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Abstract Generalized Chaplygin gas (whose equation of state is pGCG = −A/ρα
GCG)

was proposed as a candidate for unification of dark energy and dark matter. We inves-
tigate constraints on this model with the latest observed data. We test the model with
type-Ia supernovae (SNe Ia), cosmic microwave background (CMB) anisotropy, X-ray
gas mass fractions in clusters, and gamma-ray bursts (GRBs). We calibrate the GRB lu-
minosity relations without assuming any cosmological models using SNe Ia. We show
that GRBs can extend the Hubble diagram to higher redshifts (z > 6). The GRB Hubble
diagram is well behaved and delineates the shape of the Hubble diagram well. We mea-
sure As ≡ A/ρα+1

GCG,0 = 0.68+0.04
−0.08 (where ρGCG,0 is the energy density today) and

α = −0.22+0.15
−0.13 at the 1σ confidence level using all the datasets. Our results rule out the

standard Chaplygin gas model (α = 1) at the 3σ confidence level. The ΛCDM is allowed
at the 2σ confidence level. We find that acceleration could have started at a redshift of
z ∼ 0.70. The concordance of the generalized Chaplygin gas model with the age estimate
of an old high redshift quasar is found. In addition, we show that GRBs can break the
degeneracy between the generalized Chaplygin gas model and the XCDM model.
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1 INTRODUCTION

Observations of type Ia supernovae (SNe Ia) indicate that the universe is experiencing an accelerated ex-
pansion during the present epoch (Riess et al. 1998; Perlmutter et al. 1999). The cosmic accelerated ex-
pansion has also been confirmed by observations of cosmic microwave background (CMB) fluctuations
(Bennett et al. 2003; Spergel et al. 2003, 2007; Komatsu et al. 2008), and large-scale structure (LSS)
(Tegmark et al. 2006). These observations suggest that the composition of the universe may consist of an
extra component such as dark energy. A possible candidate responsible for this component is the vacuum
energy represented by a cosmological constant Λ which has negative pressure (Weinberg 1989; Peebles
& Ratra 2003). However, fine tuning is required to make the cosmological constant energy density
dominant at the recent epoch. Many other candidates for dark energy have also been proposed in the lit-
erature, e.g., quintessence (Wetterich 1988; Ratra & Peebles 1988; Caldwell, Dave & Steinhardt 1998),
extra-dimension motivated models (Dvali, Gabadadze & Porrati 2000; Deffayet, Dvali & Gabadadze
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2002; Zhu & Fujimoto 2002), holographic dark energy (Cohen, Kaplan & Nelson 1999; Li 2004), and
so on. Unfortunately, dark energy and dark matter have no direct laboratory evidence for their existence.
In this regard, Chaplygin gas has recently been suggested as a model for unifying dark matter and dark
energy (Kamenshchik, Moschella & Pasquier 2001; Bento et al. 2002).

The Chaplygin gas has an exotic equation of state

pCh = −A/ρCh, (1)

where A is a positive constant. Using the above expression, one can solve the conservation of energy
equation in a Robertson-Walker metric to obtain

ρCh =

√
A +

B

a6
, (2)

where B is an integration constant and a is the scale factor of the universe. The attractive feature of the
model is that it can unify dark energy and dark matter. The reason for this is that, from Equation (2), the
Chaplygin gas behaves as dustlike matter during an early epoch and as a cosmological constant in a later
epoch. It is interesting that the Chaplygin gas can be derived from the quintessence Lagrangian for the
scalar field with some potential and also from the Born-Infeld form of the Lagrangian (Kamenshchik,
Moschella & Pasquier 2001). Recently, Bento et al. (2002) generalized the original Chaplygin gas
model. The equation of state of the generalized Chaplygin gas (GCG) is

pGCG = −A/ρα
GCG. (3)

