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Abstract PLS (Partial Least Squares regression) is introduced into an automatic esti-
mation of fundamental stellar spectral parameters. It extracts the most correlative spec-
tral component to the parameters (Teff , log g and [Fe/H]), and sets up a linear regres-
sion function from spectra to the corresponding parameters. Considering the properties
of stellar spectra and the PLS algorithm, we present a piecewise PLS regression method
for estimation of stellar parameters, which is composed of one PLS model for Teff , and
seven PLS models for log g and [Fe/H] estimation. Its performance is investigated by
large experiments on flux calibrated spectra and continuum normalized spectra at dif-
ferent signal-to-noise ratios (SNRs) and resolutions. The results show that the piecewise
PLS method is robust for spectra at the medium resolution of 0.23 nm. For low resolu-
tion 0.5 nm and 1 nm spectra, it achieves competitive results at higher SNR. Experiments
using ELODIE spectra of 0.23 nm resolution illustrate that our piecewise PLS models
trained with MILES spectra are efficient for O ∼ G stars: for flux calibrated spectra, the
systematic offsets are 3.8%, 0.14 dex, and –0.09 dex for Teff , log g and [Fe/H], with error
scatters of 5.2%, 0.44 dex and 0.38 dex, respectively; for continuum normalized spectra,
the systematic offsets are 3.8%, 0.12 dex, and –0.13 dex for Teff , log g and [Fe/H], with
error scatters of 5.2%, 0.49 dex and 0.41 dex, respectively. The PLS method is rapid, easy
to use and does not rely as strongly on the tightness of a parameter grid of templates to
reach high precision as Artificial Neural Networks or minimum distance methods do.

Key words: methods: data analysis — methods: statistical — stars: fundamental param-
eters (classification, temperatures, metallicity) — techniques: spectroscopic — surveys

1 INTRODUCTION

The development of modern telescopes, such as SDSS, LAMOST, etc. gives researchers the opportu-
nity to study large scale kinematic and chemical structure of the Galaxy by using great amounts of
stellar spectra. Using these spectra, researchers can derive fundamental physical parameters: the effec-
tive temperature (Teff ), gravity (log g) and metallicity ([Fe/H]), which are some of the most interesting
properties of a star. For medium and low resolution spectra obtained by modern telescopic surveys, it is
necessary to develop automatic spectral analysis technologies to obtain the parameters of stellar spec-
tra from the data. At present, researchers have applied PCA (Principal Component Analysis), ANNs
(Artificial Neural Networks), and other data analysis technologies to stellar spectral analysis.

∗ Supported by the National Natural Science Foundation of China.
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The existing automated stellar spectral parameter measurement methods could be grouped into two
kinds: MDM (minimum distance methods) and ANN methods. MDM firstly constructs a spectral tem-
plate library in which their parameters have been identified accurately by traditional physical measure-
ments. A spectrum to be estimated is then compared with each of the templates while a function is
defined to describe the similarity between the estimated spectrum and the templates. Parameters of the
template with the highest similarity are then assigned to the estimated spectrum. The k-nearest neighbor
algorithm, weighted average algorithm, χ2 technique and template matching method are variations of
the MDM algorithm. The representative research is the ELODIE online stellar parameters estimation
system by Katz et al. (1998) and Soubiran (1998). They constructed a stellar spectral template library
composed of 211 F – K type stellar spectral templates with a resolution of 0.1 Å. With SNR = 100 data,
the precision reached values of: Teff : 86 K, log g: 0.28 dex, [Fe/H]: 0.16 dex; and with SNR = 10 data,
Teff : 102 K, log g: 0.29 dex, [Fe/H]: 0.17 dex. Fuentes & Gulati (2001) presented a distance-weighted-
nearest-neighbor algorithm, and the input data included spectra and spectral indices. Recio-Blanco et
al. (2006) designed the MATISSE algorithm to automatically derive the parameters and chemical abun-
dances for the Gaia/RVS survey, with a library of synthetic spectra as the templates. An object’s spectral
parameters are linear combinations of the parameters of the most correlated template spectra. This algo-
rithm is essentially a locally weighted average algorithm. Prieto (2003) performed MDM to determine
stellar atmospheric parameters on R ' 5000 resolution spectra of A – K stars. To find the best fit with a
template spectrum, he used a genetic algorithm when implementing MDM. Bonifacio & Caffau (2003)
applied the χ2 method to automatically determine the [Fe/H] of R = 15 000 spectra for the giants in the
Sagittarius dwarf spheroidal galaxy.

