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Abstract This article reviews the current works on ultra-compact double-degenerate bi-
naries in the presence of magnetic interaction, in particular, unipolar induction. The or-
bital dynamics and evolution of compact white-dwarf pairs are discussed in detail. Models
and predictions of electron cyclotron masers from unipolar-inductor compact binaries and
unipolar-inductor white-dwarf planetary systems are presented. Einstein-Laub effects in
compact binaries are briefly discussed.
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1 INTRODUCTION

A binary could be a double-star system, star-planet system or planet-moon system in which two objects
revolve around each other under gravity. For binaries with a circular orbit, the separation a of the two
components and the orbital period Po are related by

a =

[
G(M1 + M2)

(
Po

2π

)2
]1/3

≈ 1.1 × 1010

(
M1 + M2

M�

)1/3 (
Po

600 s

)2/3

cm , (1)

where M1 and M2 are the masses of the primary and secondary components respectively, and G is the
gravitational constant. (Hereafter the subscripts “o”, “1” and “2” represent the orbit, the primary star
and the secondary star, respectively.) If the secondary component fills its Roche lobe, its mean density
ρ̄2 is determined by the orbital period:

ρ̄2 ≈ 3.9 × 103 λ(q)
(

Po

600 s

)−2

g cm−3 , (2)

where λ(q) is a numerical factor of the order of unity, weakly dependent on the mass ratio q = M 2/M1

(Eggleton 1983; see also Pacyznski 1971). In a stellar binary with P o ≈ 600 s, the density of the sec-
ondary star would exceed that of a main-sequence star with the same mass. The primary star, which
is more massive, is even denser. Thus, stellar binaries with Po < 600 s must contain either degener-
ate stars or black holes, and these short-period systems are known as ultra-compact double-degenerate
systems (UCDs).

In principle, UCDs may contain any combination of white dwarfs, neutron stars or black holes.
However, the formation of double white dwarfs are more favorable in the evolutionary channels (see
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Han 1998; Nelemans et al. 2001; Belczynski & Taam 2004; Postnov & Yungelson 2006; Belczynski et
al. 2008), and compact double white dwarfs are expected to be more abundant than compact binaries
with other combinations of white dwarfs, neutron stars and black holes. Observationally, many compact
white-dwarf pairs have been discovered (see Roelof, Nelemans & Groot 2007), and these system are
populous in the Milky Way. In this article, the main focus will be on double white-dwarf systems.
Hereafter, unless otherwise stated, the term UCDs will be used solely for short-period systems with two
white dwarfs.

Almost all celestial bodies possess a certain magnetism. A substantial fraction of white dwarfs
are known to have a magnetic field with strength exceeding 10 6 G (Chanmugam 1992; Schmidt &
Smith 1995; Wickramasinghe & Ferrario 2000). The magnetic moments of these white dwarfs are above
1032 G cm3. For an orbital separation < 1010 cm, these white dwarfs will exert a magnetic field of the
order of kG at the surface of their companion stars. As the two white dwarfs in UCDs are in very close
proximity, electromagnetic interaction is inevitable. This alters the orbital dynamics of the binary and
gives rise to a variety of unusual observational consequences.

Magnetic interaction between two gravitationally bound celestial objects is common on all scales.
A well known example in our backyard is Jupiter and its moon Io. It is believed that Io has a highly
conductive core. When Io revolves around Jupiter, it traverses the Jovian magnetic field and a large
e.m.f. is created via a unipolar-induction process (Piddington & Drake 1968; Goldreich & Lynden-Bell
1969). This e.m.f. drives the flow of electric currents between Jupiter and Io. Observations have shown
a hot spot at the polar surface of Jupiter (Clarke et al. 1996), which is identified as the location of
foot-points of the magnetic field lines leading to Io. Dissipation of the electric currents in the Jovian
atmosphere lights up the foot-points of the magnetic field lines that connect the two objects. On stellar
scales, strong magnetic interactions are found between the two stars in RS CVn binaries and in AM
Herculis binaries. There is also evidence that substantial magnetic interaction occurs in Algol binaries
as well (Richards & Albright 1993; Retter, Richards & Wu 2005). In RS CVn binaries, the magnetic
interaction leads to enhanced coronal activity in the component stars (Uchida & Sakurai 1983; Ferreira
& Mendoza-Briceño 2005). In AM Herculis binaries, magnetic interaction essentially defines the char-
acteristics of the system. It locks the entire system to into synchronous rotation (Campbell 1983, 1999;
Wickramasinghe & Wu 1991; Wu & Wickramasinghe 1993); it governs their orbital evolution (Li, Wu
& Wickramasinghe 1994a, b; Davis et al. 2008); and it determines the hydrodynamics of mass flow
from the Roche-lobe spilling low-mass donor star to the magnetic white dwarf primary (Chanmugam &
Wagner 1977; Visvanathan & Wickramasinghe 1981, see also Warner 1995; Wu 2000).

It is natural that the white dwarfs in UCDs interact magnetically, provided that one or two of the
white dwarfs have a sufficiently large magnetic moment. In this article, we will review the current
research progress on magnetically interacting UCDs and associated systems. We organize the article
as follows. In Section 2, we discuss the general orbital dynamics of UCDs in compact binaries. In
Section 3, we present the basics of the unipolar induction model for compact white-dwarf pairs, and in
Section 4, we discuss the orbital evolution of compact binaries in the presence of unipolar induction. In
Section 5, we show that unipolar-inductor white-dwarf pairs could be electron-cyclotron maser sources.
In Section 6, we show how some physics in UCDs can be applied to related systems, such as white
dwarf-planet systems, and that magnetically interacting ultra-compact binaries may exhibit Einstein-
Laub effects.

