s is typically ∼ 2.5 (Zhang et al. 2006; Nousek et al. 2006), which is larger than the
suggested value ∼ 1.5 (e.g., Rees & Mészáros 1992), so the low-Γ mass carries more kinetic energy
than predicted. When the ejecta interact with the circum-burst medium, a pair of shocks emerges: a
forward shock propagating into the circum-burst medium and a reverse shock propagating into the shell.
There are four regions separated by the two shocks: (1) the unshocked circum-burst medium, (2) the
shocked medium, (3) the shocked shell material and (4) the unshocked shell material. Using the shock
jump condition and the equality of pressure and velocity along the contact discontinuity, the Lorentz
factor Γ and the number density in both shocked media can be determined by the density of the circum-
burst medium n1 and the unshocked shell n4 (Blandford & McKee 1976, hereafter BM). Here, the
number density of the unshocked shell is nonuniform, depending on the Lorentz factor distribution in
the shell

n4 =
|(dM(> Γ)/dΓ)(dΓ/dx)|

4πr2mpΓ(x)
. (2)
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We assume an initial Lorentz factor distribution in the shell

Γ ∼ Γmin

[
x(t = 0, Γ)

∆0

]−1/b

, (3)

where ∆0 and Γmin are the initial width and minimum Lorentz factor of the shell, respectively, x(t =
0, Γ) represents the initial position in the shell with the origin located at the outer edge of the shell (see
Fig. 1). Due to the distribution of Lorentz factors, the shell will spread with time, then the value of x of
a fixed element will grow as described by the equation:

x(t, Γ) = x(t = 0, Γ) + (βmax − β)ct, (4)

where β =
√

1 − 1/Γ2. Thus, the Lorentz factor distribution in the shell at any time is determined.

Ox

∆

v

y

ΓmaxΓmin

Fig. 1 Schematic of the radially structured shell. ∆ is the width of the shell, Γmin and Γmax are the
Lorentz factors on the edge of the shell respectively. The part with the lower Lorentz factor in the shell
has more kinetic energy (marked with darker gray) than that with the higher Lorentz factor.

The properties of the shocks are largely determined by the parameter defined as

f ≡ n4

n1
=

sMbΓs
minΓ−s−2

4πr2mpn1

∣∣∣dΓ
dx

∣∣∣, (5)

where Mb is the total mass of the shell. Equation (1) can be written as M(> Γ) ≈ MbΓs
minΓ−s (here

Γmin � Γmax is assumed). Combining Equations (4) and (5), we need another equation to describe
the evolution of the radius and Lorentz factor of the shocks: the relation between the distance dx which
the reverse shock travels in the shell and the distance dr which the shell propagates in the circum-burst
medium in the same time interval is (Kobayashi 2000)

dr = αΓf1/2dx, (6)

where r is the radius of the shell and the parameter α is ∼ 1.
There are two approximations under which the shock evolution can be described analytically: the

thick shell case and the thin shell case, depending on the significance of the spreading effect in the last
term in Equation (4). If the spreading term is larger than the initial x(t = 0, Γ), the shell is regarded as
a thin shell, otherwise it is a thick shell. Below, we will consider these two cases separately.
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2.1 Thick Shell Case

In the thick shell case, the spreading effect can be ignored, so the width of the shell always remains at
its initial value ∆0 during the time that the reverse shock is crossing the shell.

We can get from Equations (3) and (4)

dx = −b∆0

( Γ
Γmin

)−b dΓ
Γ

. (7)

We can now calculate the comoving number density n 4 and the density ratio f . According to
Equation (5), we have

dr

dx
=

α2sMbΓs
minΓ−s

4πr2mpn1

∣∣∣dΓ
dr

∣∣∣. (8)

