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Abstract We apply the turbulent convection model (TCM) to investigate properties of tur-
bulence in the solar convective envelope, especially in overshooting regions. The results
show TCM gives negative turbulent heat flux u′rT ′ in overshooting regions, which is sim-
ilar to other nonlocal turbulent convection theories. The turbulent temperature fluctuation
T ′T ′ shows peaks in overshooting regions. Most important, we find that the downward
overshooting region below the base of the solar convection zone is a thin cellular layer
filled with roll-shaped convective cells. The overshooting length for the temperature gradi-
ent is much shorter than that for element mixing because turbulent heat flux of downward
and upward moving convective cells counteract each other in this cellular overshooting
region. Comparing the models’ sound speed with observations, we find that taking the
convective overshooting into account helps to improve the sound speed profile of our
nonlocal solar models. Comparing the p-mode oscillation frequencies with observations,
we validated that increasing the diffusion parameters and decreasing the dissipation pa-
rameters of TCM make the p-mode oscillation frequencies of the solar model be in better
agreement with observations.
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1 INTRODUCTION

Turbulent convection models (TCMs), which are based on fully hydrodynamic moment equations
(Xiong 1979, 1981; Canuto 1997), are introduced to deal with the problem of inherent non-linearity
in the Navier-Stokes equations, which gives rise to higher order correlations in the averaged moment
equations and results in an infinite number of differential equations. TCMs are thought to be better than
mixing-length theory (MLT) in studying convective motion in stars. They can deal with transport effects,
dissipation and anisotropy of turbulence which are not properly considered in MLT. Some parameters
are introduced into TCMs to calibrate these effects, but they cannot be given by the theory itself. Many
experiments and theoretical efforts (Hossain & Rodi 1982; Canuto 1997a) have been made to evaluate
these parameters, but it is not well known whether those parameters obtained in ground-based laborato-
ries can be applied in stellar convection zones. A simple approach of the TCM was tested by Li & Yang
(2001, 2007) where model parameters were adjusted to study properties of turbulent convection in the
solar convective envelope. Their nonlocal solar models (NLSM) series, which used TCM to deal with

∗ Supported by the National Natural Science Foundation of China.



586 Q. S. Zhang & Y. Li

convection, are compared with the standard solar model (SSM), which relies on the MLT to deal with
convection, by comparing their p-mode oscillation frequencies with the observed ones. It was found that
p-mode oscillation frequencies of NLSM with large diffusion parameters and small dissipation param-
eters were in better agreement with observations than those of the SSM (Yang & Li 2007). However,
there are two major shortcomings in their NLSM series. Firstly, the TCM is only applied within the solar
convection zone, which is defined by the Schwarzschild criterion. Secondly, the TCM’s parameters are
restricted by numerical difficulties encountered in their NLSM series of solar models. Based on a new
numerical approach, larger diffusion parameters and smaller dissipation parameters are adopted in the
present paper and the TCM is used both in the convection zone and in overshooting regions in order to
see whether the result can be improved further.

The properties of turbulence in overshooting regions have been studied by Xiong & Deng (Xiong
1985; Xiong & Deng 2001; Deng & Xiong 2008) and others (Canuto 1997b). In the present paper, we
can see that the TCM we have adopted also gives negative heat flux u′rT ′ in overshooting regions. We
find peaks for turbulent temperature fluctuation T ′T ′ in overshooting regions. Investigating properties of
the radial component of turbulent kinetic energy in overshooting regions, we find that the overshooting
region below the base of the solar convection zone forms a thin layer filled with cellular convective cells.
It is found that the overshooting length for u′rT ′ is much shorter than that of k or T ′T ′ due to the cellular
structure there. Comparing our solar models with observations, we find that the convective overshooting
makes the resulting sound speed be in better agreement.

In the present paper, we outline basic equations for stellar turbulent convection, the numerical
scheme incorporating the TCM into the stellar evolution code in Section 2. The turbulence properties in
the solar convective envelope and our solar models are detailed in Section 3. Conclusions of the present
paper are summarized in Section 4.