2 ORBITAL DYNAMICS IN COMPACT BINARIES

AM CVn binaries are the better studied UCDs (Solheim 1995; Nelesmans 2005). Mass transfer occurs
in AM CVn binaries when the less massive white dwarf overfills its Roche lobe. The in-falling ma-
terial forms an accretion disk around the white-dwarf primary. If the binary orbit is too compact, the
formation of an accretion disk might be prohibited. Mass transfers directly via a gas stream from the
inner Lagrangian point of the secondary white dwarf to the surface of the primary white dwarf (Marsh
& Steeghs 2002; Wood 2009). The mass transfer dynamics of these double white dwarfs are analogous
to those of the Algol binaries. These binaries are known as direct-impact mass-transfer double degener-
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Fig. 1 Power of gravitational waves from white-dwarf pairs, normalized to the solar bolometric lumi-
nosity, as a function of the primary white-dwarf mass M1, for orbital periods of 600 s (solid lines) and
300 s (dotted lines). Each curve corresponds to a value of the secondary white-dwarf mass, labeled in
solar-mass unit. (Adapted from Wu, Ramsay & Willes 2008.)

ates. The orbital dynamics and evolution of AM CVn binaries and direct-impact mass-transfer double
degenerates are regulated by the mass transfer process. Their high-energy emissions, such as X-rays,
are accretion powered. Magnetic interacting UCDs are similar to AM CVn binaries and direct-impact
mass-transfer double degenerates, as they also have two white dwarfs revolving around each other in
a very tight orbit. However, they are different from those binaries in that magnetic interaction governs
the angular momentum redistribution, and that internal energy dissipation within the system plays an
important role in regulating the orbital dynamics and, hence, the orbital evolution.

UCDs are strong sources of gravitational waves because of their compact orbits. The power of their
gravitational radiation (assuming an orbital eccentricity e = 0) is

Ėgw = − 32
5

G4

c5

M2
1 M2

2 (M1 + M2)
a5

= − 32
5

G7/3

c5
M

10/3
chirp ω10/3

o

= − 1.2 × 1036

[(
Mchirp

M�

) (
600 s
Po

)]10/3

erg s−1 (3)

(see Landau & Lifshitz 2002), where c is the speed of light. The chirp mass M chirp = M̃3/5(M1 +
M2)2/5, where M̃ ≡ M1M2/(M1 +M2) is the reduced mass of the binary. It relates the orbital angular
momentum Jo to the orbital angular velocity ωo via

Jo = G2/3M
5/3
chirpω

−1/3
o . (4)

For UCDs with Po ∼ 600 s or shorter, the power of the gravitational radiation greatly exceeds the solar
power in the electromagnetic spectrum (Fig. 1).

The orbital angular momentum of a binary system is given by J o = M1M2 a2ωo/(M1 + M2).
The orbital separation a and the orbital angular velocity ω o are related by ω2

o = (2π/Po)2 = G (M1 +
M2) a−3. The evolution of the binary orbit is determined by redistribution of angular momentum within
the system and the loss of angular momentum from the system. These processes are described by the
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following coupled differential equations:
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=
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+

J̇2
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, (7)

where “ · ” denotes time derivatives. The derivation of the above equations has assumed that M 1 ∝ Rn1
1

and M2 ∝ Rn2
2 , where n1,2 are the proportional indices in the mass-radius relations of the two stars.

Conservation of angular-momentum requires J̇ = J̇o + J̇1 + J̇2. When there is no mass loss from
the system (Ṁ = Ṁ1 + Ṁ2 = 0), orbital angular momentum is extracted from the binary only through
the emission of gravitational waves. This gives a rate of orbital angular-momentum loss

J̇ = J̇gw

= − 32
5

G7/2

c5
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1 M2

2 (M1 + M2)1/2

a7/2

= − 32
5

G7/3

c5
M

10/3
chirp ω7/3

o (8)

(Landau & Lifshitz 2002). If there is no mass change between the two stars ( Ṁ1 = Ṁ2 = Ṁchirp = 0)
and if the stellar spins are decoupled from the orbital rotation, the evolution of the orbital angular
frequency is dictated by gravitational radiation loss:

ω̇o

ωo
= − 3

J̇gw

Jo

=
96
5

G5/3

c5
M

5/3
chirpω

8/3
o . (9)

It is clear that in the absence of mass loss from the system and in the absence of angular momentum
exchange or mass exchange between the two stars, the binary orbit is always spun up, i.e. the orbital
period decreases with time.

If the stellar spins are coupled with the orbital rotation, then angular momenta can be injected from
the orbit into the stars. In the ‘ideal’ case where the two stars and the orbit are locked in synchronous
rotation,

ω̇o

ωo
= − 3

J̇gw

Jo

[
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2
1 + M2R

2
2)ω

4/3
o

G2/3M
5/3
chirp

]−1

. (10)

Internal energy dissipation in the system is unimportant in an ideal, perfectly synchronous rotating
system. When Mchirp is fixed, ωo ∝ J3

o . As additional angular momentum is extracted from the orbit to
spin up the two stars, the orbital angular frequency will accelerate further when the system loses energy
via gravitational radiation. This gives larger values for ω̇ o than those in the case where the spins of the
star and the orbital rotation are decoupled (cf. Eqs. (9) and (10)).

In reality, perfect synchronism is hard to achieve for any binary system. Although AM Herculis
binaries are supposed to be magnetically locked into synchronous rotation, there are a small fraction
(e.g. the system BY Cam, Mason et al. 1998) in which the white dwarf rotates asynchronously with
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the orbital motion. The situation is similar for UCDs. There should be certain spin-orbit asynchronism
despite the fact that strong tidal forces and magnetic interactions tend to synchronize the star spins and
orbital rotation. When there are internal energy dissipation and angular momentum redistribution in the
system, the formulation for the orbital evolutionary dynamics described above would need modifying. In
the next section, we will discuss the case of slightly asynchronous UCDs in which magnetic interaction
mediates the angular momentumexchange between the stars and the orbit. Also, there is no mass transfer
between the stars in these systems, contrary to the magnetically locked AM Herculis binaries. The
dynamics would be more complicated when mass exchange occurs, and when the system loses mass.
(Orbital evolution of binaries under mass exchange and mass outflow were discussed, for example, in
Wu 1997.)