In general, the number density of the circum-burst medium can be modeled as n 1 = Ar−k. Specifically,
A = n1 = 1.0 n1,0 cm−3 for an ISM environment (k = 0) and A = 3 × 1035 A∗ cm−1 for a free
wind environment (k = 2) (Chevalier & Li 2000). Throughout this work, we adopt the convention
Qx = Q/10x in cgs units. The solution of Equation (8) reads

r4−k =
( 4 − k

s + b − 1

)2 b(s − 1)E∆0α
2

4πAmpc2

( Γ
Γmin

)−(s+b−1)

. (9)

Keep in mind that dr = 2Γ2cdt, so the evolution of the Lorentz factor and radius of the ejecta with time
can now be described. Just when the reverse shock crosses the shell, the Lorentz factor is equal to Γ min

and the shell reaches the crossing radius

r∆ =
[( 4 − k

s + b − 1

)2 b(s − 1)E∆0α
2

4πAmpc2

] 1
4−k

=

⎧⎪⎨
⎪⎩

9.4 × 1016α1/2
[

b(s−1)
(s+b−1)2

]1/4

E
1/4
53 ∆1/4

0,12n
−1/4
1,0 cm, (k = 0)

8.5 × 1015α
[

b(s−1)
(s+b−1)2

]1/2

E
1/2
53 ∆1/2

0,12A
−1/2
∗ cm, (k = 2)

. (10)

In the thick shell case, the spreading effect is always negligible which requires r∆ ≤ Γ2
min∆0. Thus, a

lower limit of the minimal Lorentz factor must be satisfied

Γmin ≥

⎧⎪⎨
⎪⎩

310
[

b(s−1)
(s+b−1)2

]1/8

α1/4E
1/8
53 ∆−3/8

0,12 n
−1/8
1,0 , (k=0)

92
[

b(s−1)
(s+b−1)2

]1/4

α1/2E
1/4
53 ∆−1/4

0,12 A
−1/4
∗ , (k=2)

. (11)

Whether or not the reverse shock is relativistic depends on the parameter

f

Γ2

∣∣∣Γmin ≈
{

5.75 (s+b−1)
√

s−1
b3/2 α−1E

1/2
53 n

−1/2
1,0 ∆−3/2

0,12 Γ−4
min,2, (k=0)

0.17 s−1
b E53A

−1
∗ ∆−1

0,12Γ
−4
min,2, (k=2)

. (12)

It can be seen that the parameter f/Γ2 is smaller than one for the typical wind case (k = 2) and for
a dense ISM case (n1 = 100) at the crossing time, and before the crossing time, it is proportional to
Γ2(3b−bk+2k−s−7)/(4−k) . If the Lorentz factor distribution is not too steep 0 < b < 3 and the mass
distribution index has a typical value of 1.5 ≤ s ≤ 2.5, f < Γ2 holds for the entire reverse-forward
shocks interaction period which means that the reverse shock is relativistic all along. While in the other
parameter space, it is possible that f 	 Γ2 at the initial stage when the reverse shock is non-relativistic,
and then f ≤ Γ2 which corresponds to the reverse shock evolving from being non-relativistic to being
relativistic. If the reverse shock is relativistic, the relative Lorentz factor γ 34 between the shocked shell
and the unshocked shell is ∼ (Γ/2)1/2/f1/4 	 1. We derive the analytical solution for the former in
Section 3.1.
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2.2 Thin Shell Case

In the thin shell case, the spreading effect is dominant. The position of an element in the shell, x, can be
approximated by

x(Γ) ≈ (βmax − β)ct ≈ r

2Γ2
. (13)

The parameter f can be written as

f =
(s − 1)E

4πr3mpc2n1

( Γ
Γmin

)−(s−1)

. (14)

Based on the same procedure applied in the thick shell case, we can obtain the relation between the
radius and the Lorentz factor

r3−k =
(3 − k

s + 1

)2 α2(s − 1)E
4πAmpc2Γ2

min

( Γ
Γmin

)−(s+1)

. (15)