The other popularly applied algorithm is ANNs. It is a non-linear regression algorithm. We have
little knowledge of the mapping process performed by ANNs between a spectrum and its estimated
parameters, because an ANN is a black-box which cannot provide any information about the mapping
relationship. ANNs for estimating stellar parameters has a shortcoming: the structure of an ANN (the
number of layers, the parameters of mapping function, etc.) is often variable and is determined by
experience and convention. Usually, the more sophisticated the ANN structure, the longer the training
time for the ANN. Many researchers designed different ANNs to estimate stellar spectral parameters.
Snider et al. (2001) explored a back-propagation ANN for the estimation of atmospheric parameters
for Galactic F- and G-type stars. The ANN is fed with medium-resolution spectra (∆λ = 1 – 2 Å)
and the accuracy of σ(Teff) = 135 – 150 K over the range 4250 ≤ Teff ≤ 6500 K, σ(log g) =
0.25 – 0.30 dex over the range 1.0 ≤ log g ≤ 5.0 dex, and σ([Fe/H]) = 0.15 – 0.20 dex over the
range −4.0 ≤ [Fe/H] ≤ 0.3 dex. Bailer-Jones (2000) developed a parameterization system based on
a feedforward multilayer perceptron ANN with two hidden layers. It was shown to provide accurate
three-dimensional physical parameterization of synthetic Kurucz model stellar spectra. Willemsen et al.
(2005) employed a feedforward ANN, trained on synthetic spectra in a 1800 Å region around 4700 Å
(R ' 1500 − 2400), to determine metallicities of main-sequence turn-off, subgiant and red giant stars
in two globular clusters.

In this paper, PLS is introduced to the problem of estimating stellar parameters. PLS regression
extracts the components from spectra that correlate with the parameters and builds up a linear regression
between the spectral components and the corresponding parameters. This special property explores a
new method of parameter estimation for a stellar spectrum. Considering the properties of stellar spectra,
we designed a piecewise PLS method for parameterization of a stellar spectrum in this paper. Once the
linear regression model is set up by PLS, for a spectrum in which the parameters need to be determined, it
is only necessary to multiply it by the regression model’s coefficients. We investigated the piecewise PLS
with low resolution optical spectra. Section 2 introduces PLS and the framework of piecewise PLS for
estimating stellar parameters; Section 3 describes the experiments and results on low resolution spectra
at different SNR; Based on the experiments in Section 3, the paper gives discussion and conclusions in
Section 4.
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2 PLS REGRESSION AND PIECEWISE PLS METHOD

PLS regression is also called regression by means of projections to latent structures (PLS). It was devel-
oped between 1975 and 1982 by Herman Wold and co-workers, under the name ‘partial least squares
modeling in latent variables’ (Wold 2001; Wang 1999). PLS regression generalizes and combines fea-
tures from principal component analysis and multiple regression. Its goal is to predict a set of dependent
variables from a set of explanatory variables. This prediction is achieved by extracting a set of latent
variables (correlative component) from the explanatory variables which have the best predictive power.
In this way, PLS sets up the linear regression from explanatory variables to dependent variables. PLS
regression is particularly useful when we need to predict a set of dependent variables from a large
set of explanatory variables. A number of important papers have discussed the objective function and
statistical properties of PLS. Today, it is widely used in chemometrics (i.e. computational chemistry),
economic analysis and other areas of data analysis, especially in the spectral analysis domain of chemo-
metrics. Estimation of parameters from stellar spectra is similar to many solutions of PLS application in
chemometrics. In this paper, we use the PLS method to set up the linear regression function from stellar
spectra to stellar fundamental parameters (Teff , log g, [Fe/H]). Once the regression function is set up, an
object’s spectral parameters are estimated by just inputting the spectrum into the regression model.

