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Abstract We develop an effective field theory of density fluctuations for a Newtonian
self-gravitatingN -body system in quasi-equilibrium and apply it to a homogeneous uni-
verse with small density fluctuations. Keeping the density fluctuations up to second or-
der, we obtain the nonlinear field equation of 2-pt correlation ξ(r), which contains 3-pt
correlation and formal ultra-violet divergences. By the Groth-Peebles hierarchical ansatz
and mass renormalization, the equation becomes closed with two new terms beyond the
Gaussian approximation, and their coefficients are taken as parameters. The analytic solu-
tion is obtained in terms of the hypergeometric functions, which is checked numerically.
With one single set of two fixed parameters, the correlation ξ(r) and the corresponding
power spectrum P (k) simultaneously match the results from all the major surveys, such
as APM, SDSS, 2dfGRS, and REFLEX. The model gives a unifying understanding of
several seemingly unrelated features of large scale structure from a field-theoretical per-
spective. The theory is worth extending to study the evolution effects in an expanding
universe.
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1 INTRODUCTION

Great progress has been made in understanding the large scale structure of the universe during the
past decades. Not only have observations of major galaxy surveys such as SDSS (Tegmark et al. 2004;
Zehavi et al. 2002; Zehavi et al. 2005), 2dF (Colless 2001; Hawkins et al. 2003; Madgwick et al. 2003;
Percival 2005), APM (Maddox et al. 1996; Padilla & Baugh 2003), and REFLEX (Collins 2000;
Schueker et al. 2001) etc., revealed cosmic structures of increasingly large sky dimension with new
detailed features being found, theoretical studies have also achieved important results, through nu-
merical simulations (White & Frenk 1991; Springel et al. 2005), perturbation methods (Peebles 1980;
Davis & Peebles 1983; Fry 1984; Goroff et al. 1986; Bernardeau et al. 2002; Valageas 2004), and ther-
modynamics (Saslaw 2000). In view of these dynamics, the Universe, filled with galaxies and clusters,
is a many-body self-gravitating system in an asymptotically relaxed state, since the cosmic time scale
1/H0 is longer than the local crossing time scale (Saslaw 2000). A systematic approach to statistical
mechanics of many-body systems is to convert the degrees of freedom of discrete particles into a con-
tinuous field. Thereby, the fully-fledged techniques of field theory can be applied to study the systems
(Zinn-Justin 1996). The Landau-Ginzburg theory is a known example in this regard. We have formu-
lated such a density field theory of self-gravitating systems and applied it to the large scale structure of
the Universe (Zhang 2007). Under the Gaussian approximation, the field equation of the 2-point cor-
relation function and the solution has been derived explicitly. The result qualitatively interprets some
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observational features, but it suffers from insufficient clustering on small scales. In this paper, we will
go beyond the Gaussian level and include nonlinear terms of density fluctuations up to second order,
yielding a more satisfying description of the large scale structure.

2 NONLINEAR FIELD EQUATION OF CORRELATION FUNCTION

The universe is represented by a collection of either galaxies or clusters, including their respective dark
halos, as unit cells with random velocities. Although the unit cell, galaxy or cluster, has different mass
m, both cases correspond to the same mass density ρ(r). We study the asymptotically relaxed state of

this Newtonian self-gravitating system of N points of mass m with the Hamiltonian H =
∑N
i

p2i
2m −∑N

i<j
Gm2

|ri−rj | . Thus, evolutionary effects will not be addressed in this paper. By using the Hubbard-
Stratonovich transformation (Zinn-Justin 1996), the grand partition function of this system at tempera-
ture T can be cast into the generating functional as a path integral Z =

∫
Dφ exp [−β−1

∫
d3rL(φ)],

where φ is the gravitational field, β ≡ 4πGm/c2s of dimension m−1, cs ≡ (T/m)1/2 the speed of
sound, the effective Lagrangian is L(φ) = 1