Then, the crossing radius is

r∆ =
[(3 − k

s + 1

)2 α2(s − 1)E
4πAmpc2Γ2

min

] 1
3−k

=

⎧⎨
⎩ 1.7 × 1017

[
α2(s−1)
(s+1)2

]1/3

E
1/3
53 n

−1/3
1,0 Γ−2/3

min,2 cm, (k = 0)

1.8 × 1015
[

α2(s−1)
(s+1)2

]
E53A

−1
∗ Γ−2

min,2 cm, (k = 2)
. (16)

In contrast to the thick shell case, an upper limit of the minimal Lorentz factor must be satisfied to keep
the thin shell assumption valid all along

Γmin ≤

⎧⎪⎨
⎪⎩

290
[

α2(s−1)
(s+1)2

]1/8

E
1/8
53 ∆−3/8

0,12 n
−1/8
1,0 , (k = 0)

65
[

α2(s−1)
(s+1)2

]1/4

E
1/4
53 ∆−1/4

0,12 A
−1/4
∗ , (k = 2)

. (17)

For the thin shell case, it is interesting that f/Γ2 ≡ α−2(s + 1/3 − k)2, which means that the reverse
shock is always mildly relativistic (γ34 − 1 ≈ Γ2/f ∼ 1).

3 REVERSE SHOCK EMISSION

Now that the dynamic related parameters, i.e., Γ, γ34 and n4 are determined, the radiation related
properties of the shocked materials, such as the strength of the magnetic field B ′

i, the minimum
Lorentz factor γ ′

m,i, the cooling Lorentz factor γ ′
c,i and the number Ne,i of shocked electrons can

be determined. For the shocked region, the fraction εB and εe of the internal energy are assumed to
be carried by magnetic fields and shock-accelerated electrons, respectively. The co-moving magnetic
field is equal to

√
8πεBe′i, where the internal energy density e ′

i = (γrel − 1)mpc
2ni (for the for-

ward shock γrel ≡ γ2 ≈ 1/2Γ1/2f1/4; for the reverse shock γrel ≡ γ34). The minimum Lorentz
factor γ ′

m,i = εeCp(mp/me)(γrel − 1) with Cp ≡ (p − 2)/(p − 1), the cooling Lorentz factor
γ′

c,i = 6πmec/(σTB′2
i γit). The increase of the number of shocked electrons is dN e,3 = 4πr2Γn4dx

for the reverse shocked region and dNe,2 = 4πr2n1dr for the forward shocked region. In the standard
synchrotron radiation model, the two characteristic frequencies and the peak flux density are

νm,i =
qeB

′
i

2πmec
γ′2

m,iγi, νc,i =
qeB

′
i

2πmec
γ′2

c,iγi, Fν,max,i =
Ne,i

4πd2
L

mec
2σT

3qe
B′

iγi, (18)

where dL is the luminosity distance of a GRB, qe is the charge of electron and σT is the Thomson cross
section. The temporal indices of these two frequencies and the peak flux density as a function of time
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Table 1 Temporal indices of the peak frequency νm, the cooling frequency νc and the peak flux density
Fν,max for both the forward shock and reverse shock.

Reverse Shock Forward Shock

Thick shell Thin shell Thick shell Thin shell

νm 5k−bk−ks−16
2b(4−k)

– 12−3k+ks
2(7−2k+s)

(s−1−3b)
2b

– 24−7k+ks
2(7−2k+s)

νc
(3k−4)(s+b−1)

2b(4−k)
(3k−4)(s+1)
2(7−2k+s)

(3k−4)(s+b−1)
2b(4−k)

(3k−4)(s+1)
2(7−2k+s)

Fν, max k+bk−3ks+10s−6b−2
2b(4−k)

3(k+2s−4−ks)
2(7−2k+s)

3k−bk−3ks+8s−8
2b(4−k)

k+6s−3ks−6
2(7−2k+s)

are listed in Table 1 for both the forward shock and reverse shock, and for both the thick shell case and
thin shell case.