3 UNIPOLAR INDUCTION IN COMPACT BINARIES

The small separation between the stars in a UCD allows electromagnetic interactions to occur between
them. One possible process is unipolar induction, which could generate strong electric currents between
the two white dwarfs, as well as large Lorentz torques on the orbit and the stars.

Unipolar induction is a fundamental electrodynamic process. It is a manifestation of Maxwell’s
equations and the Lorentz force acting on electrons (Feynman, Leighton & Sands 1964; Assis 2000).
Its validity is verified by laboratory experiments (see Miller 1981; Kelley 1999). A proper interpretation
of unipolar induction is still under discussion, as there are subtleties in how it is related to electrody-
namics and relativity (see, for example, recent articles by Montgomery 1999; Guala-Valverde, Mazzoni
& Achilles 2002). A well known example of astrophysical unipolar inductors is the Jupiter-Io system
(Piddington & Drake 1968; Goldreich & Lynden-Bell 1969). It has been proposed that unipolar induc-
tion operates in pulsar magnetospheres (Goldreich & Julian 1969), in magnetic binary stars (e.g. AM
Herculis binaries, Chanmugam & Dulk 1982), in stellar-planetary systems (see e.g. Zarka 2007; Laine,
Lin & Dong 2008), in white-dwarf planetary systems (Li, Ferrario & Wickramasinghe 1998; Willes &
Wu 2004), and in magnetized accretion disks around black holes (Shatskii 2003, see also Punsly 2001;
Komissarov 2004). There are also models wherein cosmic ray particles are accelerated to ultra-high
energies via unipolar induction (Chanmugam & Brecher 1985; Shatskii & Karashev 2002; see also dis-
cussions in Blandford 2000). A unipolar-inductor model (sometimes known as electric-star model) for
UCDs was proposed (Wu et al. 2002; Ramsay et al. 2002; Willes, Wu & Kuncic 2004; Dall’Osso, Israel
& Stella 2006, 2007; Wu, Ramsay & Willes 2008) to explain the peculiar properties of the X-ray sources
RX J1914+24 and RX J0806+15.

3.1 Compact White-dwarf Pairs

When a non-magnetic conducting body of linear size R traverses a magnetic field B with a velocity v,
an e.m.f. Φ ∼ R|E| is induced across the conducting body, where E = β × B and β = v/c. This is
the basic principle of the operation of unipolar-induction in magnetically interacting white-dwarf pairs.
The setting for a unipolar inductor UCD is illustrated in Figure 2. The e.m.f. across the non-magnetic
white dwarf in orbit with a magnetic white dwarf is therefore

Φ ≈ 2π

c

(
µ1R2

a2Po

)
(1 − α)

=
(

µ1R2

c

)(
2π

Po

)7/3

(1 − α)
[
GM1(1 + q)

]−2/3
, (11)

where q (≡ M2/M1) is the mass ratio of the non-magnetic to the magnetic white dwarf, R 2 and R1 are
the respective radii of the two white dwarfs, and µ1 is the magnetic moment of the magnetic white dwarf.
The induced e.m.f. depends on the degree of synchronism between the spin of the magnetic white dwarf
and the orbit. Without loss of generality, we may specify the degree of asynchronism using a parameter
α, which is the ratio of the spin angular speed of the magnetic white dwarf ω 1 to the orbital angular
speed ωo. (We consider the convention in which the anti-clockwise direction is positive.)
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Fig. 2 Schematic illustration of the unipolar-inductor model for white-dwarf pairs. As the system re-
volves, a large e.m.f. is induced across the non-magnetic white dwarf and currents are driven between
the two stars. The resistance in the atmospheric layers of the white dwarfs causes energy dissipation.
Electromagnetic waves are emitted from the heated white-dwarf atmosphere.

Provided that the space between the white dwarfs is permeated by some plasma, the e.m.f. will drive
electric currents, which flow along the magnetic field lines connecting the two white dwarfs. Although
white dwarfs have a highly conducting core, there is substantial electric resistance in the white-dwarf
atmosphere, where electrical dissipation occurs. The total power generated by the current dissipation in
the two stars is

W = I2(R1 + R2)

=
Φ2

R1 + R2
, (12)

where I is the total current, and R1 and R2 are the effective resistances of the magnetic and the non-
magnetic white dwarf respectively. For an object with a length L and a cross-sectional area A, the
resistance is simply R = L/Aσ (with σ as electric conductivity). It follows that the ratio of the effective
resistances of the white dwarfs is

R1

R2
∼

(
σ2

σ1

)(
R2

2

fR2
1

)(
∆h1

∆h2

)
, (13)

where σ1 and σ2 are the corresponding electric conductivities of the two white dwarfs, ∆h 1 and ∆h2

are the thicknesses of the dissipative surface layers of the white dwarfs, and f is the fractional effective
area of the magnetic poles (hot spots) on the surface of the magnetic white dwarf. As f � 1 (see Wu
et al. 2002), the effective resistance of the magnetic white dwarf is significantly larger than that of the
non-magnetic white dwarf.

As the electric currents pass through both white dwarfs, the ratio of the power dissipation in the
magnetic primary to that of the non-magnetic secondary is W 1/W2 = R1/R2. Taking account of the
geometry of the current loops, we obtain

W1

W2
≈ ζ

(
σ2

σ1

)(
R2

∆R2

)[
G(M1 + M2)

R3
1

(
Po

2π

)2]1/2

, (14)
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R1 ≈ 1
2σ1

(
H

∆d

)(
a

R1

)3/2J (e)
R2

, (15)

R2 ≈ 4
πσ2

(
∆R2

R2
2

)
(16)

(see Appendices A and B of Wu et al. (2002) for details), where ∆R 2 is the thickness of the secondary’s
atmosphere and ζ is a structure factor of the order of unity. The factor J (e) depends on the radii of the
white dwarfs relative to the orbital separation. Its value is of the order of unity for white-dwarf pairs
with Po less than an hour.