2 BASIC EQUATIONS AND NUMERICAL SCHEME

Equations of stellar structure and evolution are (Huang & Yu 1998)
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In the equations above, the temperature gradient ∇ is determined by the method that deals with convec-
tion. In general,∇ can be obtained by the MLT proposed by Böhm-Vitense (1953, 1958). In the present
work, the TCM described by Li & Yang (2007) is used to get ∇
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Table 1 Turbulence Parameters of Solar Models (Yang & Li 2007)

Ct Ce Ck Ct1 Ce1 Cs
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The above equations are based on second-order moment equations for turbulent convection, which
are closed by some model assumptions. These model assumptions introduce six free parameters: Ct and
Ce describing dissipation of turbulence, Ck describing the anisotropy of turbulence, and Cs, Ct1 and Ce1

describing the diffusion of turbulence. In this paper, Ct and Ce are referred to as dissipation parameters,
and Cs, Ct1, and Ce1 are called diffusion parameters. Other symbols hold the same meanings as in Li
& Yang (2007).

A modified stellar evolution code, which was originally written by Paczynski and Kozlowski, and
updated by Sienkiewicz, is used to calculate solar evolution models. The OPAL equation of state (Rogers
1994; Rogers, Swenson & Iglesias 1996) is used. The OPAL opacity tables (Rogers & Iglesias 1995;
Iglesias & Rogers 1996) are used in the region with lg T > 3.95, and Alexander’s opacity tables
(Alexander & Ferguson 1994) are used in the region with lg T < 3.95. Nuclear reaction rates from
Bahcall (1995) are used. The metal abundance is fixed to be 0.02 in our solar models.

The numerical method that we have used to solve the above equations is an iterative one: solving
the TCM’s equations with given values of the state of matter to get ∇ by the Newton iteration method,
then inputting ∇ into the equations of stellar structure and evolution to solve stellar structure using
the evolution code. This iterative procedure continues until the difference in value of ∇ between two
consecutive iterations is smaller than 10−5. Boundary positions of TCM’s equations are of two types: I.
Schwarzschild boundaries, II. the inner boundary is set 3Hp below the Schwarzschild boundary and the
outer boundary is close to the model surface. It means that we solve the TCM’s equations in two cases:
only within the convection zone, and in the region including both the convection zone and overshooting
regions. The boundary conditions of the TCM are chosen to be small values for turbulent correlation
quantities. For every solar model, about 3700 mass zones are included and 213 time-steps are evolved
from the ZAMS to the present solar age. The solar luminosity and radius are calibrated to their observed
values with an accuracy of 10−6 by iteratively adjusting the initial helium abundance Y0 and the mixing-
length to local pressure scale height ratio α.

The linear oscillation code developed by Li (1993) is used to calculate the p-mode oscillation fre-
quencies. The observed p-mode oscillation frequency data are downloaded from the web site of the
Global Oscillation Network Group (GONG). These data were published on July 13, 2006.

3 PROPERTIES OF TURBULENCE IN SOLAR OVERSHOOTING REGIONS

A simple version of the TCM has been tested by Li & Yang (Li & Yang 2007; Yang & Li 2007). It is
found that p-mode oscillation frequencies of their NLSM series of solar models are in better agreement
with observed ones than those of SSM, and it is expected that p-mode oscillation frequencies of such
models can be further improved by increasing diffusion parameters and decreasing dissipation parame-
ters of the TCM they have adopted. The six parameters of the TCM which were derived from the best
model are listed in Table 1. However, some numerical problems were encountered in their work which
prevented them from doing so.