2 (�φ)2 − k2
Je
φ, and kJ ≡ (4πGρ0/c

2
s)1/2 is the Jeans

wavenumber. The term −k2
Je
φ has a minus sign because gravity is attractive. By Poisson’s equation

�2φ(r) + k2
Je
φ = 0, the mass density ρ is related to the φ field by ρ(r) = mn(r) = ρ0e

φ(r). So,
ρ0 is the constant mass density when φ = 0. We define a dimensionless re-scaled mass density field
ψ(r) ≡ eφ(r) = ρ(r)/ρ0, and introduce an external source J which couples with ψ in the effective
Lagrangian (Zhang 2007)

L(ψ, J) =
1
2

(�ψ
ψ

)2

− k2
Jψ − Jψ , (1)

J is used to handle the functional derivatives with ease. So far, c s is the only parameter in place of
temperature T , upon which β and kJ depend. The field equation of ψ in the presence of J is

�2ψ − 1
ψ

(�ψ)2 + k2
Jψ

2 + Jψ2 = 0. (2)

The n-point connected correlation function is given byG (n)
c (r1, . . . , rn) = 〈δψ(r1) . . . δψ(rn)〉, where

δψ(r) = ψ(r)−〈ψ(r)〉 is the fluctuation of the field about the expectation value 〈ψ(r)〉, and 〈δψ〉 = 0.

A standard way to derive the field equation ofG (2)
c is to take the functional derivative of the expectation

value of Equation (2) w.r.t. the source J , and then set J = 0 (Goldenfeld 1992; Zhang 2007). Assuming
the large-scale homogeneity of the Universe with a constant background density 〈ψ〉 = ψ 0, and keeping
up to second order of small fluctuations

1
ψ

=
1

〈ψ〉 + δψ
� 1

〈ψ〉
(

1 − δψ

〈ψ〉 + (
δψ

〈ψ〉 )
2

)
, (3)

we obtain the field equation of the 2-pt correlation function

∇2G(2)
c (r) + 2k2

JG
(2)
c (r)

+
[

1
ψ2

0

G(2)
c (r)∇2G(2)

c (0) − 1
ψ0

∇2G(3)
c (0, r, r)

+
2
ψ0

∇G(2)
c (r) · ∇G(2)

c (0)
]

= −ψ2
0βδ

(3)(r), (4)

where G(2)
c (r − r′) = G

(2)
c (r, r′) = βδ〈ψ(r)〉J=0/δJ(r′) has been used. Equation (4) is not closed,

as it involves the 3-pt correlation functionG(3)
c . If higher order terms in δψ were allowed in Equation (3),

there would be G(4)
c , etc., in Equation (4). Therefore, we have a hierarchy of field equations, typical for
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the kinetic equation of a generic many-body system. To close Equation (4), we adopt the Groth-Peebles
hierarchical ansatz (Groth & Peebles 1977)

G(3)
c (r1, r2, r3) = Q[G(2)

c (r1, r2)G(2)
c (r2, r3) +

G(2)
c (r2, r3)G(2)

c (r3, r1) +G(2)
c (r3, r1)G(2)

c (r1, r2)], (5)

where the constant Q = 0.5 ∼ 1.0 (Fry 1984; Efstathiou & Jedrzejewski 1984; Jing & Borner 1998;
Jing & Borner 2004). Then, Equation (4) becomes closed

∇2G(2)
c (r) + k2

0G
(2)
c (r) + a · ∇G(2)

c (r) − b
(
∇G(2)

c (r)
)2

= −ψ2
0βδ

(3)(r), (6)

where a ≡ (
2
ψ2

0
− 2Q

ψ0

)∇G(2)
c (0), b ≡ Q/ψ0 > 0, and

k2
0 ≡ 2k2

J +
( 1
ψ2

0

− 2Q
ψ0

)
∇2G(2)

c (0). (7)

Due to the higher order terms in Equation (3), the friction term a · ∇G and the nonlinear term b(∇G) 2

occur in Equation (6). As is expected for an interacting field theory, 2k 2
J is modified by an apparently di-

vergent term∇2G
(2)
c (0). We take k2

0 as the physical wavenumber like in the standard mass renormaliza-
tion (Zinn-Justin 1996). Equation (6) is a nonlinear elliptic equation with a point source −ψ 2

0βδ
(3)(r).