A lot of work related to observational constraints in the GCG model has been done (Multamaki, Manera
& Gaztanaga 2004; Wu & Yu 2007; Guo & Zhang 2007). The GCG model has been successfully vali-
dated with various phenomenological tests: SNe Ia data (Makler, de Oliveira & Waga 2003; Bertolami
et al. 2004; Gong & Duan 2004), CMB (Bento, Bertolami & Sen 2003), gravitational lensing (Dev, Jain
& Alcaniz 2003; Silva & Bertolami 2003), dimensionless coordinate distances to SNe Ia and distant
FRIIb radio galaxies (Zhu 2004), X-ray gas mass fraction in clusters (Zhu 2004), and gamma-ray bursts
(GRBs) (Bertolami & Silva 2006). More recently, an interacting Chaplygin gas model was proposed as
a possible mechanism for acceleration (Zhang & Zhu 2006).

GRBs could provide a complementary probe of cosmic expansion and dark energy. Recently, some
luminosity calibrators were used to constrain cosmological parameters and the nature of dark energy
(Dai, Liang & Xu 2004; Ghirlanda et al. 2004; Di Girolamo et al. 2005; Firmani et al. 2005; Friedman
& Bloom 2005; Lamb et al. 2005; Liang & Zhang 2005, 2006; Xu, Dai & Liang 2005; Wang & Dai 2006;
Schaefer 2007; Wright 2007; Wang, Dai & Zhu 2007; Gong & Chen 2007; Li et al. 2007; Li et al. 2008;
Liang et al. 2008; Qi, Wang & Lu 2008a,b; Amati et al. 2008; Basilakos & Perivolaropoulos 2008). Very
recently, Schaefer (2007) used 69 GRBs together with five relations to extend the Hubble diagram out
to z = 6.60 and discussed properties of dark energy in several models. He found that the GRB Hubble
diagram is consistent with the concordance cosmology. Wang, Dai & Zhu (2007) combined GRBs with
other cosmological probes and found that for the ΛCDM model, this combination makes the constraints
more stringent.

In this paper, we calibrate the GRB luminosity relations without assuming any cosmological models
using SNe Ia and measure model parameters of GCG using GRBs, SNe Ia, CMB shift parameter and
X-ray gas mass fraction in clusters. The structure of this paper is arranged as follows: in Section 2,
we give a brief description of the GCG model and its basic equations. In Section 3, we calibrate the
GRB luminosity relations and introduce the observational data and analytical method. In Section 4, we
investigate constraints on GCG parameters using the latest observational datasets and apply an age test
to the GCG model. In Section 5, we calculate the snap parameter and find that GRBs can break the
degeneracy between the GCG model and XCDM model. In Section 6, our conclusions are summarized.
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2 BASIC EQUATIONS OF GCG

Assuming a flat universe that contains only baryonic matter and GCG as a unification of dark energy
and dark matter, the Friedmann equation can be expressed by

H2 =
8πG

3
(ρb + ρGCG). (4)

If we further assume that these two components do not interact, then the energy conservation equation
becomes

ρ̇ + 3H(p + ρ) = 0, (5)

where H = ȧ/a is the Hubble function. We can separately integrate baryonic matter and GCG, leading
to ρb = ρb,0a

−3 and
ρGCG = ρGCG,0[As + (1 − As)a−3(1+α)]1/(1+α) (6)

where ρb,0 and ρGCG,0 are the energy densities of baryonic matter and GCG today, respectively, and
As = A/ρ1+α

GCG,0. From the above equation, we can see that As must lie in the range 0 ≤ As ≤ 1, and
for As = 0, the GCG behaves like matter, while for As = 1, it always behaves like the cosmological
constant. We consider GCG as a unification of dark energy and dark matter, so 0 < A s < 1. The
Friedmann equation can be further expressed as

H2(z, H0, As, α) = H2
0E2(z, As, α), (7)

where
E2(z, As, α) = Ωb(1 + z)3 + (1 − Ωb)[As + (1 − As)(1 + z)3(1+α)]

1
1+α , (8)