By developing a new method to solve the equations of TCM, some of those numerical problems
have been solved, so that we can adopt larger diffusion parameters and smaller dissipation parameters.
We can use the TCM not only in the convection zone but also in overshooting regions in the present
work. Three solar models with the parameters of the TCM shown in Table 2 have been calculated: the
NLSM(1) and NLSM(2a) apply the TCM within the convection zone only, and the NLSM(2b) extends
the TCM to overshooting regions 3Hp below the Schwarzschild boundary at the inner boundary and
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Table 2 Turbulence Parameters and the Convection Zone Information of Solar Models

Model Ct Ce Ck Ct1 Ce1 Cs α Y0 Rbc (R) Tbc (106K)

NLSM(1) 0.25 0.10 2.50 0.11 0.20 0.05 0.05852 0.275088 0.72471 2.11849
NLSM(2a) 0.20 0.10 2.50 0.15 0.25 0.10 0.05162 0.275089 0.72470 2.11852
NLSM(2b) 0.20 0.10 2.50 0.15 0.25 0.10 0.05162 0.275085 0.72470 2.11850
SSM 1.642 0.275058 0.72478 2.11819

close to the model surface. Those models also adopt larger diffusion parameters and smaller dissipation
parameters than in Table 1, but fix Ck to be 2.50. That is because∇, which is the only turbulent quantity
used in equations of stellar structure and evolution, is insensitive to Ck (Li & Yang 2007).

NLSM(2b) is our first solar model that applies the TCM both in the convection zone and in the
overshooting regions. Properties of the TCM in the convection zone have been discussed in detail by Li
and Yang (2007), so that we do not repeat them here. Figures 1–2 show turbulent heat flux u′rT ′ and
temperature fluctuation T ′2 of NLSM(2b) both in the convection zone and in the overshooting regions.
Those of NLSM(1) and NLSM(2a) are similar to NLSM(2b) in the convection zone. The behavior of
turbulent properties around Schwarzschild boundaries of the convection zone for NLSM(2b) (the inner
boundary at lg T = 6.326 and the outer boundary at lg T = 3.782) are indicated in the figures. It can
be seen that turbulent heat flux u′rT ′ is negative in overshooting regions, and there are two peaks for
temperature fluctuation T ′2 in the inner and outer overshooting regions, respectively. Figure 3 shows
temperature gradient ∇ around the Schwarzschild boundary of the convection zone. It is found that
∇ > ∇R (in the overshooting region) and ∇ < ∇ad (in the convection zone) around the Schwarzschild
boundary. Those properties of turbulence in the overshooting region will be discussed below.
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Fig. 1 Turbulent heat flux u′rT ′ of NLSM(2b).
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Fig. 2 Turbulent temperature fluctuation T ′T ′ of
NLSM(2b).

Equations (6)–(9) describe turbulence properties in equilibrium. The left sides of the equations are
diffusion terms, and the right side are the generation and dissipation terms. If a term on the right side
is positive, it is a dissipative one, otherwise, it is a generative one. We now transform the equations to a
more inspiring form for detailed discussions.

When we consider movement of a turbulent fluid element in a star, Tb is its temperature, Ur,b is its
radial velocity and ρb is its density. Te and ρe are the temperature and the density of the environment,
and the velocity of the environment is zero Ur,e = 0. We can find

δgr

T
(Tb − Te) = −ρb − ρe

ρe
gr = −d1Ur,b

dt
, (10)



Turbulence Properties in the Solar Convection Envelope 589

T

cP

∂s

∂r
Ur,b =

(∂T

∂r
− δ

ρcP

∂P

∂r

)
Ur,b = − T

HP
(∇−∇ad)

dr

dt
(11)

=
Td lnP

drB

(d lnTe

d lnP
− d lnTb

d lnP

)drB

dt
≈ −d1(Tb − Te)

dt
. (12)

where, d1
dt means the time derivative if the dissipation and diffusion of turbulence are not considered.

So, some terms in Equations (6)–(9) can be rewritten as
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In the above equations, terms on the left side are diffusions, ε is the dissipation rate of turbu-
lent kinetic energy, Ck
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T ′2 the dissipation rate of

T ′2 (Li & Yang 2001). −d1Ur,b
2

2dt , −d1[Ur,b(Tb−Te)]
dt and −d1(Tb−Te)2

dt are the generation rates of kinetic
energy, heat flux and temperature fluctuation, respectively.