The electric conductivity of plasma at an electron temperature T e is given by

σ = γ

(
25/2

π3/2

)
(kTe)3/2

m
1/2
e Ze2 ln Λ

(17)

(Spitzer & Härm 1953), where k is the Boltzmann constant, m e is the electron mass, e is the electron
charge, Z is the ion charge number, and ln Λ is the Coulomb logarithm. The factor γ depends on Z ,
which has values between 0.6 (Z = 1) and 1 (Z → ∞) (see Alfvén & Fälthammar 1963). For a white-
dwarf atmosphere with Te ∼ 105 K, the conductivity σ ∼ 1013 − 1014 esu. Since the conductivities of
the atmospheres of the white dwarfs are similar to each other, the majority of the electrical power will
be dissipated in small regions at the footpoints of the current-carrying field lines on the surface of the
magnetic white dwarf.

The operation of a unipolar inductor in UCDs can be understood in terms of an electric circuit
model. The non-magnetic white dwarf, where the e.m.f. is generated, acts as an electric generator or
a battery (with a small internal resistance); the plasmas that mediate the currents are the conducting
circuit wires; and the magnetic white dwarf is the resistive load, where most of the dissipation occurs.
The induced e.m.f. depends strongly on the binary orbital period, the degree of spin-orbit synchronism,
and the mass (radius) of the non-magnetic white dwarf. The resistivities within the circuit, however,
also depend on the internal properties of the white-dwarf atmosphere. For a large range of mass ratios,
unipolar induction in a compact white-dwarf pair can produce luminosities similar to or larger than the
Sun, requiring only a small degree of spin-orbit asynchronism (Fig. 3).

The remaining question now is: what actually drives the electric currents? The energy reservoir is
in fact the binary orbit. Through unipolar induction, a back Lorentz torque is generated and it acts on
the orbit. Orbital energy is extracted, which provides the e.m.f. for the current circuit. Thus, similar to
accretion, the ultimate energy source in a unipolar-inductor white-dwarf pair is still the gravitational
potential.

3.2 Candidate Unipolar-inductor Ultra-compact Double Degenerates

The two candidate unipolar-inductor UCDs, RX J1914+24 and RX J0806+15, are short-period variable
X-ray sources discovered in the ROSAT observations (Motch et al. 1996; Cropper et al. 1998; Israel et
al. 1999). One of their remarkable characteristics is that only a single period is shown in the variations
across the electromagnetic spectrum — from the infra-red (IR) and optical to X-ray bands (see Figs. 4
and 5). The period of RX J1914+24 is 569 s (Ramsay et al. 2002), and the period of RX J0806+15 is
321 s (Israel et al. 2003). Their X-ray light curves show pulse-like profiles, suggesting that the emission
originates from a hot spot on the surface of one of the stars. The optical/IR light curves, in contrast,
show sinusoidal variations, and variations are anti-phased with the variations in the X-ray bands. The
optical/IR emission region is therefore extensive and not coincident with the X-ray emitting region.

The nature of RX J1914+24 and RX J0806+15 has been under debate. It is now generally accepted
that they are binary systems with orbital periods of 569 s and 321 s, respectively. This requires the two
component stars in RX J1914+24 and RX J0806+15 to be degenerate stars. Moreover, they are very
compact binaries with orbital separations similar to Jupiter’s linear size. Several models for them been
proposed: (i) face-on intermediate polar (IP) (Norton, Haswell & Wynn 2004), (ii) degenerate polar (de-
generate AM Herculis binary) (Cropper et al. 1998), (iii) direct impact accretor (Marsh & Steeghs 2002;
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Fig. 3 Total power generated by the dissipation of electric currents as a function of the orbital period
for spin-orbit asynchronism (1 − α) of 1/1000 and 1/100 (left and right panels respectively) predicted
by the unipolar induction for UCDs. The solid lines correspond to cases with a 1.0 M� magnetic white
dwarf. Lines a, b and c correspond to the cases with a non-magnetic companion white dwarf of 0.1,
0.5 and 1.0 M� respectively. The dotted line corresponds to the case with a 0.7 M� magnetic white
dwarf and a 0.1 M� non-magnetic white dwarf; the dashed line, a 1.3 M� magnetic white dwarf and
a 0.1 M� non-magnetic white dwarf. The white-dwarf magnetic moments are 1032 G cm3 in all cases.
(Adapted from Wu, Ramsay & Willes 2008.)

Ramsay et al. 2002), (iv) neutron star-white dwarf pair (Ramsay et al. 2002), and (v) unipolar-inductor
binary (Wu et al. 2002; Dall’Osso, Israel & Stella 2006, 2007). In the first four models, accretion is
the energy source for the observed X-rays. The unipolar-inductor model, however, suggested that the
emission of X-rays is caused by ohmic dissipation of electric currents in the white-dwarf atmosphere.
An assessment of the models can be found in Cropper et al. (2004).

In the face-on IP model, a moderately magnetized white dwarf is accreting material from a main-
sequence donor star. The white-dwarf spin is not synchronous with the orbital rotation. The pulse period
of the X-ray emission is the white-dwarf spin period, which is much shorter than the undetected orbital
period. In the degenerate polar model, the accreting white dwarf has a strong magnetic field. The mass-
donor white dwarf may or may not be magnetic. The whole system is locked into synchronous rotation
by a white-dwarf magnetic field as in the usual polars (AM Herculis binaries). The observed period is
the spin periods of the two white dwarfs. It is also the period of the orbital rotation. In the direct impact
accretor model, both stars are white dwarfs. Their magnetic fields are irrelevant as they do not play a
significant role in determining the emission and the orbital dynamics. The X-ray hot spot is the stream
impact point. Its location on the equator of the accreting white dwarf is fixed in the rotational frame
of the binary. The observed periods are the orbital period and the spin period of the mass-donor white
dwarf, but not necessarily the spin period of the accreting white dwarf. In the neutron star-white dwarf
pair model, there is no mass transfer from the white dwarf to the neutron star. Otherwise, much higher
X-ray luminosities would have been observed. There is only a low level of accretion, which is likely
sustained by remnant material in the vicinity of the binary ejected in previous evolutionary phases.