2.1 Regression Model for Estimating Stellar Fundamental Parameters from the Spectrum

Consider the linear regression model:

Y = Xβ + ε =
p∑

k=1

X.kβk. + ε , (1)

where X = (x1, · · · , xn)T ∈ Rn×p, n p-dimensional explanatory variables are collected in an
n × p matrix (a p-dimensional spectrum data is denoted as x, which is a column variable). The kth
column of X is expressed as X.k with k = 1, · · · , p, and the ith row of X is expressed as Xi.

with i = 1, · · · , n. Y = (y1, · · · , yn)T ∈ Rn×m, n m-dimensional dependent variables are col-
lected in an n × m matrix (the parameters of a stellar spectrum are denoted as a 3-dimensional
variable y = (Teff , log g, [Fe/H])T ), where m is 3. ε = (ε1, · · · , εn) ∈ Rn×m, are the residuals.
β = (β1, · · · , βm) ∈ Rp×m, are the coefficients to be estimated. The kth row of β is expressed as βk.

with k = 1, · · · , p.
Given samples of stellar spectra as X with the parameters as Y , the linear regression coefficients

are determined by the PLS regression method. For a spectrum x, its parameters are estimated through
the regression function: y∗ = xβ.

PLS principle: PLS regression finds components from X that are also relevant for Y . Specifically,
PLS regression searches for a set of components (called latent vectors) that performs a simultaneous
decomposition of X and Y with the constraint that these components explain as much of the covariance
between X and Y as possible. This step generalizes PCA. It is followed by a regression step where
the decomposition of X is used to predict Y . For the mathematical principles of PLS regression, see
Appendix. There are many algorithms for PLS regression. In our work, the NIPALS algorithm of Wold
et al. is used for the estimation of stellar spectral parameters, which is given in the Appendix.

2.2 Piecewise PLS for Stellar Parameter Estimation

A stellar spectrum is composed of two components: continuum and lines. For the flux calibrated and
flat field corrected spectrum, the shape of the continuum is determined by Teff , and the lines are mainly
determined by the combination of Teff , log g and metallicity. Compared with Teff , it is difficult to
derive precise values of log g and metallicity from low resolution spectra. In order to better separate the
influence of each parameter on the spectra, we designed the piecewise PLS method to improve the log g
and [Fe/H] estimation. The piecewise PLS framework is illustrated in Figure 1: one PLS regression
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Fig. 1 Piecewise PLS framework for estimation of stellar spectral parameters.

model for Teff , and seven PLS regression models for log g and [Fe/H] estimation, each for one of the
seven types of stars. The seven types of stars cover a temperature range: O, > 25 000 K; B, 11 000–
25 000 K; A, 7500–11 000 K; F, 6000–7500 K; G, 5000–6000 K; K, 3500 – 5000 K; M, < 3500 K. First,
the Teff is estimated, then according to the Teff , the spectrum is input into the corresponding regression
model to estimate log g and [Fe/H]. In this way, PLS extracts the most variation of spectra which
correlates with the variation in Teff . For each type of spectra where Teff is limited to a finite range, the
resulting variation in Teff is greatly minimized because PLS extracts the components of spectra with
the largest variation which correlate to the components of log g and [Fe/H]. In order to illustrate the
performance of the PLS method, the next section describes its applications to the estimation of stellar
atmospheric parameters (Teff , log g, [Fe/H]) on flux calibrated spectra, continuum normalized spectra
and different source spectra.

3 APPLICATION OF PLS REGRESSION FOR STELLAR PARAMETER ESTIMATION

3.1 Application to Flux Calibrated Spectra

The piecewise PLS method was investigated using stellar spectra from the MILES library (Sánchez-
Blázquez 2006). The MILES stellar library consists of 945 spectra: wavelength: λ = 350 nm ∼ 743 nm;
resolution: ∆λ = 0.23 nm. The spectra were randomly split into two groups, one set (472 spectra) for
PLS model training, and the other set (473 spectra) for testing.