We can study turbulent properties in the star by analyzing those generation rates. Inside the con-

vection zone, it is obvious that −d1Ur,b
2

2dt < 0, −d1(Tb−Te)2

dt < 0, −(Tb − Te)
d1Ur,b

dt < 0, and

−Ur,b
d1(Tb−Te)

dt < 0, so that the four turbulent fluctuations u′ru′r, k, u′rT ′ and T ′2 are generated by
them. It is easy to see that generation rates are proportional to ∇ −∇ad, so they are generated signifi-
cantly in the superadiabatic convection zone. It must be mentioned that the location ∇ = ∇ad is not the
Schwarzschild boundary; there is a region in which ∇ < ∇ad < ∇R near the Schwarzschild boundary
shown in Figure 3 (see also Deng & Xiong 2008).

In the overshooting region, we only discuss the downward overshooting region below the bottom
of the convection zone. The results are similar for the upward overshooting region above the upper
convective boundary, except for those particularly indicated. Buoyancy now prevents movement of an

element so that −d1Ur,b
2

2dt > 0, converting it into a dissipation of turbulent kinetic energy u′ru′r and k.
The temperature of an element moving just across the boundary of the convection zone is approximately
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equal to the environment’s (Tb ≈ Te), and d1(Tb−Te)
dt > 0 that results from∇ < ∇ad in the overshooting

region, and the element is therefore hotter than the environment when it is in the overshooting region,
which results in negative heat flux u′rT ′ shown in Figure 1. However, the position of u′rT ′ = 0 is
not identical to the Schwarzschild boundary of the convection zone, because the elements moving at
the Schwarzschild boundary of the convection zone are still a little cooler due to turbulent diffusion
than those in the environment. Because of the negative heat flux u′rT ′, we get ∇R < ∇ according to
Equation (5), and it is obvious that ∇ < ∇ad in the overshooting region, so that ∇R < ∇ < ∇ad in the
overshooting region (Xiong & Deng 2001; Deng & Xiong 2008) which is shown in Figure 3. An element
moving in the overshooting region is hotter than the environment (Tb > Te), and d1(Tb−Te)

dt > 0 which

means it gets progressively hotter than the environment in the overshooting region, so−d1(Tb−Te)2

dt < 0,
and T ′2 increases in the overshooting region, which results in peaks for T ′2 in overshooting regions as
shown in Figure 2. However, because of dissipation of buoyancy, turbulence will finally vanish and all
turbulent fluctuations are attenuated to zero.

Overshooting length is an important parameter. The main effects of convective overshooting are
mixing of elements and modifying the temperature gradient ∇ by u′rT ′. For the elements mixing, be-
cause the present solar age is about 1016 s, and the solar radius is about 1010 cm, so that the typical speed
for traveling across the sun within the present solar age is about 10−6 cm s−1, and it is reasonable to
set the location where u′ru′r ≈ 10−12 cm2 s−2 to be the boundary of the overshooting region. However,
such a definition is reasonable only for the present sun, and it is not a common criterion for all stars.
Figure 4 shows the overshooting length of NLSM(2b) below the base of the solar convection zone. The
Schwarzschild boundary is at lnP ≈ 31.45. We can see u′ru′r, k, and T ′2 all overshoot to the location
where lnP ≈ 32.1, u′ru′r ≈ 10−12 cm2 s−2 is also at that position, so that the downward overshooting
length of NLSM(2b) is about 0.65Hp or 5.2%R¯, the downward overshooting region of NLSM(2b)
is 0.6722R¯ < r < 0.7246R¯. Figure 5 shows the overshooting length of NLSM(2b) above the top
of the solar convection zone. The Schwarzschild boundary is at lnP ≈ 11.63 or lg T ≈ 3.782. We
can see u′ru′r, k and T ′2 all overshoot to the location lnP ≈ 11.56 or lg T ≈ 3.772, so that the up-
ward overshooting length of NLSM(2b) is about 0.08Hp. For u′rT ′, it can be found in Figure 1 that the
overshooting region above the top of the solar convection zone is also 3.772 < lg T < 3.782, which
is in agreement with the overshooting region of other turbulent quantities. However, the overshooting
region of u′rT ′ is only 6.326 < lg T < 6.33 below the base of the solar convection zone, the overshoot-
ing length is about 0.02Hp or 0.2%R¯, which is much shorter than the overshooting length of other
turbulent quantities.