In the unipolar-inductormodel, RX J1914+24 and RX J0806+15 contain one magnetic and one non-
magnetic (or weakly magnetic) star. It allows the magnetic star to be a neutron star or a white dwarf, but
in a restrictive version both stars are white dwarfs. Electromagnetic radiation from these two systems
is not powered by accretion. Instead, it is due to the dissipation of electric currents. The unipolar-
inductor binary is in contrast to other stellar objects whose energy sources are either accretion or nuclear
reaction. A small asynchronism between the spin of the magnetic white dwarf and the orbital rotation
is required in order to generate a substantial e.m.f. which drives the electric currents. The focusing
field lines channel the electric currents toward a small foot-point region on the surface of the primary
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Fig. 4 Folded light curves of RX J1914+24 (Ramsay et al. 2000). Panels (a) to (e) are X-ray light curves
obtained by ROSAT; panel (f) is the X-ray light curve obtained by ASCA. Panels (g) and (h) are the I
and J band near-IR light curves obtained by UKIRT.

white dwarf. This gives a very small X-ray emission spot. The optical/IR emission is from a heated
hemisphere of the secondary white dwarf irradiated by the X-rays emitted from the primary white dwarf.
The optical/IR emitting area is therefore extensive. This geometrical configuration naturally leads to an
anti-phasing between the optical/IR emission and X-rays.

In order to account for the observed X-ray luminosity, all accreting white-dwarf models (the face-
on IP, degenerate polar and direct-impact accretor models) require a relatively high mass transfer rate.
If we take the X-ray luminosity of ∼ 1035 − 1036 erg s−1 (assuming a distance of 100 pc) deduced
for RX J1914+24 from the ROSAT data (Cropper et al. 1998), the mass transfer rate of the system
exceeds 5×1017 g s−1. Transfer of material from the low-mass secondary star to the high-mass primary
star, in general, causes the binary orbit to expand, and hence the orbital period increases. For rapid
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Fig. 5 Folded Chandra X-ray and VLT optical R-band light curve of
RX J0806+15 (provided by G. L. Israel).

mass transfer on timescales shorter than the timescale of orbital evolution driven by angular momentum
loss (via gravitational radiation or magnetic braking), the orbital period of the binary is expected to
increase, i.e. Ṗo > 0 (or ω̇o < 0). X-ray timing observations, however, show that the periods of these
systems are decreasing (Strohmayer 2002, 2003, 2004, 2005; Hakala et al. 2003; Ramsay et al. 2005),
which is inconsistent with the mass-transfer scenario. Accretion models are difficult to reconcile with
the findings that RX J1914+24 has an almost featureless optical spectrum (Steeghs et al. 2006) and that
RX J0806+15 has only a few very weak optical emission lines (Israel et al. 2002). It is puzzling that
signatures of accreting systems such as the strong prominent H Balmer and He II emission lines as those
observed in cataclysmic variables (see Williams 1983) and low-mass X-ray binaries (see Lewin, van
Paradijs & van den Heuvel 1997) are not seen in the optical spectra of RX J1914+24 and RX J0806+15.
Recent Chandra observations of RX J0806+15 confirmed that emission lines are absent in the X-ray
band (Strohmayer 2008). Another difficulty of the scenarios with a strongly magnetic white dwarf (as
in the degenerate polar model) is non-detection of cyclotron harmonic features in the optical spectra
(cf. the observed cyclotron humps in the optical spectra of AM Herculis binaries, see e.g. Cropper et
al. 1989).

The unipolar-inductor model avoids the above difficulties of the accretion models. Although the
model is generally consistent with existing observations (see Cropper et al. 2004), there are some con-
cerns regardingwhether or not it is applicable to RX J1914+24 and RX J0806+15, which are presumably
compact white-dwarf pairs (e.g. Barros et al. 2005, 2007; Laine, Lin & Dong 2008; Wood 2009). Some
concerns, e.g. regarding the exact magnetic-field geometry and the relative lead/lag in the X-ray pulses
and the optical maxima, can be resolved easily. There are, however, several more serious issues. For in-
stance, certain implicit assumptions have been made in order to facilitate the unipolar-induction process.
In plasma, the time-dependence of a magnetic field is governed by

1
c

∂B

∂t
= ∇× (β × B) +

c

4πσ
∇2B . (18)
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The first term on the right-hand side of the equation is the induction term, and the second term is the
diffusion term. In the unipolar-induction model, the diffusion term is omitted based on the assumption
that the white dwarf’s core is a perfect conductor, i.e., setting the conductivity σ → ∞. This issue was
discussed in detail recently by Laine, Lin & Dong (2008) in the context of binaries containing a normal
star and a planet. The assumption is probably acceptable for compact white-dwarf pairs, as the white-
dwarfs’ cores are practically a fermi ball of electrons. Another serious issue concerns the life-span of
unipolar-inductorUCDs. If the system achieves spin-orbit synchronization on a very short timescale, the
unipolar-induction process will be quenched. As the X-rays from unipolar-inductor UCDs are powered
by electrical dissipation, a rapid spin-orbit synchronization would imply that the X-ray active phases
of the system are brief. If unipolar induction occurs only in transient episodes, it would play a less
important role in determining the orbital evolution of UCDs. In Section 4.2, we will discuss the operation
of unipolar-induction, spin-orbit synchronization and life-span of unipolar induction UCDs in more
detail.

4 ORBITAL EVOLUTION OF UNIPOLAR-INDUCTOR COMPACT BINARIES

4.1 Spin-orbit Coupling

In the unipolar inductor model, the system is asynchronous, and the orbital evolution is described neither
by Equation (9) nor (10) in Section 2. Additional energy dissipation needs to be taken into account.
Without loss of generality, we consider the non-magnetic white dwarf as tidally locked to synchronous
rotation with the orbit. This is justified if the secondary white dwarf is close to filling its Roche lobe.
Through spin-orbit coupling, energy and angular momentum are transferred between the binary orbit
and the spin of the magnetic white dwarf, but the transfer rates depend on the orbital properties and the
dissipation processes.