Parameter coverage: Teff from 3400 K to 36 000 K, log g from 0.2 to 5.86 dex and [Fe/H] from –2.8
to +0.7 dex. Data pre-processing: each spectrum was normalized to have unit standard deviation before
training and testing. log10 Teff (rather than Teff ) was used in the regression model to reduce the dynamic
range of this parameter.

Figure 2 compares the result of the test set computed by the piecewise PLS model with the values
from the MILES library, and the error histograms are also illustrated which are fitted by Gaussian curves
respectively. The inset data of a, b and c in the figures of error histogram are the parameters of Gaussian
curve function: f(x) = a∗e−(x−b/c)2 . The error of Teff is expressed as the ratio of difference to the true
Teff , the error of log g is the difference between the estimated log g and the true log g, and the error of
metallicity is the difference between the estimated [Fe/H] and the true [Fe/H]. Figure 2 shows that the
three parameters (Teff , log g, and [Fe/H]) estimated by the piecewise PLS method are in good agreement
with the values of MILES. The regression models built up by piecewise PLS are feasible for parameter
estimation.



716 J. N. Zhang et al.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.5

1

1.5

2

2.5
x 10

4

Teff MILES (K)

T
ef

f e
st

im
at

ed
 b

y 
pl

s 
(K

)

−0.4 −0.2 0   0.2 0.4 0.6 0.8 1   
0

50

100

150

200

250

300

error of Teff

N

a=254
b=−0.0042
c=0.0462 

−1 0 1 2 3 4 5 6
−1

0

1

2

3

4

5

6

7

8

log g MILES (dex)

lo
g 

g 
es

tim
at

ed
 b

y 
P

LS
 (

de
x)

−4 −2 0 2 4
0

50

100

150

200

a=167
b=−0.0052
c=0.5172

error of log g (dex)

N

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

[Fe/H] MILES (dex)

[F
e/

H
] e

st
im

at
ed

 b
y 

P
LS

 (
de

x)

−1.5 −1  −0.5 0   0.5 1   1.5 2   2.5 
0

20

40

60

80

100

120

140
a=140
b=−0.0022
c=0.2629

error of [Fe/H] (dex)

N

Fig. 2 Result of the piecewise PLS method for flux calibrated 0.23 nm resolution MILES spectra pa-
rameterization. The left side compares the set of test parameters estimated by the PLS method and true
parameters provided by MILES where the solid line has a slope of 1. The right side shows histograms of
the parameter errors and a Gaussian fit with the inset data: a, b, and c are the parameters of the Gaussian
curve function: f(x) = a ∗ e−((x−b)2/c2). Upper: Teff ; Middle: log g; Bottom: [Fe/H].

To check the stability of the piecewise PLS method, all the spectra were convolved with a Gaussian
function to low resolution: from ∆λ = 0.23 nm to ∆λ = 0.5 nm and ∆λ = 1 nm, respectively. The
result of the analysis is listed in Table 1 with full SNR. To test the robustness of the PLS method, additive
Gaussian noise was introduced into the set of test spectra with SNR of 100, 50, and 20, respectively. We
computed the parameters of the noised test set and analyzed them. Table 1 presents the error statistic
data for each test set spectra, µ is the bias (mean, error mean): µ = 1

n

∑n
i=1 errori; and σ is the standard
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deviation (std, error scatter): σ =
√