Overshooting length is determined by parameters of the adopted TCM. Enlarging the diffusion
parameters (Ct1, Ce1, Cs) or reducing the dissipation parameters (Ct, Ce) is equivalent to increasing
generation rates or decreasing dissipation rates of turbulent fluctuations, so that it will amplify the over-
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shooting and increase the overshooting length. Otherwise, reducing the diffusion parameters or enlarging
the dissipation parameters will allay the overshooting and decrease the overshooting length. Cs is the
most sensitive parameter of TCM in determining overshooting length, because it dominates diffusion
of turbulent kinetic energy. In the overshooting region below the base of the convection zone, however,
Ct1 and Ct are insensitive to all turbulent quantities (even u′rT ′) and their overshooting regions.

The most important result is the discovery of special structure in the overshooting region below the
base of the convection zone. Figures 6–7 show the ratio of radial kinetic energy to horizontal kinetic
energy in the overshooting regions. It can be found that the ratio of the horizontal component of kinetic
energy increasingly dominates in the upward overshooting region, thus fluid elements gradually turn
to horizontal movement when they approach the boundary of the upward overshooting region and then
return to the convection zone. In the downward overshooting region below the base of the convection
zone, however, the horizontal motion dominates only just below the Schwarzschild boundary and near
the boundary of the downward overshooting region. This result implies that the downward overshooting
region has the structure of a thin cellular layer filled with roll-shaped cells. Changing the TCM’s pa-
rameters will influence the ratio of radial kinetic energy in the downward overshooting region, but such
structure in the overshooting layer is still reserved. That means the downward overshooting region is
always a thin cellular layer whatever the TCM’s parameters are. Their parameters only determine how
many roll-shaped cells are formed in the overshooting region.

In the cellular region, there are both upward and downward flows, but turbulent elements are hotter
than the environment in both cases, so upward flow provides positive heat flux to counteract negative
heat flux. This effect sharply reduces the effective value of u′rT ′ in the downward overshooting region,
which explains why Ct1 and Ct are insensitive to the structure of the downward overshooting region
and the overshooting length of u′rT ′ is much shorter than those of other turbulent quantities.

Figure 8 shows the differences in sound speed between models and data of helioseismological inver-
sion techniques. Helioseismological data are obtained by Basu, Pinsonneault & Bahncall (2000). It can
be found that the O − C of sound speed of NLSM(2a) is only a little different from that of NLSM(2b).
Figure 9 compares sound speed differences of the two models in the solar convective envelope. It can be
found that the sound speed difference of NLSM(2b) is smaller than that of NLSM(2a) in the solar con-
vective envelope, especially in the bottom of the solar convection zone and the downward overshooting
region. The result indicates that considering convective overshooting improves the sound speed of the
models with respect to the observations.

Figures 10–12 show frequency differences of p-mode oscillations with the spherical harmonic index
l = 3, 60, 150. It is obvious that the frequency differences of p-mode oscillations of NLSM solar models
are reduced more than 30% compared with those of SSM in almost the whole frequency range and
for different l. Our results are better than those obtained by Yang & Li (2007) and therefore confirm the
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judgment that the p-mode oscillation frequencies of solar models with the TCM can be further improved
by increasing diffusion parameters and decreasing dissipation parameters (Yang & Li 2007). It is also
found that the O − C of NLSM(2a), which applies the TCM only in the convection zone, is almost
identical to that of NLSM(2b), which also applies the TCM in the overshooting regions.
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Fig. 15 Differences of temperature between NLSM
and SSM in the convection zone.
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Fig. 16 Differences of pressure between NLSM and
SSM in the convection zone.
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Fig. 17 Differences of sound speed between NLSM and SSM in the convection zone.