We may define a quantity

W ∗ ≡ W

(1 − α)2
. (19)

This quantity is independent of the asynchronism parameter α, and it gives the timescale on which the
system achieves spin-orbit synchronism. The two essential equations governing the spin-orbit evolution
are

ω̇o

ωo
=

Ėgw

g(ωo)

[
1 − (1 − α)

W ∗

Ėgw

]
, (20)

α̇

α
= − Ėgw

g(ωo)

[
1 − (1 − α)

(
1 +

g(ωo)
αI1ω2

o

)
W ∗

Ėgw

]
(21)

(Wu et al. 2002), where

g(ωo) = −1
3

[
q3

1 + q
G2M5

1 ω2
o

]1/3 [
1 − 6

5
(1 + q)f(ωo)

]

= −1
3
G2/3M

5/3
chirpω

2/3
o

[
1 − 6

5
(1 + q)f(ωo)

]
. (22)

The structure factor f(ωo) is

f(ωo) =
[

R3
2ω

2
o

G(M1 + M2)

]2/3

. (23)

The moment of inertia of the magnetic white dwarf, I1 = 2ηM1R
2
1/5, and the parameter η depends on

the density distribution and shape of the white dwarf. For spherical stars with a uniform density, η = 1.
Note that by setting W ∗ = 0 and considering lim f(ωo) → 0, we can recover the expression of ωo/ω
for the case with no spin-orbit coupling (Eq. (9)).
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4.2 Life Span of Unipolar-inductor Compact Binaries

The right hand side of Equation (21) is dominated by the final term in the bracket. The synchronization
of the system due to electrical dissipation in the unipolar-inductor circuit is essentially governed by the
equation

α ≈ 1 − (1 − α0) exp
[
− t

τui

]
, (24)

where

τui =
I1 ω2

o

W ∗ (25)

is the synchronization (unipolar-induction) timescale. An approximate expression for α 0 as a function
of M1 and M2 can be obtained by solving Equation (20) for α, with

α0 ∼ 1 − 1
W ∗

[
Ėgw − g(ωo)

ω̇o

ωo

]
(26)

(Willes & Wu, unpublished). The lifetime of the system is limited by gravitational radiation loss, with
the merging timescale for the binary system given by

τgw =
a4
0

4 Θ
, (27)

where a0 is the initial binary orbital separation, and

Θ = a3ȧ (28)

=
64
5

G3

c5
[M1M2(M1 + M2)] (29)

(Peters 1964; see also Landau & Liftshitz 2002).
The synchronization timescale appears to be very short, with τui < 1000 yr, for a range of com-

binations of white-dwarf masses (M1, M2) and magnetic moment (µ). One might be concerned that
unipolar-induction systems can be X-ray sources over only a small fraction of the binary system life-
time τgw, which is the timescale for white-dwarf coalescence due to gravitational radiation losses. The
apparently short X-ray emission phase could pose problems for the detectability of these systems, as
pointed out by Barros et al. (2005). A possible resolution is to invoke a mechanism, such as intermittent
mass transfer, which causes repeated episodes of spin-orbit de-synchronization over the system lifetime.
While this is possible, it is not always necessary. In the parameter regimes of UCDs, the unipolar induc-
tion phase can operate and produce X-ray pulses over the system lifetime before coalescence occurs,
even when τui � τgw.

This phenomenon can be illustrated with the following example. Consider a system with white-
dwarf masses M1 = 0.7 M� and M2 = 0.345 M� and with the primary white dwarf having a magnetic
moment µ = 1030 G cm3. For these parameters, the initial value of the asynchronism parameter required
to fit the observed orbital period Po and period derivative Ṗo for RX J0806+15 is α0 = 0.95. Figure 6
shows the evolution of α over a 50 000 year period. The synchronization timescale of the system τ ui ∼
5000 yr. After a brief unipolar-inductor phase (t > τui), the driver of system evolution is taken over
by the gravitational radiation loss. However, the system has not achieved synchronism by the end of
the unipolar-inductor phase (α 	= 1). During the subsequent slow evolution, gravitational radiation
loss ensures that the system remains asynchronous over the remaining time span until the eventual
coalescence of the two white dwarfs. Note that the rate of change of α is effectively zero (in comparison
to the fast evolution of α during the unipolar-inductor phase), despite the fact that the system is in an
asynchronous state. The value of α at the “end” of the unipolar-inductor phase can be estimated by
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Fig. 6 (Left) Evolution of the asynchronicity parameter α for a compact white-dwarf pair with M1 =
0.7 M� and M2 = 0.345 M� and µ = 1030 Gcm3. The orbital period and its time derivative take the
values derived for RX J0806+15 (see Israel et al. 2003; Hakala et al. 2003). The evolution is character-
ized by a rapid phase (up to t ∼ τui) followed by a slow phase where the evolution is controlled by the
dynamics of the orbital decay associated with gravitational radiation losses. For this set of parameters,
the system would not be completely synchronized when entering the slow phase. (Right) Evolution of
the footpoint luminosity (electrical dissipation) W is associated with α from the left panel. The value
of W remains above the level of ∼ 1033 erg s−1 throughout the entire binary-system lifetime, and at
the later evolutionary stage it even increases despite the spin and orbit becoming more synchronized.
(Diagrams provided by A. Willes.)

equating the first and last terms on the right-hand side of Equation (21) (i.e. by setting α̇ = 0, and where
g(ωo)/(αI1ω

2
o) 
 1), yielding

αgw =
χ

1 + χ
, (30)

where

χ =
g(ωo)

Ėgw τui

. (31)

For these parameters, αgw = 0.97, which is in approximate agreement with the value of α at the end of
the unipolar-inductor phase, t ∼ 5000 yr (left panel, Fig. 6). The system remains unsynchronized, with
α ≈ 0.98, over a period of t ∼ 50000 yr. Throughout the evolution, the footpoint luminosity (electrical
dissipation) W exceeds 1033 erg s−1 (right panel, Fig. 6).