1
n−1

∑n
i=1 (errori − µ)2. Figure 3 presents the mean maximum

errors (equal to |µ|+ σ) vs. SNR.
As Figure 3 and Table 1 illustrate, the accuracy and robustness of piecewise PLS tend to be affected

by resolution. The parameterization of medium resolution spectra, such as ∆λ = 0.23 nm, is almost
unaffected by noise. When the resolution degrades from 0.23 nm to 0.5 nm and 1 nm, the accuracy and
robustness degrade. For Teff estimation, 0.5 nm resolution spectra have a mean maximum error curve
close to those of the 0.23 nm resolution spectra when SNR is more than 50, while the 1 nm resolution
spectra have larger mean maximum errors than those of 0.5 nm and 0.23 nm resolution spectra. For log g,
the mean maximum error curves of the three spectra set at different resolutions tend to blend together
when SNR is higher than 100. Metallicity estimation has a similar performance with log g estimation:
the medium resolution of ∆λ = 0.23 nm spectra are the most robust.
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Fig. 3 Mean maximum error curves with SNR of 20, 50, 100 and full for flux calibrated spectra. We
take |µ|+σ as the mean maximum error. The different symbols mean different resolution test data: line
with circle for 1 nm resolution spectra, line with square for 0.5 nm resolution data, and the asterisk for
0.23 nm resolution data. Top left: Teff ; Top right: log g; Bottom: metallicity.

3.2 Application to Continuum Normalized Spectra

In this section, the piecewise PLS method is tested on continuum normalized spectra with different
SNR levels of noise. The pseudo-continuum of the MILES spectra is first extracted through a 7th degree
polynomial fitting, then the pseudo-continuum is removed from the original spectra. This continuum
normalization is preprocessed automatically by computer. Because M and late-K type stars are difficult
to fit the continuum, the M and K stars were picked out from the training set and testing set. The remain-
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Table 1 Error analysis for the PLS method estimating MILES spectral param-
eters (µ is the mean value of errors and σ is the standard deviation of errors).

∆Teff
Teff

∆log g ∆ [Fe/H]
Resolution SNR µ (%) σ (%) µ (dex) σ (dex) µ (dex) σ (dex)

0.23 nm full 0.50 6.66 0.0006 0.5463 0.0111 0.3677
100 0.51 6.67 0.0018 0.5457 0.0136 0.3710
50 0.51 6.62 0.0024 0.5525 0.0111 0.3699
20 0.40 6.58 0.0042 0.6304 0.0023 0.4125

0.50 nm full 0.36 6.72 -0.0087 0.5947 0.0006 0.4314
100 0.37 6.72 -0.0030 0.6329 0.0002 0.4431
50 0.50 6.84 0.0148 0.7579 –0.0012 0.4719
20 0.48 7.30 0.0319 1.2031 –0.0213 0.6752

1 nm full 0.40 7.05 0.0003 0.6080 –0.0100 0.4874
100 0.38 7.30 –0.0132 0.7921 –0.0246 0.5492
50 0.53 7.56 0.0373 1.1911 –0.0085 0.6791
20 1.08 10.27 0.1028 2.5454 0.0111 1.1838

Table 2 Error analysis for the PLS method of estimating the parameters of MILES spectra
with continuum normalization that was preprocessed. The others are the same as Table 1.

∆Teff
Teff

∆ log g ∆ [Fe/H]
Resolution SNR µ (%) σ (%) µ (dex) σ (dex) µ (dex) σ (dex)

0.23 nm full 0.19 5.23 0.0289 0.5186 0.0225 0.3916
100 0.29 5.27 0.0265 0.5271 0.0265 0.3874
50 0.76 5.46 0.0574 0.5565 0.0279 0.4126
20 2.05 6.45 0.1132 0.5999 0.0117 0.5271

0.50 nm full –0.26 5.50 –0.0101 0.5794 0.0041 0.4393
100 –0.42 5.76 –0.0064 0.6171 –0.0100 0.4496
50 –0.57 5.81 –0.0175 0.6893 –0.0119 0.4993
20 –0.61 6.90 –0.0427 1.1744 –0.0044 0.6337