Since ψ2
0β ∝ m/c2s , galaxies or clusters with greater mass have a higher correlation amplitude. This

naturally explains why the correlations of clusters or galaxies increase with richness and luminosity
(Zhang 2007). As mentioned earlier, galaxies and clusters are treated on equal footing as gravitating par-
ticles differing only by their masses; their correlation functions have the same functional form, differing
only in the amplitude∝ m/c2s . These are the observed facts (Guzzo et al. 2000; Bahcall et al. 2003). By
isotropy of the Universe, one puts G(2)

c (r) ≡ ξ(r), then Equation (6) reduces to

ξ′′(x) +
( 2
x

+ a
)
ξ′(x) + ξ(x) − bξ′ 2(x) = −ψ2

0βk0
δ(x)
x2

, (8)

where x ≡ k0r, ξ′ ≡ dξ
dx , and a ≡ (

2
ψ2

0
− 2Q

ψ0

)
ξ′(0). Both a and b are treated as two parameters.

3 ANALYTIC AND NUMERICAL SOLUTION

The Gaussian approximation (Chavanis 2006; Zhang 2007) is recovered by setting a = 0 = b and
k2
0 → 2k2

J in Equation (6), i.e. keeping only the term 1
ψ � 1

〈ψ〉 in Equation (3). The solution is

ξ(r) ∝ A cos(k0r)
r with A = ψ2

0Gm
c2s

and k0 = (8πGρ0
c2s

)
1
2 , and the power spectrum P (k) = 1

2n
1

( k
k0

)2−1
, where n is the spatial number density. This result qualitatively explains several observed

features, such as a stronger correlation for more massive galaxies, galaxies with a smaller n hav-
ing a higher P (k) (Davis & Geller 1976; Einasto 2002), the scaling of “correlation length” r 0 with
the mean cluster separation d as r0(d) ∝ d 0.3∼0.5 (Bahcall 1996; Bahcall et al. 2003; Croft 1997;
Gonzalez et al. 2002; Zandivarez et al. 2003), and damped oscillations of ξ c(r) for clusters with a wave-
length 2π/k0 � 120h−1 Mpc (Broadhurst 1990; Einasto et al. 1997a,b; Einasto 2002; Tucker et
al. 1997; Tago et al. 2002). Here, one sees the physical meaning of the speed of sound c s. Using
the background mass density ρ0 = ρcΩm = (3/8πG)H2

0h
2Ωm leads to cs =

√
3H0hΩ1/2

m /k0.
Taking the observed periodic length 2π/k0 � 100 ∼ 120h−1 Mpc and hΩ1/2

m ∼ 0.36 by WMAP
(Spergel et al. 2003; Spergel et al. 2007), yields c s � 1000 ∼ 1200 km s−1, which is roughly the order
of magnitude of the peculiar velocity of clusters or galaxies. Thus, viewing c s as the random velocity of
clusters or galaxies is qualitatively consistent with the observations of the periodicity in ξ c(r), of H0,

and of hΩ1/2
m . The shortcomings of the Gaussian solution are that ξ(r) is too low at small scales, and

that P (k) has a sharp peak at k = k0 and becomes negative for k < k0 (Zhang 2007).
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 ξ

Fig. 1 ξgg(r) fits the galaxy correlation functions of the surveys, APM,
SDSS, and 2dFGRS, simultaneously.

Fig. 2 P (k) of Fig. 1 also fits the power spectra of APM, SDSS, and 2dFGRS.
P (k) ∝ k−1.5 in (0.05 ∼ 0.5) h Mpc−1.