The distinct discrepancy between the nonuniform ejecta model (NUEM) and the UEM is the reverse
shock emission. Once the reverse shock has crossed the shell, the forward shock and shocked region
begin to approach the Blandford-McKee (BM) solution (Kobayashi et al. 1999), and the following light
curve is the same as that in the UEM. Below, we only discuss the synchrotron emission from the reverse-
shocked region before the crossing time. Since we have already obtained the temporal indices of ν m, νc

and Fmax, in the following, we only need to know the values of the characteristic frequencies and the
peak flux density at the crossing time so we can extrapolate the early light curve back in time from the
reverse shock.

3.1 Thick Shell Case

The reverse shock in the thick shell case we consider here is assumed to be relativistic (γ 34 − 1 ≈ γ34).
The crossing time T∆ is ∼ ∆/c, when the Lorentz factor of the shell is Γmin and the number of the
shocked electrons is the total number of electrons in the ejecta, i.e., N e,3 = E(s − 1)/(smpc

2Γmin).
According to Equation (18), we have

νm ∼ 4.0 × 1013(1 + z)−1
(p − 2

p − 1

)2

ε2e,−0.5ε
1/2
B,−2n

1/2
1,0 Γ2

min,2.5 Hz, (19)

νc ∼ 1.0 × 1017(1 + z)−1/2

√
α2b3

(s + b − 1)2(s − 1)
ε
−3/2
B,−2E

−1/2
53 n−1

1,0T
−1/2
∆,−2 Hz, (20)

Fν,max ∼ 1.36(1 + z)7/4
[ (s − 1)5(s + b − 1)2

α2b3s4

]1/4

D−2
28 ε

1/2
B,−2E

5/4
53 n

1/4
1,0 Γ−1

min,2.5T
−3/4
∆,2 Jy, (21)

for the ISM case, and

νm ∼ 4.5 × 1014(1 + z)−1/2
(

p − 2

p − 1

)2
√

(s + b − 1)2

α2b(s − 1)
ε2e,−0.5ε

1/2
B,−2E

−1/2
53 A∗,−0.5Γ

2
min,2.5T

−1/2
∆,2 Hz, (22)

νc ∼ 4.0 × 1014(1 + z)−3/2

√
α6b5(s − 1)
(s + b − 1)6

ε
−3/2
B,−2E

1/2
53 A−2

∗,−0.5T
1/2
∆,2 Hz, (23)

Fν,max ∼ 6.5(1 + z)2
[ (s + b − 1)(s − 1)

αbs

]
D−2

28 ε
1/2
B,−2E53A

1/2
∗,−0.5Γ

−1
min,2.5T

−1
∆,2 Jy, (24)

for the wind case, where T∆,2 = T/100s. The above expressions for the synchrotron radiation at the
crossing time are quite similar to those in the UEM (e.g., Kobayashi 2000; Wu et al. 2003). We find
that for a set of combinations of reasonable parameter values (s = 2.5, 2, 1.5 and b = 2, 1) the t cm (the
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Table 2 Temporal indices of the flux density Fν ∝ tανβ of synchrotron radiation from a reverse shock.
Both the thick shell case and the thin shell case are considered.

Thick shell case

ν < min[νm, νc] min[νm, νc] < ν < max[νm, νc] max[νm, νc] < ν

Slow Cooling (5–9b–k+2bk+15s (12–12b–3k+3bk–16p+5kp– (16–16b–6k+6bk–16p+5kp
–4ks)/3b(4 − k) bkp+20s–5ks–kps) / 4b(4 − k) –bkp+16s–2ks–kps) / 4b(4 − k)

Fast Cooling −5−7b+3k+17s−6ks
3b(4−k)

−16b−k+5bk+16s−3ks
4b(4−k)

16−16b−6k+6bk−16p+5kp−bkp+16s−2ks−kps
4b(4−k)

Thin shell case

Slow Cooling 12−3k−9s+4ks
6k−3(7+s)

12−3k+12p−3kp−12s+5ks+kps
8k−4(7+s)

16−6k+12p−3kp−8s+2ks+kps
8k−4(7+s)

Fast Cooling 16−3k−11s+6ks
6k−3(7+s)

28−9k−8s+3ks
8k−4(7+s)

16−6k+12p−3kp−8s+2ks+kps
8k−4(7+s)

time when νm = νc) is always small for the ISM case, indicating that the reverse-shocked electrons are
always in the slow cooling region. However, for the wind case, the electrons are usually fast cooling
during the entire reverse shock phase, because νm is typically larger than νc at the crossing time and νm

decreases with time while νc increases with time before the crossing time.