1 nm full 0.19 5.78 –0.0192 0.6351 0.0078 0.4551
100 0.21 5.95 –0.0256 0.8138 –0.0015 0.5179
50 –0.16 7.03 –0.0290 1.1457 0.0551 0.6551
20 –0.06 10.32 -0.0935 2.4937 –0.0559 1.1359

ing 273 spectra in the test set and the 285 spectra in the training set were smoothed to low resolution of
0.5 nm and 1 nm by Gaussian convolution. The results are presented in Figure 4, and the error analysis is
listed in Table 2. To test the robustness of the method for continuum normalized spectra, Gaussian noise
of SNR=100, SNR=50, and SNR=20 were added to the test spectra. The noised spectra were parame-
terized with the piecewise PLS models, and the results are listed in Table 2. Figure 5 shows the mean
maximum error curves as a function of SNR. From Figure 4, we conclude that the regression models
of continuum normalized spectra derived by piecewise PLS are feasible for the parameterization with
small bias and error scatter. Resolution still influences the accuracy and robustness: medium resolution
spectra of 0.23 nm have better performance than low resolution spectra of 0.5 nm and 1 nm. Owing to
the normalization of the continuum, the accuracy of Teff from medium resolution spectra is not as robust
as that of flux calibrated spectra. Metallicity and log g estimation have a similar performance. We found
that medium resolution spectra were more robust than the low resolution 0.5 nm and 1 nm spectra.
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Fig. 4 Result of the PLS regression method for continuum normalized 0.23 nm resolution MILES spec-
tral parameterization. The left side compares the test set parameters estimated by the PLS method and
the true parameters provided by MILES where the solid line has a slope of 1. The right side shows
histograms of the parameter errors and a Gaussian fit with the inset data the same as Fig. 2. Upper: Teff ;
Middle: log g; Bottom: [Fe/H].

3.3 Test of ELODIE Stellar Library Spectra

In this section, spectra from the ELODIE release 3 (Moultaka et al. 2004; Prugniel 2001) library were se-
lected for checking the piecewise PLS regression models which had been trained by the MILES spectra.
In galaxy survey projects, researchers should construct stellar templates to measure parameters of stars.
The best templates are produced from the project itself, but usually before the survey starts and many
spectra with parameters have been calibrated, the templates have to be constructed by other stellar spec-
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Fig. 5 Mean maximum error curves with SNR of 20, 50, 100 and full for flux calibrated spectra. We
take |µ|+σ as the mean maximum error. The different symbols mean different resolution test data: line
with circle for 1 nm resolution spectra, line with square for 0.5 nm resolution data, and the asterisk for
0.23 nm resolution data. Top left: Teff ; Top right: log g; Bottom: metallicity.

Table 3 Error Analysis for the PLS Method of Estimating ELODIE Spectral Parameters

∆Teff
Teff

∆ log g ∆ [Fe/H]
Spectra µ(%) σ(%) µ (dex) σ (dex) µ (dex) σ (dex)

Flux calibrated –3.81 5.16 0.1356 0.4416 –0.0928 0.3813
Continuum normalized –3.78 5.20 0.1167 0.4864 –0.1285 0.4147

tra libraries, which are the observed spectra or synthesized spectra of a stellar atmospheric model, such
as the Kurucz model, the MARCS model etc. This will influence the results of the measurements. To
determine the system offset, we checked piecewise PLS models with spectra coming from the ELODIE
library, where the models were trained by MILES spectra. The ELODIE library contains 1969 spectra of
some 1390 stars with a resolving power of R = 10 000. Each stellar spectrum provides the atmospheric
parameters with a quality flag: quality flag for Teff is on a −1 ∼ 4 scale, log g is on a −1 ∼ 1 scale, and
[Fe/H] is on a−1 ∼ 4 scale. We used 700 spectra with 5000 < Teff < 15 000 K and each parameter had
a quality flag of at least 1. The spectra were smoothed to the resolution of 0.23 nm by convolution. We
checked the PLS method with two kinds of spectra: flux calibrated and continuum normalized spectra.
The error analysis is listed in Table 3. Figures 6 and 7 present the comparisons between the parameters
from ELODIE and those estimated by the piecewise PLS method.
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Fig. 6 Comparison between the parameters of ELODIE and the parameters estimated by the piecewise
PLS method for flux calibrated spectra, where the solid line has a slope of 1. Top left: Teff ; Top right:
log g; Bottom: metallicity.

