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Abstract An automated spectral classification technique for large sskveys is pro-
posed. We firstly perform spectral line matching to deteemidshift candidates for an
observed spectrum, and then estimate the spectral claseayuning the similarity be-
tween the observed spectrum and the shifted templates ¢brredshift candidate. As a
byproduct of this approach, the spectral redshift can atésolitained with high accuracy.
Compared with some approaches based on computerizedrganathods in the liter-
ature, the proposed approach needs no training, which &¢mmsuming and sensitive
to selection of the training set. Both simulated data aneilesl spectra are used to test
the approach; the results show that the proposed methofiaeef, and it can achieve
a correct classification rate as high as 92.9%, 97.9% and®#&8 stars, galaxies and
guasars, respectively.
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1 INTRODUCTION

The rapid development of astronomical observations hatledany large sky surveys such as SDSS
(Sloan Digital Sky Survey), 2dF (2 degree Fields) and LAMO&&rge Sky Area Multi-Object
Spectroscopic Telescope). Since these surveys have mwdigcy large numbers of spectra, auto-
mated spectral recognition becomes desirable and negdssafficiency. Spectral classification by
astronomers mainly focuses on stellar classification (vigppél et al. 1994; Bailer-Jones et al. 1998;
Bai et al. 2005) and galaxy classification (Connolly et aB3;9Galaz et al. 1998; Zaritsky et al. 1995),
where the latter usually needs to know redshifts of the spektow to automatically separate spectra
with unknown redshifts seems a more difficult and challeggask. In this study, the spectra with un-
known redshifts will be roughly classified into three typstr, galaxy and quasar (QSO). Qin et al.
(2003) and Zhang & Zhao (2003, 2004) have done some reseafttie sough classification of spectra
using support vector machines (SVM) and radial basis fonatieural networks (RBF). However, both
methods need long training times and are sensitive to thetditon of the training samples.

In this work, we present a new template matching method tivabines cross-correlation and spec-
tral line matching. We firstly determine the redshift caradés for the observed spectrum by spectral line
matching, and then classify the observed spectrum by miegstine similarity between the spectrum
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and the templates shifted to match each candidate. Priradpaponents analysis (PCA) is a popular
technique for data compression and feature extractioradtdeen widely used in automated spectral
analysis (Bailer-Jones et al. 1998; Connolly et al. 199%).u8e PCA to construct the template spectra
of the star and galaxy. The similarity measure adopted|airu evidence accumulation, is the weighted
sum of several similarity evidences. It can measure thdaiityi between two spectra more reasonably.
Compared with some spectral classification methods baséxhamning, such as neural networks, SVM
etc, the proposed approach needs no training, which istonsuming and sensitive to the selection of
the training set. As a byproduct of this approach, the spedshift can also be estimated with high
accuracy.

The organization of this paper is as follows. Section 2 shibwslata set used in our study. Section 3
discusses the spectral line extraction. Section 4 desctiteespectral classification and redshift deter-
mination. Section 5 shows and discusses the experimestdtseThis paper concludes in Section 6.

2 THE DATA SET

PCA is a linear feature extraction method based on the \egiahthe data distribution. It finds the
principle components that can most effectively chararéetfie inputs. Here, we use PCA to build the
rest templates of star and galaxy spectra, and the comppsitgar spectrum constructed by Vanden
Berk et al. (2001) is used as the quasar template, which isrshroFigure 1(e).

The 161 standard stellar spectra, contributed by Jacoly(@84), are selected to build the stellar
templates. Two eigen-spectra, as shown in Figure 1(a) ayuté-iL(b), are obtained by PCA with the
variance contribution rate of 99%. The first spectrum mastipws the spectral feature of early-type
stars, while the second one mainly captures the spectralréeaf late-type stars. These two eigen-
spectra are the stellar templates.

The eleven rest galaxy spectra presented by Kinney & Caktetil. (1996), which are E, SO, Sa,
Sh, Sc, Sb1, Sb2, Sh3, Sb4, Sb5 and Sbh6, are used to buildsthgataxy templates. From the four
normal galaxy spectra, E, SO, Sa and Sh, we get one eigetrigpday PCA, as shown in Figure 1(c).
From the seven starburst galaxy spectra, Sc, Sb1, Sb2, 843585 and Sb6, we also get an eigen-
spectrum, as shown in Figure 1(d). These two eigen-spe@tha galaxy templates. It can be seen that
these two templates capture the features of the rest abmolipes and emission lines of galaxy spectra
respectively.

