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Abstract We present an analysis of the fluctuation of the local Hubble flow using 350
galaxies in the Local Volume (D < 5 Mpc, hereafter LV) with accurate measurements
of distances, positions and radial velocities, and compare the results with the theoretical
prediction of the local Hubble flow induced by density perturbations. This allows us to set
a useful constraint on the local Ω parameters: ΩM ∼ 0.6 and ΩΛ ∼ 0.7, which may serve
as compelling evidence for the existence of dark energy in the local Universe.
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1 INTRODUCTION

The measurement of the Hubble constant, which started as early as the 1920s (Hubble 1929), is still
a hot subject today. Despite the vast improvement in accuracy, the precise value of the Hubble con-
stant needs further determination: the estimates range from 60 to 75 km s−1 Mpc−1. Sometimes, the
estimates are discrepant, even if they are determined from the same data. For example, Riess et
al. (2005) found H0 = 73 km s−1 Mpc−1, with errors of 4 km s−1 Mpc−1. Sandage et al. (2006) found
H0 = 62.3 ± 1.3 km s−1 Mpc−1. Neal (2007) argues that several astronomical effects, such as period-
dependent metallicity correction, the calibration of the type Ia supernova distance scale, and differences
in SNe Ia luminosities as a function of environment, will affect H0.

Besides the nontrivial systematics brought by the astronomical effects, the Hubble constant itself
can be distorted because of cosmological reasons. When the Cosmological Principle holds, the Hubble
constant should be uniform and isotropic over large enough scales. So according to the Friedmann
model, the Hubble constant can be defined by the Robertson-Walker metric,

H2 =
8πGρ

3
+

Λ
3
− k

R2
. (1)

If there is a density perturbation, the Hubble constant will ripple. Such an intrinsic fluctuation can be
written as:

(H + ∆H)2 =
8πG(ρ + ∆ρ)

3
+

Λ
3
− k

R2
. (2)

A density perturbation would produce motion of objects, which deviates from a uniform Hubble flow.
Such deviated motion is known as the peculiar velocity. McClure & Dyer (2007) note that whether to
conceive of the Universe expanding non-uniformly or whether to conceive of it expanding uniformly
with superimposed peculiar velocities is more than just a conceptual issue.
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Hudson et al. (2004) found that the peculiar velocities with respect to the Cosmic Microwave
Background (CMB) are correlated such that volumes of space of order 100 Mpc in radius are moving
with obvious bulk velocities. Moffat and Tatarski (1995) estimated the observational effects assuming
we were to inhabit a local void. They found the data were better fit by a model with a local void in a
homogeneous universe. Zehavi et al. (1998) also suggest that we may inhabit an underdense region. The
local Hubble constant behavior in the underdense region has been discussed by Wu et al. (1995).

According to Equation (2) and the work mentioned above, the density perturbation can signifi-
cantly perturb the uniform Hubble flow. However, a very puzzling fact, which was first recognized by
Sandage et al. (1972) and further confirmed by others (see also Sandage 1986, 1999; Teerikorpi 1997;
Ekholm et al. 1999; Giovanelli et al. 1999), is that the local Hubble flow was quite cold, where the sky
distribution of the galaxies looks extremely inhomogeneous, owing to the presence of galaxy groups
(Karachentsev 2005) and voids (Tikhonov & Karachentsev 2006). This fact was shown to be more
convincing by the most complete and accurate data on radial velocities and distances of nearby galax-
ies (Karchentsev et al. 2003). Recently, some papers stated that the coldness of the local Hubble flow in
the LV is attributed to the existence of dark energy (Baryshev et al 2001; Chernin et al. 2004; Teerikorpi
et al. 2005; Chernin et al. 2006; Chernin et al. 2007a,b), which is supported by Macciò et al. (2005) with
a set of N -body simulations. However, Hoffman et al. (2007) argue that the local Hubble flow around
LG-like objects in the ΛCDM (ΩΛ > 0) simulation and the OCDM (ΩΛ = 0) simulation is indistin-
guishable, which means that the local Hubble flow is not affected by the Λ term in the simulations.

The real answer to this puzzle is still under discussion. Macciò (2005) suggests that it may be related
to the mean density around the objects. In this paper, we try to theoretically estimate the fluctuations of
the local Hubble flow. With the assumption that the geometry of the LV is described by a Friedmann-
Robertson-Walker (FRW) metric, the fluctuation of the local Hubble flow can be predicted theoretically
by the halo approach. The result would be the theoretical statistical limit of the fluctuation of the Hubble
flow induced by density perturbations. Compared with the measured fluctuation of the local Hubble
flow, we can roughly constrain the Ω parameters of the LV. Although the real metric of the LV should
be more complicated, we hope that the current work will be helpful for understanding the properties of
the LV.