4 DISCUSSION AND CONCLUSIONS

Before evaluating the performance of the piecewise PLS method, we should stress that the accuracy of
the results in the above experiments are limited by the nonuniform distribution of parameter coverage
of training spectra. A majority of MILES spectra are F, G, K and M type stars, and A, O and B type
stars are in the minority. The surface gravity mainly covers the range between 3.5 dex and 4.5 dex. The
metallicities cluster in the range between –0.6 dex and 0.5 dex. The nonuniformity of training spectra
lowered the regression ability of the PLS models for the spectra that were outside of the above dense
parameter domain. With more spectra across all parameter ranges introduced into the training set in
the future, better results could be achieved. Nevertheless, the PLS models still derived comparatively
accurate results for the spectra of high Teff , or log g in the range of 0 – 3.5 dex, or [Fe/H] under –
0.6 dex, especially for metal-poor stars, as demonstrated in Figures 2, 4, 6 and 7.

PLS method is different from the present parameterization techniques of fundamental stellar param-
eter estimation. ANN method and MDM are interpolations of the training data. As Bailer-Jones (2001)
pointed out, the ANN is an interpolation of the training data, and the more coarsely the parameter grid
is sampled, the harder it is for the network to get a reliable interpolation. Compared with the methods
above, the PLS method explores a new way for automated stellar spectral parameter estimation. The
advantages of PLS method are:

– The precision of PLS regression does not rely as strongly on the tightness of parameter grid of
training data as ANNs and MDM. PLS could derive a linear mapping function from spectrum to
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Fig. 7 Comparison between the parameters of ELODIE and the parameters estimated by the piecewise
PLS method for continuum normalized spectra. Top left: Teff ; Top right: log g; Bottom: metallicity.

parameters given enough training data. We believe that this aspect makes PLS more efficient, while
the grid of training data for MDM and ANNs may be coarse.

– Once the regression formula is set up, the estimation calculation is extremely rapid. The training
procedure is also rapid. For example, the experiment on medium resolution spectra in Section 3.1
costs less than 2 min to set up eight PLS regression models for piecewise PLS on a Pentium D
personal computer with a 3.4 GHz CPU clock frequency.

– It is very easy to use. As a mature statistical algorithm, many researchers provide PLS algorithm
modules, and many mathematical software have inline PLS algorithm tools, such as SAS and
Matlab.

– Piecewise PLS firstly estimates the temperature, then according to the spectral type, metallicity and
gravity are estimated by one of seven PLS models. The results of experiments show that piecewise
PLS is robust and efficient for medium resolution spectral parameter estimation.

We can conclude that the piecewise PLS method can be adapted to the automated parameterization
of large surveys with huge amounts of low resolution spectra.
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Appendix A: PLS REGRESSION PRINCIPLE AND ALGORITHM

Notion and Notation:
The n observations described by p explanatory variables are stored in an n × p matrix denoted by

X , and the values of m dependent variables collected on these n observations are collected in the n×m
matrix.

The Principle of PLS Regression
PLS regression is a multivariate data analysis technique which can be applied to relate dependent

variables (y) to explanatory variables (x). The method aims to identify the underlying factors, that is,
the linear combinations of the x-variables, that best fit and model the y dependent variable.

The PLS regression procedure can be viewed as a stepwise procedure, where at each step a score
vector t is extracted from X and a score u is extracted from Y . For the first step:

t1 = Xw = w1x1 + · · ·+ wkxk,

u1 = Y c = c1y1 + · · ·+ cmym,

where the unknown parameters are the weights w = (w1, · · · , wk) and c = (c1, · · · , cm), subject to
|w| = |c| = 1. The optimization task of PLS regression is:

var(t1) → max,

var(u1) → max,

r(t1, u1) → max .