We note that for some parameters, a system can achieve a high degree of synchronization on a short
timescale. For instance, if we consider different masses for the white dwarf, say M 1 = 0.7 M� and
M2 = 0.1 M�, then the system is almost completely synchronized and αgw reaches 0.998 within 1500
yr, and the corresponding footpoint luminosity W falls below 10 32 erg s−1 soon after this time. Here,
we have demonstrated that over a certain range of parameters, the unipolar-inductor model can sustain
intense X-ray emissions over the entire lifetime of the system, rather than the much shorter unipolar-
inductor timescale.

Compact white-dwarf pairs are strong sources of gravitational radiation. They are populous in the
solar neighborhood and are among the first to be detected by the gravitational wave observatory LISA
(see Cutler, Hiscock & Larson 2003; Nelemans 2003; Nelemans, Yungelson & Portegies Zwart 2004;
Kopparapu & Tohline 2007). These sources can be calibrators of the experiments or pests that cause
foreground contamination of the weaker cosmological signals. In order to have these sources detected
and subtracted, one needs good waveform templates of the gravitational radiation that they emit. As il-
lustrated above, the unipolar-induction can persist throughout the lifetime of a UCD until the two white
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Fig. 7 Illustration to show the regions where electron-cyclotron masers would emit in a compact white-
dwarf pair or a white-dwarf planetary system.

dwarfs coalesce. The orbital evolution is determined by the energy loss due to gravitational radiation
and electrical dissipation. Without taking into account the contribution of unipolar induction, the grav-
itational wave signals of a UCD can become de-coherent on timescales as short as days, thus posing
serious problems in UCD detection.

5 ELECTRON-CYCLOTRON MASER EMISSION

UCDs are potential electron-cyclotron maser sources. The two distinguishable characteristics of
electron-cyclotron masers are high brightness temperature and almost 100% circular polarization. The
operation of electron-cyclotron masers requires a population inversion in the electron distribution and a
magnetized plasma in which the electron-cyclotron frequency Ω e exceeds the plasma frequency ωp (e.g.
Dulk 1985). These two conditions can be satisfied in a variety of astronomical settings. The first condi-
tion can be achieved in the presence of a loss-cone or a shell electron distribution. These distributions are
kinetically unstable, and the instability provides the free energy for the generation of electron-cyclotron
masers (Wu & Lee 1979; Melrose & Dulk 1982; Pritchett 1984; Melrose 2005; Treumann 2006) A loss-
cone electron distribution arises when an electron pitch-angle anisotropy develops within a magnetic
flux tube with converging field lines at each foot point. Large pitch angle electrons are magnetically re-
flected, whereas small-pitch-angle electrons are lost through collisions with high density plasma at the
foot of the magnetic flux tube. The second condition is satisfied in magnetized plasmas with a relatively
low electron density and/or a high magnetic field strength.

In Jupiter and Io, electron cyclotron masers are emitted from the current-carrying electrons in the Io
magnetic flux tube. The observed high brightness temperatures (>∼ 1017 K, Dulk 1970), 100% circularly
polarization (Dulk, Lecacheux & Leblanc 1992) and the radiation beaming pattern in the radio emission
from Jupiter-Io are characteristics of electron-cyclotron masers. The anti-correlation between infrared
footpoint emission and Io-controlled Jovian decametric radiation indicates that the masers are driven by
reflected electrons (Connerney et al. 1993). The presence of reflected electrons in a loss-cone distribution
is also consistent with the observation of negative frequency drifts in the fine-frequency structure of
Jovian decametric radiation S-bursts (Ellis 1974).

The operation of unipolar induction and the similarity of configurations between a unipolar inductor
UCD and the Jupiter-Io system imply that loss-cone instability may develop in the magnetic flux tubes
in a UCD (see Fig. 7). The main differences between a UCD and the Jupiter-Io system are probably
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Fig. 8 Peak flux densities of electron-cyclotron masers (in the radio wave-bands) from unipolar-inductor
UCDs (maximized over emission angle). The system parameters of the UCDs are white-dwarf masses
M1 = 0.7 M� and M2 = 0.5 M�, orbital period Po = 540 s, magnetic moment of the primary white
dwarf µ = 1031 G cm3 and degree of asynchronism of 1 part in 1000. The loss-cone parameters are
the temperature kT = 1 keV, the electron number density nlc = 109 cm−3, and the edge width ∆α =
0.05 (see Willes & Wu 2004). Left and right columns correspond to cases with thermal electrons of
temperatures kTth = 1 and 10 eV, respectively. Panels from top to bottom correspond to thermal electron
number density nth = 108, 109 and 1010 cm−3, respectively. The x-mode emission is represented by
solid lines, and the o-mode emission by dashed lines. The vertical grey lines mark the VLA observing
frequencies of 1.465 and 43 GHz.

the energetics of the streaming electrons in the current circuits, which participate in developing the
loss-cone instability, and the amount of thermal electrons present in the system, which could suppress
the maser process. A model of electron-cyclotron masers from white-dwarf pairs can be constructed in
the unipolar-inductor framework (see Willes & Wu 2004 and Willes, Wu & Kuncic 2004 for details).
The predicted flux densities of electron-cyclotron masers from UCDs with parameters are shown in
Figure 8. For parameters similar to those derived for RX J1914+24 and RX J0806+15, the electron-
cyclotron masers are observable using current instruments such as the radio telescopes ATCA and VLA.
A radio survey would identify unipolar-inductor UCDs which emit only weak X-rays or have a very soft
X-ray spectrum.

Note that a recent search for electron-cyclotron masers from UCDs (Ramsay et al. 2007) revealed a
5-σ source at the position of RX J0806+15. The inferred brightness temperature exceeded 10 18 K and
the upper limit for circular polarization was about 50%.