Ωb is the density parameter of baryonic matter and H0 = 100h km s−1 Mpc−1 is the present Hubble
constant. We use h = 0.72± 0.08 from the Hubble Space Telescope key projects (Freedman et al. 2001)
and Ωbh2 = 0.0214 ± 0.0020 (Kirkman et al. 2003). In the GCG model, the luminosity distance for a
flat universe is

dL = cH−1
0 (1 + z)

∫ z

0

dz{(1 + z)3Ωb + (1 − Ωb)[As + (1 − As)(1 + z)3(1+α)]
1

1+α }−1/2. (9)

3 OBSERVATIONAL DATA AND ANALYSIS METHODS

3.1 Gamma-Ray Bursts (GRBs)

We use 192 SNe Ia from Davis et al. (2007). Because the minimum redshift of 69 GRBs is z = 0.1685,
we select SNe Ia between 0.159 < z < 1.39. We exclude SN 1977ff (z = 1.775) only because this
SN is in the redshift bin 1.40 − 1.755. There are 146 SNe Ia in our sample. We fit the formula between
luminosity distance and redshift as:

dL

1027 cm
= 2.67z0.95 + 49.36z1.65 − 29.88z2.0. (10)

Figure 1 shows the fit result. This formula agrees with observational data very well. The reduced χ 2

is 1.13. We apply this formula to GRBs whose redshifts are smaller than 1.40 in the sample of 69
GRBs (Schaefer 2007). After the luminosity dL is obtained, the isotropic energy of GRB is calculated
by Eiso = 4πd2

LSbolo(1 + z)−1, where Sbolo is the bolometric fluence. The isotropic luminosity is
Liso = 4πd2

LPbolo, where Pbolo is the bolometric flux. Then the relations of τ lag−L, V −L, Epeak−L,
Epeak−Eγ , and τRT−L can be fitted in z < 1.40. Here, the time lag (τlag) is the time shift between hard
and soft light curves, L is the luminosity of a GRB, the variability V of a burst denotes whether its light
curve is spiky or smooth and V can be obtained by calculating the normalized variance of an observed
light curve around a smoothed version of that light curve (Fenimore & Ramirez- Ruiz 2000), E peak is
the peak energy in the νFν spectrum, Eγ = (1 − cos θj)Eiso is the collimation-corrected energy of a
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Fig. 1 Fitting the redshift z and luminosity distance dL. The line shows the formula of Eq. (10).

Fig. 2 Hubble diagram of 69 GRBs calibrated with SNe Ia and 192 SNe Ia. The solid line is plotted in
a flat cosmology: ΩM = 0.27 and ΩΛ = 0.73. The dashed line is plotted in the GCG model: As = 0.66
and α = 0.22.

GRB, and the minimum rise time (τRT) in the gamma-ray light curve is the shortest time over which the
light curve rises by half of the peak flux of the pulse.

We assume that these relations do not evolve with redshift and are valid in z > 1.40. The luminosity
or energy of GRB can be calculated. So, the luminosity distances and distance moduli can be obtained.
After obtaining the distance modulus of each burst using one of these relations, we use the same method
as Schaefer (2007) to calculate the real distance modulus,

µfit =
(∑

i

µi/σ2
µi

)
/
(∑

i

σ−2
µi

)
, (11)

where the summation runs from 1 − 5 over the relations with available data, µ i is the best estimated
distance modulus from the i-th relation, and σµi is the corresponding uncertainty. The uncertainty of the
distance modulus for each burst is

σµfit =
(∑

i

σ−2
µi

)−1/2

. (12)

We present the Hubble diagram of 69 GRBs and 192 SNe Ia in Figure 2. We can see GRBs can
extend the Hubble diagram to higher redshifts (z > 6). The GRB Hubble diagram is well behaved and
delineates the shape of the Hubble diagram well. Liang et al. (2008) calibrated the luminosity relations
of GRBs using an interpolation method. We find that our results are consistent with those calibrations by
using interpolation methods. Kodama et al. (2008) also used SNe Ia to calibrate the L−E peak relation.
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3.2 Type Ia Supernovae (SNe Ia)