Now, these problems are overcome by the nonlinear Equation (8), whose solution is determined by
the boundary condition

ξ(rc) = C, ξ′(rc) = D, (9)

at some rc. Note that, in fitting with observational data, the amplitude C is higher for clusters than for
galaxies, as clarified earlier, and the slope D is roughly equal for clusters and for galaxies. The range
of parameters are taken to be: a = (1.0 ∼ 1.3), b = (0.01 ∼ 0.05), k0 = (0.03 ∼ 0.06) h Mpc−1.
In computation, we take rc � 0.4/k0 h

−1 Mpc. Equation (8) is easily solved numerically. In fact,
it has an analytic solution as follows. By perturbation method, since b � 1, one sets the solution

as a series ξ(x) =
∑∞

i=0 b
iξi(x). Equation (8) becomes ξ̈0 +

(
2
x + a

)
ξ̇0 + ξ0 = −ψ2

0β
δ(r)
x2 and

ξ̈i +
(

2
x + a

)
ξ̇i + ξi = gi, where gi ≡ ∑i−1

j=0 ξ̇j ξ̇i−1−j for i > 0. The solution for ξ0 is a linear

combination of (Gradshteyn & Ryzhik 1980)

y1 ≡ e−
1
2αzΦ(α, 2; z), y2 ≡ e−

1
2αzΨ(α, 2; z), (10)
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ξ

Fig. 3 ξcc(r) fits the correlation function of REFLEX X-ray clusters (Collins 2000).

Fig. 4 P (k) from Fig. 3 fits the corresponding spectrum of REFLEX X-ray
clusters (Schueker et al. 2001).

where Φ and Ψ are the degenerate hypergeometric functions, z ≡ (a 2 − 4)1/2x, and α ≡ 1 + a√
a2−4

.
The solution of ξi is a linear combination of Equation (10) plus a particular solution

y2(x)
∫ x y1(t)gi(t)

W (y1, y2)(t)
dt− y1(x)

∫ x y2(t)gi(t)
W (y1, y2)(t)

dt, (11)

where W (y1, y2) is the Wronskian. The condition in Equation (9) is satisfied by choosing ξ 0(rc) = C,
ξ′0(rc) = D, and ξi(rc) = ξ′i(rc) = 0 for i > 0. As is checked, up to order i = 4, this analytic solution
agrees with the numerical one. Once ξ(r) is known, the power spectrum follows from Fourier transform
P (k) = 4π

∫ ∞
0 ξ(r) sin(kr)

kr r2dr. For galaxies from APM, 2dFGRAS and SDSS, the calculated ξgg(r)
and P (k) are shown in Figures 1 and 2, respectively. For REFLEX X-ray clusters, the calculated ξ cc(r)
and P (k) are given in Figures 3 and 4, respectively. For SDSS clusters, ξ cc(r) is given in Figure 5. It is
seen that, for the fixed parameters (a, b) � (1.2, 0.02), and k0 = 0.05 h Mpc−1, the calculated ξgg(r),
ξcc(r), and their respective P (k) all match very well with major surveys for both galaxies and clusters,
simultaneously. Thus, our density field theory gives a decent description of the observational data.



506 Y. Zhang & H. X. Miao

ξ

Fig. 5 ξcc(r) of SDSS clusters of different richness (Bahcall et al. 2003) are
obtained by the same set (a, b) but different initial amplitude.

 ≅ ≅ 

 ξ

Fig. 6 Solution ξgg(r) of the nonlinear Eq. (8) improves the Gaussian one on
small scales and matches 2dFGRAS active galaxies.