3.2 Thin Shell Case

In the thin shell case, the reverse shock is always mildly-relativistic (γ34 − 1 ∼ 1) and the crossing time
depends on the crossing radius as t∆ ∝ r

(7+s−2k)/(s+1)
∆ . For convenience, we choose s = 2 to give the

typical values of the two characteristic frequencies and peak flux density of synchrotron radiation,

νm ∼ 2.1 × 1012(1 + z)−1
(p − 2

p − 1

)2

α4ε2e,−0.5ε
1/2
B,−2Γ

2
min,1.8 Hz, (25)

νc ∼ 7.1 × 1016(1 + z)−1α−4/3ε
−3/2
B,−2E

−2/3
53 n

−5/6
1,0 Γ4/3

min,1.8 Hz, (26)

Fν,max ∼ 2.3(1 + z)D−2
28 ε

1/2
B,−2E53n1, 01/2Γmin,1.8 Jy, (27)

for the ISM case, and

νm ∼ 4.2 × 1012(1 + z)−1
(p − 2

p − 1

)2

α2ε2e,−0.5εB,−21/2A
3/2
∗,−0.5E

−1
53 Γ4

min,1.8 Hz, (28)

νc ∼ 1.9 × 1013(1 + z)−1α2ε
−3/2
B,−2E53A

−5/2
∗,−0.5Γ

−2
min,1.8 Hz, (29)

Fν,max ∼ 385.0(1 + z)D−2
28 α−2ε

1/2
B,−2A

3/2
∗,−0.5Γ

3
min,1.8 Jy, (30)

for the wind case. It is shown in Table 1 that the temporal indices of νm, νc and Fmax are the same as in
the varying injection model (Sari & Mészáros 2000), which indicates that the Γ-distribution in the shell
does not affect the shape of the light curve for the thin shell case (see Table 2) because the spreading
effect erases the initial Γ-distribution.

4 NUMERICAL RESULTS

Since the thin shell case in our treatment has the same results as that in Sari & Mészáros (2000), hereafter
we just present the numerical results of the thick shell case. For the sake of simplicity, we only show
the result by one set of parameters with s = 2 and b = 2, which is nevertheless sufficient to compare
the result of the thick shell case in our paper to that of the thin shell case in the literature. We assume
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that the redshift of a GRB is z = 2 since it is the average value of the observed GRBs in the Swift era
(Le & Dermer 2007). According to the standard shock acceleration mechanism, the energy index p of
electrons is about 2.2 ∼ 2.3, so we choose p = 2.3.

We follow the method of Zou et al. (2005) to perform our numerical calculations with Γ max = 1000,
Γmin = 300, E0 = 1.0×1053 erg, ∆0 = 1.0×1013 cm, εe = 0.3, εB = 0.01, A∗ = 0.1, n1 = 10 cm−3

and adopt the standard cosmology model with Ωm = 0.27, ΩΛ = 0.73 and H0 = 71 km s−1 Mpc−1.
Figures 2 and 3 show the light curves of synchrotron emission in the optical R band and X-ray

band. To compare with the results of the UEM, we also plot the light curves of the UEM at the same
energy band. In our calculations, the nonuniform and uniform ejecta have the same kinetic energy and
total mass, so the uniform ejecta have a Lorentz factor of sΓmin/(s − 1) = 600. The upper panel
denotes the R-band light curve while the lower panel denotes the X-ray light curve. The numerical
results demonstrate that: (1) In these two energy bands, there is a slow decay phase before the crossing
time for the NUEM which is attributed to the energy injection by the low-Γ part. (2) Before the crossing
time, the reverse shock emission dominates the radiation in the optical band, while in the X-ray band,
the shocks have comparable contribution. After that, the forward shock emission gradually becomes
important. This result is similar to the UEM. It is possible that the two shocked regions may have
different microphysical parameters εe and εB , which do not change the first conclusion but might change
the second one.