2 FLUCTUATION OF THE HUBBLE CONSTANT IN LV

2.1 Theoretical Estimation

The matter density perturbation can be written as

ρ(x) = ρ̄(1 + δ(x)) , (3)

where ρ̄ is the mean density of the Universe. The Hubble constant averaged over a large volume with a
scale of |x| is given by

H(x)2 =
8πGρ̄

3
(1 + δ(x)) +

Λ
3
− c2k

R2
(4)

= H
2
(1 + ΩMδ(x)),

where ΩM is the density parameter of 8πGρ̄

3H
2 , ΩΛ = Λ

3H
2 , Ωk = −c2k

R2H
2 with ΩM + ΩΛ + Ωk = 1.

Then, the two-point correlation function of H at scale r is related to the two-point correlation function
of matter by

ξH(r) =
1
4
Ω2

Mξm(r) . (5)

The fluctuation of the Hubble constant induced by a density perturbation is

δH = σH =
√

ξH(r) . (6)
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The two-point correlation function of matter can be obtained by the Halo model as

ξm(r) =
1

2π2

∫ ∞

0

P (k)
sin kr

kr
k2dk , (7)

where P (k) is the power spectrum of the density perturbation given by

P (k) = P1h(k) + P2h(k) , (8)

P1h(k) =
∫ ∞

mg

n(z, M)dM

∣∣∣∣ρh(M, k)2

ρ̄

∣∣∣∣ ,

P2h(k) = Plin(z, k)

[∫ ∞
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n̄(z, M)b(z, M)
ρh(M, k)

ρ̄
dM

]2

,

in which the power spectrum is separated into the Poisson term P1h(k) and the clustering term P2h(k);
b(z, M) is the bias parameter, mg is the mass of a galaxy and ρ̄ is the mean matter density.

2.2 Observational Data

Our goal is to derive the fluctuation of the local Hubble flow using galaxies in the LV. We restrict
ourselves to the tracers whose distances to the Local Group center are less than 5 Mpc. We adopt a
sample of 350 galaxies in the LV from observational data summarized in the catalog of neighboring
galaxies by Karachentsev et al. (2004), in which the positions, distances and radial velocities to the
Local Group center are all available. The typical relative errors of the distances are 10% ∼ 15%.

With the assumption that the distribution of the galaxies in the LV is isotropic, we can ignore the
sky distribution of the galaxies and construct a simple estimator for the fluctuation of the local Hubble
flow from the samples by

σH =

√√√√ 1
N − 1

n∑
i=1

(vi − v̄)2

(v̄)2
, (9)

where vi is the relative radial recessional velocity between each pair of galaxies.
However, the real sky distribution of the galaxies in the LV is anisotropic, and we observe only the

line-of-sight component of the peculiar velocity sA = rA · vA/r ≡ r̂A · vA, rather than the three-
dimensional velocity vA; it is therefore not possible to compute v12 directly. Instead, following Ferreira
et al. (1999) (see also Górski et al. 1989), we propose measuring the fluctuation of the local Hubble flow
with the mean difference between the radial velocities of a pair of galaxies

〈s1 − s2〉ρ = v12r̂ · (r̂1 + r̂2)/2 , (10)

where r = r1−r2 and r̂ is the unit vector. To estimate v12, we use the simplest least squares technique,
which minimizes the quantity

χ2(r) =
∑

[(sA − sB) − pAB ṽ12(r)/2]2 , (11)

where pAB = r̂ · (r̂A + r̂B), r = |rA − rB|. The condition ∂χ2/∂ṽ12 = 0 implies

ṽ12(r) =
2

∑
(sA − sB)pAB∑

p2
AB

. (12)

The variance of the mean difference between the radial velocities is

σ(sA−sB) =

√∑
[(sA − sB) − pAB ṽ12(r)/2]2

N − 1
. (13)

So the new estimator of the fluctuation of the Hubble flow reads as

σH̃ =

√∑
[(sA − sB) − pAB ṽ12(r)/2]2

(N − 1)(ṽ2
12)

. (14)
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3 RESULTS AND DISCUSSION