The regular mathematical expression is:

max
w1c1

〈Xw1, Y c1〉 s.t.
{

wT
1 w1 = 1,

cT
1 c1 = 1.

Using the Lagrange multiplier technique, one can show that w is the first eigenvector of the matrix
XT Y Y T X , and c is the first eigenvector of the matrix Y T XXT Y . Getting the latent vector t1 and u1,
X and Y are modeled by the same latent vectors:

X = t1p
T
1 + X1,

Y = u1q
T
1 + Y ∗

1 ,

Y = t1r
T
1 + Y1,

where the regression coefficient vectors are:

p1 =
XT t1
‖t1‖2 , q1 =

Y T u1

‖u1‖2 , r1 =
Y T t1
‖t1‖2 .

X1, Y ∗
1 ,Y1 are the three residual matrices when X , Y are explained by the latent vectors.

For the second step, X and Y are replaced by the residual matrices X1 and Y1, respectively, then
the second weighting vectors w2, c2 are computed in the same way and the corresponding latent vectors
t2, u2 are extracted from X1 and Y1. Consequently, X1 and Y1 are deflated by the same latent vectors:

X1 = t2p
T
2 + X2,

Y1 = t2r
T
2 + Y2.

Step by step in the same way, if the rank of matrix X is A, X and Y can be expressed by a series of
latent vectors:

X = t1p
T
1 + · · ·+ tApT

A,

Y = t1r
T
1 + · · ·+ tArT

A + YA.
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Algorithm of PLS
There are several algorithms for calculating the PLS model. The NIPALS algorithm of Wold et al.

(Wold 2001; Philippe 2005) is shown below.
The X and Y are first processed with their columns centered.

1. Getting a starting vector of u, usually one of the Y columns.
2. The X-weights, w: w = XT u/uT u, set norm w to ‖w‖ = 1.
3. Calculate X-scores, t: t = Xw, set norm t to ‖t‖ = 1.
4. The Y -weights, c: c = Y T t/tT t, set norm c to ‖c‖ = 1.
5. Update Y-scores, u: u = Y c/cT c.
6. If t is not converged, i.e., ‖told − tnew‖/‖t‖ > ε, where ε is a small threshold, then go to step 2. If

t converged, compute the value of b which is used to predict Y from t as b = tT u, and compute the
loading vector p for X . Then deflate the effect of t from both X and Y :

p = XT t,

X = X − tpT .

Y = Y − btcT .

The vectors t, u, w, c, and p are then stored in the corresponding matrices, and the scalar b is stored
as a diagonal element of B.

7. If X is a null matrix, then the whole set of latent vectors has been found, otherwise the procedure
can be re-iterated from step 1.

The dependent variables Y are predicted using the multivariate regression formula as:

Y ∗ = TBCT = XBPLS,

where BPLS = PT+BCT with PT+ being the Moore-Penrose pseudo-inverse of PT .
When only a subset of latent vectors is used, the prediction of Y is optimal for this number of predic-

tors. The obvious question is to find the number of latent vectors needed to obtain the best generalization
for the prediction of new observations. This is, in general, achieved by cross-validation techniques.
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Sánchez-Blázquez, P., Peletier, R. F., Jiménez-Vicente, J., et al. 2006, MNRAS, 371, 703
Snider, S., Prieto, C. A., Hippel,T. V., Beers, T. C., Sneden, C., Qu, Y., & Rossi, S. 2001, ApJ, 562, 528
Soubiran, C., Katz, D., & Cayrel, R. 1998, A&AS, 133, 221
Wang, H. W. 1999, Partial Least-squares Regression-method and Applications (Beijing: National Defence Industry

Press of China)
Willemsen, P. G., Hilker, M., Kayser, A., & Bailer-Jones, C. A. L. 2005, A&A, 436, 379
Wold, S., Trygg, J., Berglund, A., & Antti, H. 2001, Chemometrics and Intelligent Laboratory Systems, 58, 131
Wold, S., Sjostrom, M., & Eriksson, L. 2001, Chemometrics and Intelligent Laboratory Systems, 58, 109