Davis et al. (2007) used the SN Ia dataset that includes 60 ESSENCE SNe Ia (Wood-Vasey et al. 2007),
57 SNe Ia from the Super-Nova Legacy Survey (SNLS) (Astier et al. 2006), 45 nearby SNe Ia and 30
SNe Ia detected by HST (Riess et al. 2007). We also use these 192 SNe Ia in this paper. The apparent
magnitude m(z) is related to the luminosity distance

mth(z) = M̄(M, H0) + 5 log10(DL(z)) (13)

where DL(z) = H0dL(z)/c is the Hubble-free luminosity distance and

M̄ = M + 5 log10

(
cH−1

0

Mpc

)
+ 25 = M − 5 log10 h + 42.38 (14)

is the magnitude zero point offset. The absolute magnitude M is assumed to be constant after imple-
menting a correction for galactic extinction, K-correction and light curve width-luminosity correction.
The theoretical distance modulus is

µth(z) = mth(z) + µ0, (15)

where µ0 = 42.38− 5 log10 h. The observed distance modulus is

µobs(z) = mobs(z) − M. (16)

The likelihood functions can be determined from the χ 2 statistic,

χ2
SN =

192∑
i=1

[µth,i(zi) − µobs,i(zi)]2

σ2
µi

, (17)

where σµi is the uncertainty in the individual distance modulus. The parameter µ 0 is a nuisance param-
eter. The confidence regions can be found through marginalizing the likelihood functions over µ 0. The
minimization with respect to µ0 can be made by expanding the χ2 of Equation (17) with respect to µ0

as (Nesseris & Perivolaropoulos 2005; Perivolaropoulos 2005; Wei et al. 2007)

χ2(As, α) = Ā − 2µ0B̄ + µ2
0C̄, (18)

where

Ā(As, α) =
192∑
i=1

[mobs(zi) − mth(zi; µ0 = 0, As, α)]2

σ2
mobs(zi)

, (19)

B̄(As, α) =
192∑
i=1

[mobs(zi) − mth(zi; µ0 = 0, As, α)]
σ2

mobs(zi)

, (20)

C̄ =
192∑
i=1

1
σ2

mobs(zi)

. (21)

Equation (18) has a minimum for µ0 = B̄/C̄ at

χ̃2(As, α) = Ā(As, α) − B̄2(As, α)
C̄

. (22)

We can minimize χ̃2 which is independent of µ0 instead of χ2, because of χ2
min = χ̃2

min.
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3.3 Cosmic Microwave Background (CMB)

The CMB shift parameter R is expected to be nearly model independent, which can be extracted accu-
rately from CMB data. We make use of the 5-year WMAP results to get the shift parameter (Komatsu
et al. 2008)

R =
√

ΩM

∫ zls

0

dz

E(z)
= 1.710± 0.019 , (23)

where E(z) ≡ H(z)/H0 is given in Equation (8), the last scattering redshift z ls = 1089 and ΩM =
Ωb + (1 − Ωb)(1 − As)1/(1+α) (Zhu 2004; Bento et al. 2004). The χ2 value is

χ2
CMB =

(R − 1.710)2

0.0192
. (24)

3.4 X-ray Gas Mass Fraction in Clusters

The gas mass fraction of clusters of galaxies, fgas = Mgas/Mtot, as inferred from X-ray observations,
can provide a direct constraint on the density parameter of the universe Ω M (White et al. 1993). Using
Chandra observational data, Allen et al. (2004) obtained the f gas profiles for 26 relaxed clusters. This
database has also been used to constrain the GCG model (Zhu 2004) and the braneworld cosmology
(Zhu & Alcaniz 2005). We will utilize this probe in our analysis. Allen et al. (2008) recently presented
the X-ray gas mass fraction in 42 hot dynamically relaxed galaxy clusters. The model fitting to the data
is

fΛCDM
gas =

KÃγb(z)
1 + s(z)

Ωb

ΩM

[
dΛCDM
A (z)
dA(z)