3 SPECTRAL LINE EXTRACTION
3.1 Preprocessing

The spectral preprocessing includes sky subtractionjrmaaunn subtraction and de-noising. Usually, the
observed spectra show a number of residual sky featuresg iregions of strong atmospheric emission
and absorption lines. While these sky residuals are thag#st features in the spectra, they will result
in false peaks in cross-correlation between the templatdgise observed spectra, which can lead to
incorrect spectral classification. We remove the sky redgaround 557 nm, 630 nm, etc by median
filtering.

Continuum subtraction reduces the smoothly varying bamkg to zero. It has the same effect as
filtering out the long-period Fourier components of spedtvihout continuum subtraction, the cross-
correlation function mainly represents the cross-cofi@ieof the two continua, with a small spectral
cross-correlation superimposed. The continuum is fittethfthe observed spectrum by running a 60-
nm median filter. Since the spectral line widths are gengetedls than 60-nm, nearly all absorption or
emission features are removed by this processing. Althdugh the continuum badly in areas where
the spectral shape changes rapidly, this will have litdeatfon the following spectral line extraction, as
long as the continuum fits are right for those main spectnakli

Since high noise in spectra will make the spectral line etiwa very difficult, noise reduction is
necessary. The wavelet soft-thresholding (Donoho 199%9ésl for the noise reduction.
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Fig. 1 Template spectra: (a): stellar template 1; (b): stellapiete 2; (c): galaxy template 1; (d): galaxy
template 2; (e): quasar template.

oo

We call the spectrum after preprocessing the line spectfima.line spectrum associated with the
spectrum in Figure 2(a) are shown in Figure 2(b).

3.2 Spectral Line Extraction

Spectral lines are key features used in spectral analysmauge of the rough continuum fitting or the
high noise of the celestial spectra, usually there are mpuasicus spectral lines in the line spectra. It
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Fig.2 Preprocessing and feature extraction: (a): original speutd the continuum; (b): spectral line
extraction; (c): spectral line candidates.

is not easy to extract all spectral lines from line spectec®al line extraction in this study includes
two steps: Firstly, the feature wavelength of the specinal tandidate is acquired via a one by one
search following the thresholding of the line spectrum;®elty, the start and end wavelengths of the
line candidates are located by a local search. In the foligwiwo constraints, which are threshold
constraint and shape constraint, are employed for spdicieatxtraction.

Since the intensity at the feature wavelength of each sqdicte is different, it is difficult to choose
an appropriate universal threshold. If the threshold ishigh, it is possible that no spectral line can
be obtained. Conversely, if the threshold is too low, manyrisis spectral lines will be obtained.
According to the process which forms spectral lines, we ktf@intensity at the feature wavelength of
a spectral line is locally maximal. Therefore, the thredhmdnstraint, which is the conjunction of the
local thresholding and universal thresholding defined byédfign (1), is adopted here.

0, else,

wheres(7) is the spectral intensity at thiéh point,7(¢) is the local threshold at that point, affg is
the universal threshold that is the lower limit for integsitt the feature wavelength of a spectral line
candidate. For each point in the line spectrum, we take a-fivedth window centered on the point and
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setT(i) = cx RMS, where RMS denotes the root mean square of the inte\eitigll the points in the
window andc is a constant. The first step is only for obtaining the featmgelength of the spectral
line candidates, so the setting of the local thresholdstistnict due to the sparse distribution of spectral
lines. We found in experiments that the feature extractias stable with the window width varying
from 25nm to 100 nm and the coefficienvarying from two to three. The universal thresholding tries
to set a lower limit so as to exclude some weak spurious liféshmappeared in the local thresholding,
hence, the value of the universal threshold is also not rigicll the experiments below, the window
width is 50 nm¢ = 2.5 andT, = 1x rms, where rms denotes the RMS of the afrdy),i = 1,2, -}.

Since the continua catch the low frequency nature of thetsppehe intensities at the two boundaries
of a spectral line on the line spectra should be lower thanrtemsity at the center of it. This shape
constraint is employed in the second step to remove somesiguines.