6 BEYOND ULTRA-COMPACT DOUBLE DEGENERATES

6.1 White-dwarf Planetary Systems

Electron-cyclotron masers can also be generated in astronomical binaries having similar configurations
for electric currents and magnetic fields as a unipolar-inductor UCD. An example is a magnetic white
dwarf with an orbiting terrestrial planet with a metallic core (Li, Ferrario & Wickramasinghe 1998). The
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Fig. 9 Flux density of loss-cone electron-cyclotron masers at 5, 43 and 100 GHz from a UI white-
dwarf planetary system. The magnetic moment of the magnetic white dwarf µ = 1030 G cm3, the
number density of the loss-cone electron population is 107 cm−3, and the mean energy of the electrons
is 1 keV. The distance to the source is 100 pc. The gray band denotes the region in parameter space
where detection is expected for the current instrumentation.

metallic core is a good electric conductor. It provides the e.m.f. to drive the current flow. A unipolar-
inductor white-dwarf planetary system differs from a unipolar-inductor UCD by replacing the non-
magnetic white dwarf with a less massive terrestrial planet. Electron-cyclotron maser generation is de-
termined by the magnetic field and electric current configurations, and the charge acceleration processes.
The strength of the masers has a very strong dependence on the system size but a weak dependence on
the system mass. Because a terrestrial planet and a white dwarf have similar size, electron-cyclotron
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masers in white-dwarf planetary systems can be as strong as in UCDs (Willes & Wu 2004, 2005). The
predicted flux densities of loss-cone electron-cyclotron masers from a unipolar-inductor white-dwarf
planetary system can exceed 0.1 Jy for certain sensible system parameters (see Fig. 9).

Can white-dwarf planetary systems be formed? White dwarfs are remnants of solar-like and low-
mass stars. After evolving beyond the main-sequence and the giant phases, the sun will become a white
dwarf. For a solar-like system, if the inner planets can survive being engulfed by the inflated stellar
envelope during the red-giant/asymptotic-giant phases, the system will become a white-dwarf planetary
system (see discussions in Willes & Wu 2005). Provided that the terrestrial planets spiral in sufficiently
close to the white dwarf so that efficient unipolar induction can operate, a loss-cone or shell electron
distribution may develop, leading to the emission of electron-cyclotron masers. A population synthesis
(Willes & Wu 2005) suggested that there would be about five systems expected to be detected by VLA
at 43 GHz, about 20 systems by SKA at 20 GHz, and about 100 systems by ALMA at 100 GHz.

6.2 Einstein-Laub Effect in Compact Binaries

Einstein & Laub (1908) pointed out that a magnetic dipole moment moving in a constant velocity would
develop an electric dipole moment, i.e.

d = β × µ , (32)

where E is the electric field, B the magnetic induction, β the velocity normalized to the speed of light
in vacuum, d the electric dipole moment, and µ the magnetic dipole moment. This essentially says that
electrodynamics is a restrictive case of special relativity. However, it is not easy to set up an experiment
in which a strong magnet moves at a relativistic speed so as to induce a measurable electric dipole
moment.

In a slab of insulating material moving with a constant velocity, we would expect an electric polar-
ization P , given by

P =
ε − 1
4π

(E + β × B) + (β × m) , (33)

where m is the magnetic polarization and ε is the dielectric constant. Wilson & Wilson (1913) conducted
a rotating-cylinder experiment, which appeared to have verified this effect. However, the interpretation
of their results and whether the experiment is a validation of the effect has been under debate (see
Pellegrini & Swift 1995; Weber 1997; Krotkov et al. 1999; Hertzberg et al. 2001). The arguments center
on the fact that a spinning device was used in the Wilson & Wilson experiment while rotation is not
equivalent to translational motion.

The Einstein-Laub effect was subsequently verified in a molecular beam experiment (Sangster et al.
1993; 1995), which was designed for other scientific objectives. In the experiment, a beam of magnet-
ically polarized thallium fluoride molecules (the magnetic dipoles with moments µ) with a velocity β
was sent through a region of constant electric field E. By measuring the Ahronov-Casher phase shift,
which is given by

h̄φab =
∫ b

a

dt (µ × E) · β

=
∫ b

a

dt (β × µ) · E

=
∫ b

a

dt d · E , (34)

where h̄ is the reduced Planck constant. Sangster et al. (1995) deduced the interaction energy and used
it to infer the induced dipole moment d. The result agreed with the theoretical prediction by relativity to
within 2%.
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We note that the Einstein-Laub effect in a rotating device is manifested in compact binaries.
Consider a magnetized white dwarf rotating in a tight orbit around another compact object. The white
dwarf has a magnetic moment µ. For simplicity, the magnetic moment µ is perpendicular to the orbital
angular velocity ωo. Moreover, the white-dwarf spin is magnetically locked into synchronous rotation
with the orbit, as in the AM Herculis binaries. The orbital rotation of the white dwarf would then induce
a spinning electric dipole moment with a magnitude

d =
µroωo

c
, (35)

where ro is the radius of the white-dwarf orbit with respect to the center of mass of the binary. A spinning
electric dipole is known to emit electromagnetic waves. The radiative power is given by

L =
2
3

d̈2

c3
=

2
3

µ2r2
oω

6
o

c5
. (36)

For a binary with Po ∼ 300 s, ro ∼ 1010 cm, and a white dwarf with µ ∼ 1033 G cm3, the radiative
power will be L ∼ 2.3× 1023 erg s−1. This value is similar to that of thermal emission from a spherical
body with a temperature of about 300 K and an Earth-sized radius. However, r o ∝ ao ∝ ω

−2/3
o ,

implying that L ∝ ω
14/3
o (cf. Lgw = Ėgw ∝ ω

10/3
o for gravitational radiation). For a system with

Po ∼ 5 s (possible for two neutron stars in a merging process), the expected radiative power would
exceed 1031 erg s−1, which would have some observational consequences.

7 SUMMARY

Ultra-compact double degenerates contain two compact stars revolving around each other in a very tight
orbit. The proximity of the two stars allows efficient magnetic coupling between the stellar spins and the
orbital rotation. The presence of unipolar induction in compact binaries could greatly affect the orbital
dynamics in compact binaries, leading to observational consequences in gravitational radiation as well
as in electromagnetic radiation domains. Unipolar-inductor compact binaries are possible strong sources
of electron-cyclotron masers. The maser model for unipolar-inductor ultra-compact double degenerates
can be applied to white-dwarf planetary systems. Einstein-Laub effects may be observable in compact
binaries with extremely short orbital periods.
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