]1.5

, (25)

where dA is the angular diameter distance to the galaxy cluster, Ã = ( θΛCDM
2500
θ2500

)η accounts for the change
in angle subtended by r2500 as the cosmology is varied, and η is the slope of the fgas in the region
of r2500 measured with reference to the ΛCDM model. The parameter γ denotes non-thermal pressure
support in the clusters. The parameter s(z) = s0(1+αsz) shows the baryonic mass fraction in stars. The
factor K is a constant that parameterizes residual uncertainty in the accuracy of instrument calibration
and X-ray modeling. The factor b(z) = b0(1 + αbz) is the ‘depletion’ or ‘bias’ factor (for more details
see Allen et al. 2008). We calculate the χ2 value as

χ2
gas =

(
42∑

i=1

[
fΛCDM
gas (zi) − fgas, i

]2
σ2

fgas, i

)
+
(

Ωbh2 − 0.0214
0.0020

)2

+
(

h − 0.72
0.08

)2

+
(

s0 − 0.16
0.048

)2

+
(

η − 0.214
0.022

)2

+
(

K − 1.0
0.1

)2

. (26)

4 CONSTRAINTS ON THE GCG MODEL

Using datasets of the above observational techniques, we measure constraints on the GCG model pa-
rameters As and α. We obtain the best fit by minimizing

χ2
total = χ2

SN + χ2
GRB + χ2

CMB + χ2
gas . (27)

In Figure 3, we show the 1σ to 3σ contours in the As-α plane using SNe, GRBs, the CMB shift
parameter and 42 galaxy clusters. It is easy to see that ΛCDM still lies at the 2σ confidence level. From
this figure, we have As = 0.68+0.04

−0.08 and α = −0.22+0.15
−0.13 at the 1σ confidence level with χ2

min =
332.62. We can rule out the standard Chaplygin gas model (α = 1) at the 3σ confidence level.

We also investigate the deceleration parameter q(z). In Figure 4, we show the evolution of q(z) in
the GCG model using SNe, GRBs, the CMB shift parameter and 42 galaxy clusters. We obtain that the
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Fig. 3 Joint confidence intervals from 1σ to 3σ
(As, α) derived from a combination of 192 SNe Ia,
42 galaxy clusters, 69 GRBs and the CMB shift pa-
rameter.
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Fig. 4 Evolution of q(z) by fitting the generalized
Chaplygin gas model to 192 SNe Ia, 42 galaxy clus-
ters, 69 GRBs and the CMB shift parameter. The
solid line is plotted by using the best fitting param-
eters. The shaded region shows the 1σ error.

Fig. 5 The solid line is a contour for t(3.91) = tobs = 2.0 Gyr with h0 = 0.72. The dotted line is a
contour for t(3.91) = tobs = 2.0 Gyr with h0 = 0.64. The region below the lines is allowed.

transition redshift zT = 0.74 ± 0.09 at the 1σ confidence level. The result is consistent with Wang &
Dai (2006) and Melchiorri et al. (2007).

We test the GCG model with an old high redshift object. It is obvious that the universe cannot
be younger than its constituents. The discovery of a quasar named APM 08279+5255 at z = 3.91
whose age is 2–3Gyr has led to a serious “age crisis” (Hasinger et al. 2002). This old quasar cannot be
accommodated in many dark energy models (Jain & Dev 2006; Wei & Zhang 2007), even in the ΛCDM
model. The age of the universe at redshift z is given by

t(z) =
1

H0

∫ ∞

z

dz′

(1 + z′)H(z′)
. (28)

We use the most conservative lower age estimate of 2.0Gyr for the old quasar APM 08279+5255 at
z = 3.91. In Figure 5, we plot contours using t(3.91) = tobs = 2.0Gyr. The allowed region is below
the lines. We can see that the GCG model can overcome the serious “age crisis” (Alcaniz et al. 2003).
For example, we take As = 0.75, α = −0.20 and h0 = 0.64, so that t(3.91) = 2.00Gyr is obtained.
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The point (As = 0.75, α = −0.20) is just on the dotted line. From Figures 3 and 5, we find that the old
quasar APM 08279+5255 at z = 3.91 can be accommodated in the GCG model.