4 DISCUSSION AND CONCLUSIONS

Overall, the solution ξ(r) of Equation (8) improves the Gaussian one considerably, as shown in Figure 6,
in which the 2dFGRS active galaxies are taken for the purpose of demonstration. It is found that the
nonlinear term −b(ξ ′)2 has the effect of strongly enhancing ξ(r) on small scales, and making P (k)
flatter in k < k0. The friction term aξ ′ has the following effects: slightly increasing the height of ξ(r)
on small scales; moving the zeros of ξ(r) to larger r; strongly damping the amplitude of oscillations of
ξ on large scales (Broadhurst 1990; Einasto et al. 1997a,b; Einasto 2002; Tucker et al. 1997; Tago et al.
2002) as seen in Figure 7; smoothing out the sharp peak of P (k) at k 0 and turning P (k) positive for
k < k0.

The main conclusion of this paper is the following. The universe, containing galaxies or clusters,
is viewed as a many-particle system in an asymptotically relaxed state and can be described by an
effective density field, whereby the techniques of field theory apply, yielding a perspective on the large
scale structure of the universe other than the conventional methods. The Jeans scale k 0 � (0.04 ∼
0.06) hMpc−1 appears, which is the unique scale underlying the large scale structure as a gravitational
system. Up to nonlinear terms (δψ)2 beyond the Gaussian approximation, the nonlinear field equation
of the 2-pt correlation function of density fluctuations has been derived and solved analytically. This
analytic result of field theory interprets several observed features of large scale structures. With fixed
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≅  ≅

ξ

Fig. 7 Calculated ξcc(r) with oscillations compared with the observed ξcc(r) of X-ray
clusters (Einasto 2002; Tago et al. 2002).

values of the parameters (a, b, k0), the solution simultaneously matches the observed ξ(r) and P (k) of
both galaxies and of clusters.

Although our results match the observational data on large scales very well, our model is still pre-
liminary at the present stage. There are several problems that need to be further addressed in the future
as follows.

Firstly, the calculated ξgg(r) for galaxies increases too fast on very small scales r ≤ 0.2 h−1 Mpc.
This indicates that the model may break down on such small scales close to the size of a galaxy. This
may suggest that either higher order terms of perturbations should be taken into account, or the effects
of galaxy formation and local virilization need to be included.

Next, there is a limitation in applying the Groth-Peebles ansatz in Equation (5). As is known, for
descriptions of many-particle dynamic systems based on the Gibbs-Boltzmann equation, a procedure is
usually taken, which decomposes the complicated equation into a set of differential equations, so that
each one in the set is possibly manageable. However, a hierarchy of BBKGY type, or the like, inevitably
arises. Different treatments of the hierarchy are employed for different systems, and a cut-off of the hier-
archy is usually is used. For instance, in the case of the photon gas of CMB, the multipole decomposition
is involved for the temperature anisotropies and polarization, and the common practice is to cut off the
hierarchy of multipoles by setting higher multipole components to zero, yielding an accurate description
of CMB spectra (Zhao & Zhang 2006; Zhang et al. 2007; Xia & Zhang 2008). However, for the calcula-
tion ofG(2)

c (r) in our context, one cannot setG(3)
c (r1, r2, r3) to zero, since these are important and give

rise to nonlinear effects, due to the long range nature of gravitational force. The Groth-Peebles ansatz
has been used in our analytic treatment, because it is simple and an analytic solution can be derived. We
would like to mention that the ansatz only approximately reflects the actual distribution since the forms
of factor Q are in fact functions of r. In this case, Equation (6) for G (2)

c (r) would be more complicated
and analytic solutions for the general case would be difficult to derive explicitly.

Thirdly, in fitting the observations of galaxies, we have not separated the dark matter from galaxies
in our present model. Therefore, no bias is introduced and the baryon acoustic oscillations are not
incorporated in our model. A comprehensive treatment of two components, dark matter and baryons, in
our theory would require substantial extensions of the model discussed in the present paper.

Finally, it should be mentioned that our theoretical model deals with only the quasi-relaxed state of
the large scale structure of the universe, which, as an assumption, is a qualitatively good approximation
since the overall expansion rate H0 is smaller than the particle collision rate. It would be desirable to
have an extension of the present model take into account an evolutionary description. These issues will
to be addressed in our further studies.
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