Before we proceed to the observational results, we present our theoretical prediction of the Hubble flow
at all scales under the ΛCDM model with the cosmological parameters determined from the WMAP
cosmological parameters table (ΩM , ΩΛ, σ8, ns, h0) = (0.268, 0.732, 0.776, 0.704) (Spergel 2007).
The prediction is shown in Figure 1. Limited by linear expansion of Equation (2), only the result with
sufficiently small δ is meaningful. When the scale increases, δH , i.e., the ripple of the Hubble constant,
decreases. This gives the theoretical statistical limit of the fluctuation of the Hubble constant introduced
by the density perturbations. At 100 Mpc scales, the fluctuation of the Hubble constant will only be
∼ 0.01%. Therefore, when the samples for determining the Hubble constant are distributed over large
enough scales, the fluctuation of the Hubble constant induced by the density perturbations will be small
enough to be neglected.

Fig. 1 Fluctuation of the Hubble flow induced by density perturbation. Here, we adopted the cosmolog-
ical parameters from the WMAP with (ΩM , ΩΛ, σ8, ns, h0) = (0.268, 0.732, 0.776, 0.704).

For the result at small scales, e.g., in the LV, the fluctuation of the Hubble constant will increase
to ∼ 5%. From Equation (5), we can see that the fluctuation of the Hubble constant is determined by
two quantities. One is the density fluctuation, and the other is the matter density parameter Ω M . If the
dark energy exists in the LV, the fluctuation of the Hubble constant will decrease with the decrease
of the matter density parameter. If we have measured the fluctuation of the local Hubble flow and
compared it with the theoretical estimation, we could set a rough but useful constraint on the matter
density parameter ΩM . We proceed by comparing the measured σH for each of the distance bins with
the prediction discussed in Section 2.1. The result is demonstrated in Figure 2. The solid points with
error bars represent the measured fluctuation of the Local Hubble constant σ H from Equation (9). The
open squares are the result with Equation (14), which is a more reasonable estimator. The theoretical
predictions of σH with different Ω parameters and a constant ΩΛ = 0.7 are plotted as solid lines. The
fluctuation predicted by the de Sitter universe (ΩΛ = 0, ΩM = 1) will be significantly larger than the
measured fluctuation. The existence of dark energy can decrease the fluctuation of the local Hubble flow.
The density of dark energy in the ΛCDM model does not vary with the scale. So, we only compare the
theoretical predictions of σH with a constant ΩΛ = 0.7, in which the parameter ΩΛ = 0.7 is confident
for the large scale universe and should be same of that for the LV.
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Fig. 2 Variation of δH with scale r. The open squares represent the pair-wise σH̃ at different scales of
R measured from the nearby galaxies with the new estimator given by Eq. (14) and the solid squares
represent the pair-wise σH directly from the radial velocity with Eq. (9). The solid lines from the bottom
to top represent the theoretical predictions of the σH with ΩM = 0.5, 0.63, 0.75, 0.8 and 1.0.

At scale R < 2 Mpc, the measured points for both of the two estimators obviously deviate from the
predicted lines, and this trend turns at scale R ∼ 2 Mpc. This implies that the Hubble law emerges at
scale R = 1.5 ∼ 2 Mpc, as suggested by Sandage (1986, 1999) and Ekholm et al. (1999). The measured
σH from Equation (14) is not only larger than the one from Equation (9) at scale R = 2 ∼ 2.5 Mpc, but
also more scattered than the one from Equation (9) at all scales, implying that the latter estimator seems
more stable than the former in this work. The reason may be that the former estimator is more sensitive
to the capacity of the sample than the latter, and in this work, the sample needed to investigate this is
not large enough. Furthermore, a shallow selection function of the sample can induce a large fluctuation
(Ferreira et al. 1999), which would also introduce systematic errors. The measured points from both
estimators at scale R = 2.5 ∼ 5 Mpc are roughly consistent with the prediction using parameters
ΩM = 0.65, ΩΛ = 0.7 and negative Ωk. The local ΩM seems much higher and more reasonable than
the result estimated by Karachenstsev et al. (2004), which is only 0.1 and 2 ∼ 3 times as low as the global
density of matter. Besides, the density perturbation can induce the intrinsic σ H , astronomical effects or
the measurement will also bring the systematics into the measured σH . Therefore, the measured σH

could only constrain the limit of the local matter parameter ΩM . We can still conclude that the low σH

in the LV may be a manifestation of the dark energy in the LV.
In summary, comparing the measured fluctuation of the local Hubble flow with the theoretical pre-

diction, we can roughly constrain the local ΩM and ΩΛ. This may serve as compelling evidence for the
existence of dark energy in the LV.
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