The thresholds are shown in Figure 2(b) and the spectraténdidates are shown in Figure 2(c).

4 SPECTRAL RECOGNITION

Let L = (\,t,...) denote a spectral line candidate of the observed spectman’a= (\,t/,...)
denote a rest spectral line of the astronomical spectrarevhand )\’ denote wavelengths, andnd¢’
denote line types (1 for emission line and —1 for absorpiioe)| Set

z=t\t'N —1. 2

We use Equation (2) to determine the redshift candidateseobbserved spectrum. According to
the meaning of the redshift, = ¢/, \ >= ) must be true. Therefore, a redshift candidate must be
nonnegative.

Let d—dimensional vectoX andY denote spectra A and B respectively. We evenly divide the two
spectra intdX parts, thatisX = [X1,..., Xk]andY = [Y1,...,Yk]. Let

K
TAB = Z Wi O, 3)
i=1

wherea; = (X;, Y1) /(|| X;||||Y:])), w; denotes the weight and is subjectEf:1 w; = 1.
In the following,rap is used to measure the similarity between spectra A and Bpiideedure of
spectral classification using template matching is asvidlo

Step 1: Perform the continuum subtraction for all the tengdaectra.

Step 2: Perform preprocessing and spectral line extrafiotme observed spectrum.

Step 3: Determine redshift candidates of the observedspaaising the spectral line candidates and
the rest spectral lines of the astronomical spectra.

Step 4: For each redshift candidate, the galaxy and quasaidtes are shifted according to the candi-
date. Measure the similarity between the shifted temphkateishe observed spectrum after sky and
continuum subtraction.

Step 5: Measure the similarity between the stellar temgplatel the observed spectrum after sky and
continuum subtraction, and set the corresponding redsdmiftlidate to be zero.

Step 6: Choose the redshift candidate with the highest aiityilas the redshift, and the type of the
corresponding template as the class of the observed spectru

Generally, galaxies have smaller redshifts, so in stepdgmeneed to compare redshift candidates
larger than one with quasar templates. Moreover, the rédslsitars is so small that it can be ignored. In
measuring the similarity between the templates and therebdspectrum, the template spectra must be
linearly interpolated to the same wavelength range and theveame bin size as those of the observed
spectrum.

If K is equal to one in Equation (3), the proposed similarity meadecomes the traditional one.
Due to the high local correlation caused by high noise or hy $tvong lines corresponding to some
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redshift candidates, it is possible that the similarityresponding to the redshift will be lower than
those of other candidates if the similarity is measuredticathlly. Similar to evidence accumulation, the
proposed similarity measure is the weighted sum of sevézaép of similarity evidence. The principle
of setting the weights is that the larger the valuengfis, the higher the corresponding weigh.
Hereafter, we will call the proposed method LMCC.

5 EXPERIMENTS AND RESULTS

In this section, both simulated spectra and observed spact used to verify the effectiveness of
LMCC. In Section 5.1 and 5.2, the spectrum is divided intor feegments for the similarity measure,
and the weight is setto kel : 0.2 : 0.3 : 0.4.

5.1 Simulated Spectra

The simulated spectra are generated as follows: shift theerlgalaxy templates presented by Kinney
& Calzetti et al. (1996), respectively with redshifts ramgifrom 0 to 0.5 by a step of 0.01; shift the
guasar template with redshifts ranging from 0 to 5 by a ste@.@f. All simulated spectra are linearly
interpolated between the wavelength rang8&if — 742nm by a bin size of).5nm. The 161 stellar
spectra mentioned in Section 2 are chosen as the test ddta sirs. Therefore, the overall simulated
data include 561 galaxy spectra, 501 quasar spectra andelit spectra.

A Gaussian noise with zero mean and standard deviationgteiglo) is added to these spectra.
The correct classification rate vs. SNR (SNRe)Lk plotted in Figure 3(a). We also show the correct
rates for redshift estimation in Figure 3(b), where the reatcuracies are 0.01 and 0.001 for quasars
and galaxies respectively. All the results in Figure 3 aesaerage of one hundred independent trials. It
can be seen from the figure that the correct classificati@s iatrease with the increase of SNR and all
the correct classification rates reach 95% or above, at the &Nix. This indicates that the proposed
technique is robust and effective.
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Fig. 3 Correct rate vs. SNR. (a) classification; (b) redshift deteation.