Although we do not show the light curves of the thin shell case, we would like to emphasize the
differences between the thick and thin shell cases. Since the reverse shock in the thin shell case is
mildly-relativistic all along and the flux density has the same behavior as presented by the refreshed
shock scenario (Sari & Mészáros 2000), a simple test of the thin shell case is that it predicts a maximal
flux in the far-infrared or millimeter range a few hours to a few days after the GRB trigger. The forward
shock emission contributes mainly in the high energy band and decays slower than that of the normal
standard forward shock model. However, in the thick shell case, the reverse shock may be relativistic
and dominate the flux in both the optical band and X-ray band at early times.

Fig. 2 Synchrotron radiation flux density in the R band and X-ray band as a function of time for the
ISM case. Solid lines represent the whole emission from both the forward shock and the reverse shock.
Dashed lines represent the contribution from the reverse shock. Thick lines are for the NUEM while thin
lines are for the UEM.
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Fig. 3 Synchrotron radiation flux density in the R band and X-ray band as a function of time, the same
as in Fig. 2 for the wind case. Parameters are given in the text.

5 DISCUSSION

We have described the dynamics of radially structured ejecta interacting with the circum-burst medium
through extending the method used in the UEM. It can be classified into two types: the thick shell case
and the thin shell case, of which the latter is the same as in the UEM. Two parameters are introduced in
the NUEM. One is the mass distribution index s and the other is the Lorentz factor distribution index b.
In our treatment, the thin shell case reproduces the same results obtained by Sari & Mészáros (2000).
On the other hand, in the thick shell case, the reverse shock could be relativistic or initially be non-
relativistic and then become relativistic, contributing comparable radiation in the high energy band as
the forward shock. Anyway, the energy injection induced by the nonuniform ejecta sweeping up the
surrounding medium causes the light curves to decay more slowly.

Observationally, GRB990123 was seen to have a bright optical flash with initial flux decay as F ∝
t−2, which is attributed to the reverse shock emission, and subsequently the optical afterglow decays as
F ∝ t−1.1, which is mainly due to the forward shock emission. Both the thick and thin shell scenarios
in the UEM can fit this optical flash well. The fast rise of t3.4 can be explained if the circum-burst
environment is homogenous ISM (Kobayashi 2000; Fan et al. 2002).However, some optical flashes (e.g.,
GRBs 021211, 050525a, 060111B and 060117B) have not been observed with this early rising part. This
may be intrinsic, or due to late responses and slow slewing of optical telescopes. An early optical plateau
was observed in a few GRB afterglows, e.g., GRBs 050319, 060206, 060210 and 060313, which may
be attributed to the relativistic reverse shock emission of the radially structured ejecta sweeping up the
circum-burst medium.

In Swift GRB afterglows, peculiar chromatic breaks have been universally observed, but the origin
of these chromatic breaks is still an open question. Some models were proposed to explain the chromatic
breaks, such as the model with evolving microphysical parameters, or the model in which the optical
and X-ray emission are arising from different emitting regions (Panaitescu et al. 2006), or the scenario
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only involving reverse shock emission (Genet et al. 2007; Uhm & Beloborodov 2007). Our current work
shows that the chromatic breaks cannot be due to the reverse shock and we favor the former explanations.

Although the detailed prescription of a radially structured shell propagating into the circum-burst
medium is presented in this paper, it should be noted that the shock-heated material separated by the
contact discontinuity is assumed to be uniform. A more accurate solution of the reverse-forward shock
interaction and emission needs a relativistic hydrodynamic simulation.
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