Figure 13 shows the temperature gradient in the convection zone. It can be seen that the temperature
gradient ∇ increases with an increase of diffusion parameters and a decrease of dissipation parameters
in the TCM. The temperature gradient ∇ of NLSM(2a) is also almost identical to that of NLSM(2b).

Figures 14–17 show the relative differences of density, temperature, pressure and speed of sound
between NLSM and SSM. Those values of NLSM and SSM are compared at the same r (radius). The
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horizontal axes in those figures represent the temperature of SSM in the corresponding r. The relative
differences of density, pressure, and temperature reach about 10%–15% near the top of the convection
zone, and the relative difference of sound speed in the same region also reaches 3%-4%. Were larger
diffusion parameters and smaller dissipation parameters adopted, those differences should increase.

It seems certain that differences in solar p-mode oscillation frequencies between calculated and ob-
served cases can be reduced by increasing diffusion parameters and decreasing dissipation parameters
of the TCM. Based on a series of numerical calculations, it has been found that ∇ shows discontinuity
when very large diffusion parameters (all set to 1.0) and very small dissipation parameters (all set to 0.1)
are adopted. Discontinuous∇ is considered to be unreal, which implies that the diffusion and dissipation
parameters are far away from where they should be. On the other hand, even adopting those parame-
ters, the O − C of p-mode oscillation frequencies shows little improvement compared with NLSM(1),
NLSM(2a) and NLSM(2b). Therefore, the best diffusion parameters and dissipation parameters possibly
may not be far from NLSM(2a).

4 CONCLUSIONS

Convective overshooting is an interesting and important phenomenon in stars. However, it is usually
ignored or excessively simplified in calculations of stellar structure and evolution, because the MLT,
which is currently widely used, cannot be applied in the overshooting region because of its neglect of
turbulent diffusion. In order to investigate structure of the solar overshooting regions and properties of
turbulence in them, we apply the TCM which includes many physical processes ignored in the MLT (Li
& Yang 2007) in our solar models in this paper. The main conclusions are summarized as follows.

1. Applying the TCM in the solar overshooting zone shows negative turbulent heat flux u′rT ′ and
results in ∇ > ∇R and ∇ < ∇ad around the Schwarzschild boundary, which is in agreement with
Xiong and Deng’s results (Xiong & Deng 2001; Deng & Xiong 2008). It is found that T ′2 shows
peaks in the overshooting regions.

2. Investigating the ratio of radial kinetic energy and horizontal kinetic energy in the overshooting
regions, we find that the upward overshooting region has a simple structure, and fluid elements
gradually turn to horizontal movement in it. However, the downward overshooting region is quite
different from the upward one in that it is a thin cellular layer filled with roll-shaped convective
cells. In addition, cellular structure always exists regardless of what the TCM’s parameters are.

3. Our solar model NLSM(2b) gives a downward overshooting length of 0.02Hp for temperature gra-
dient and an overshoot of 0.65Hp for the elements mixing. That is similar to Deng and Xiong’s
(2008) result. The effective overshooting length of u′rT ′ is much shorter than that of other turbu-
lent quantities in the downward overshooting region, because turbulent heat flux of the upward and
downward moving convective cells counteract each other and are almost canceled in the cellular
layer below the base of the convection zone. The overshooting length is determined by the TCM
parameters, especially the Cs. The downward overshooting length is insensitive to Ct1 and Ct,
because of the counteracting behavior mentioned above.

4. Comparing the models’ sound speed with observations, we find that taking the convective over-
shooting into account helps to improve the profile of sound speed derived from the solar models.

5. In the present work, it is confirmed that frequency differences of solar p-mode oscillation frequen-
cies between the calculated and observed ones can be reduced when increasing diffusion parameters
and decreasing dissipation parameters in the TCM of our NLSM models. The O − C of p-mode
oscillation frequencies of our two models is reduced more than 30% compared with that of SSM
model in almost the whole frequency range and when using a different spherical harmonic degree l.
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