5 BREAKING THE DEGENERACY BETWEEN GCG AND XCDM MODELS

The GCG model and the XCDM model with equation of state p/ρ = w and dark energy density Ω X =
1 − ΩM are degenerate at redshifts z < 2, as shown in Bertolami et al. (2004), Bento et al. (2005) and
Bertolami & Silva (2006). As we know, q is the deceleration parameter (which is related to the second
derivative of the expansion factor), j is the so-called “jerk” or statefinder parameter (which is related to
the third derivative of the expansion factor), and s is the so-called “snap” parameter (which is related to
the fourth derivative of the expansion parameter). These quantities are defined by

q(t) = −1
a

d2a

dt2

[
1
a

da

dt

]−2

; (29)

j(t) = +
1
a

d3a

dt3

[
1
a

da

dt

]−3

; (30)

s(t) = +
1
a

d4a

dt4

[
1
a

da

dt

]−4

. (31)

The deceleration, jerk and snap parameters are dimensionless, and the Taylor expansion of the scale
factor around t0 provides

a(t) = a0{1 + H0(t − t0) − 1
2
q0H

2
0 (t − t0)2 +

1
3!

j0H
3
0 (t − t0)3

+
1
4!

s0H
4
0 (t − t0)4 + O[(t − t0)5]}, (32)

and so the luminosity distance

dL =
c

H0
{z +

1
2
(1 − q0)z2 − 1

6
(1 − q0 − 3q2

0 + j0)z3

+
1
24

[2 − 2q0 − 15q2
0 − 15q3

0 + 5j0 + 10q0j0 + s0]z4 + O(z5)}, (33)

(Visser 2004). The relations between these parameters are given by (also see Bertolami & Silva 2006)

j(z) = q(z) + 2q2(z) + (1 + z)
dq(z)
dz

; (34)

s(z) = −(1 + z)
dj(z)
dz

− 2j(z)− 3j(z)q(z). (35)

For the XCDM model, we obtain

qXCDM
0 =

3
2

[1 + w(1 − ΩM )] − 1, (36)

dq

dz

∣∣∣∣
XCDM

0

=
9
2
w2(1 − ΩM )ΩM , (37)

dj

dz

∣∣∣∣
XCDM

0

= −27
2

w2(1 + w)(ΩM − 1)ΩM , (38)

jXCDM
0 =

1
2
[2 + 9(1 − ΩM )w + 9(1 − ΩM )w2], (39)
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sXCDM
0 =

1
4
[−14 − 81(1 − ΩM )w − 9(16 − 19ΩM + 3Ω2

M )w2 − 27(3 − 4ΩM + Ω2
M )w3]. (40)

For the GCG model we obtain

qGCG
0 =

3
2
(1 − As) − 1 (41)

q

dz

∣∣∣GCG

0
=

9
2
As(1 − As)(1 + α), (42)

dj

dz

∣∣∣∣
GCG

0

= −27
2

α(1 + α)(2As − 1) (As − 1)As, (43)

jGCG
0 =

3
4
(1 − As)[1 + (3 + 6α)As], (44)

sGCG
0 =

3
8
(As − 1)[7 + 6(2 + α − 6α2)As + 9(−3 + 2α + 8α2)A2

s]. (45)

For the redshift range of SNe Ia, the terms beyond the cubic power in redshift in Equation (33) can
be neglected. SN Ia data show that these models have the same deceleration and jerk parameters. So,
they are degenerate in the SN Ia redshift range.