5.2 Observed Spectra

The data set from SDSS DR2 includes 2509 observed galaxyrageam sky regions 0271-0275,
1878 stellar spectra from sky regions 0266—0295 and 3026 §pfeCtra from about fifty sky regions.
The redshifts of these spectra vary from zero to six.
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Since SVM is often used in spectral classification, we compae proposed method with SVM in
this section. The program which we use is the S¥M (Joachims 1999), and the kernel function is
Gaussian. Two classifiers are constructed for the clagsificay SVM. The first classifier is used to
recognize the stellar spectra, and the second one is usdalstifg the galaxy and QSO spectra. The
data are divided into two parts evenly, where one part isrtiirihg set and the other is the test set. We
extract 20-dimensional features from the spectra by PCAeasdcognition features of SVM. The five-
fold cross-validation (Stone 1974) is used to determinek#drael width of SVM. The resultant kernel
widths in the two classifiers are 0.1 and 0.2 respectively.

Correct recognition rates for the three classes of spentratown in Table 1. It can be seen from
Table 1 that the recognition rate of the stellar spectra byCOMis lower than that by SVM, while the
recognition rates of the galaxy and QSO spectra by LMCC ayledrithan those by SVM.

Table 1 Correct Rates of Classification (%)

Method Star Galaxy QSO
SVM 96 94.3 95.06
LMCC 92.9 97.9 98.8

From analysis of the misclassified spectra in LMCC, we find tha misclassification mainly in-
cludes two cases: one is that the stellar spectra are naffddsas galaxy or QSO, the other is that the
galaxy spectra are misclassified as QSO or the inverse. Becdnoise contamination, many misclassi-
fied spectra deviate far from their templates. In particufeny stellar spectra with strong noise are very
close to the galaxy spectra. Itis possible that these speatr be misclassified by LMCC. However, dif-
ferent from template matching, SVM is a supervised learailggrithm, which exploits the features of
the training samples to learn the classifier. The galaxy a8@ Ghare many emission spectral lines, so
many galaxy and QSO spectra are difficult to separate by SVdtebler, the selection of the training
set is crucial for SVM. Overall, the proposed method is sigpéo SVM in spectral classification.

5.3 Different Similarity Measure Strategies

In order to study the influence of the parameter K (segmentujnwe perform the redshift estimation
of QSOs. The data are the 3026 spectra described in SecBpwhose redshifts are from SDSS. The
spectra are evenly divided info = 1—7 segments, and the weights are choselydsin each similarity
measure respectively. The correct rates for different hiagcaccuracies are shown in Table 2. From
Table 2, we can see that for each accurgdhe correct rate is increased witt varying from 1 to 3,
while it is decreased witli varying from 4 to 7. The result of using the traditional siamity measure
(K = 1) is the weakest. This indicates that the proposed similangasure is more effective than the
traditional one.

Table 2 Correct Rates (%) by Different Similarity Measure Stragsgi

Accuracy K=1 K=2 K=3 K=4 K=5 K=6 K=7

e=0.01 835 86.1 87.4 87.1 86.7 85.9 85.1
e=0.02 895 91.8 93.1 93.2 92.5 92.1 91.7
e=0.03 90 92.4 94 94 93.5 93.1 92.5

6 CONCLUSIONS

Automated spectral recognition is very important in largdshift surveys. In this study, a novel tem-
plate matching approach for spectral classification isqiresl. We firstly use spectral line matching
to determine the redshift candidates, and then estimatsp®etral class by measuring the similarity
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between the observed spectrum and the templates shifteddbyredshift candidate. The similarity is
measured by the weighted sum of several similarity eviden€empared with some spectral classifi-
cation methods based on learning such as neural networlkd, 8¢, the proposed technique needs no
training. It is well known that the training process is tim@isuming and susceptible to the selection of
training set. As a byproduct of this approach, the spectédghift can also be estimated. Both the sim-
ulated data and observed spectra are used to test this ahpaval the results show that the proposed
method is efficient, and it can achieve a correct classifioatate as high as 92.9%, 97.9% and 98.8%
for stars, galaxies and QSOs, respectively.
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