In Figure 6, we show constraints on ΩM and w in the XCDM model. The solid contour, the dotted
contour and the dot-dashed contour show constraints from 192 SNe, 69 GRBs and 192 SNe plus 69
GRBs, respectively. In Figure 7, we present constraints on As and α in the GCG model. From the solid
contours, we measure ΩM = 0.30 ± 0.14, w = −1.09+0.35

−0.60 from Figure 6 and As = 0.80+0.15
−0.13, α =

0.19+1.68
−0.87 from Figure 7. So qXCDM

0 = −0.62, jXCDM
0 = 1.13 and qGCG

0 = −0.68, jGCG
0 = 1.19 are

calculated. We can see the degeneracy between the GCG model and XCDM model using SNe Ia only.
This degeneracy holds for SNe Ia for the probed maximum redshift z ≈ 2. As the redshift range

allowed by GRBs is greater (z > 6.0), we can measure higher order terms in Equation (33). From the
dash-dotted contours of Figure 6, ΩM = 0.29+0.11

−0.14 and w = −1.04+0.32
−0.52 are found. From the dash-

dotted contours of Figure 7, As = 0.79+0.12
−0.13 and α = 0.25+0.95

−0.75 are found. For the XCDM model, we
calculate sXCDM

0 = −0.08. For the GCG model, we obtain sGCG
0 = −0.38. So, the degeneracy between

the models is broken by the snap parameter.

Fig. 6 Constraints on ΩM and w from 1σ to 3σ us-
ing 192 SNe Ia and 69 GRBs in the XCDM model.
The solid contour is derived from 192 SNe Ia alone
and the dashed contour is derived from 69 GRBs.
The dash-dotted contour is derived from 192 SNe Ia
and 69 GRBs.

Fig. 7 Constraints on ΩM and w from 1σ to 3σ us-
ing 192 SNe Ia and 69 GRBs in the GCG model.
The solid contour is derived from 192 SNe Ia alone
and the dashed contour is derived from the 69
GRBs. The dash dotted contour is derived from 192
SNe Ia and 69 GRBs.
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6 CONCLUSIONS

In this paper, we calibrate the GRB luminosity relations without assuming any cosmological models
using SNe Ia and find that GRB can extend the Hubble diagram to higher redshifts. We have presented
constraints on the GCG model that unifies dark energy and dark matter in a single component by com-
bining a recent GRB sample which includes 69 events with 192 SNe Ia, CMB and the X-ray gas mass
fraction in clusters released recently. We found that As = 0.68+0.04

−0.08 and α = −0.22+0.15
−0.13 at the 1σ

confidence level using all the datasets. We reconstructed the deceleration parameter q(z). We found that
the cosmic acceleration could have started at about zT ∼ 0.70. We find concordance of the GCG model
with the age estimates of old quasar APM 08279+5255, although such a concordance cannot be accom-
modated in many dark energy models, even in the ΛCDM model. The degeneracy between the GCG
model and XCDM model is broken by the snap parameter using the high redshift GRB sample.

Our present study shows that the GCG model is a very good fit to the latest datasets. The ΛCDM
is allowed at the 2σ confidence level, but the standard Chaplygin gas model (α = 1) is ruled out at the
3σ confidence level. Furthermore, GRBs can be used to break the degeneracy between the GCG model
and XCDM model, because at high redshifts, the effect of higher-order terms in the Taylor expansion
of dL(z) must be taken into account. We break the degeneracy between the two models using the GRB
sample. There are two mechanisms to drive acceleration in the present universe: modified gravity and
dark energy. Our study suggests that GRBs may break the degeneracy between these two mechanisms.

In this paper, we first use 69 GRBs (five relations) to put constraints on the GCG model and extend
the Hubble diagram out to z > 6.0. We show that the old quasar APM 08279+5255 can be accommo-
dated in the GCG model even in the α < 0 case. Alcaniz et al. (2003) found that there was no cosmic
age problem in the GCG model when α > 0. Bertolami & Silva (2005) used 500 simulated GRBs and
the Ghirlanda relation to investigate the GCG model. They predicted that the SNAP+GRB data could
break the degeneracy between the GCG model and the XCDM model. We break the degeneracy between
these two models by combining the most recent GRB and SN Ia data.
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