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Abstract We introduced a decision tree method called Random Forests for multi-
wavelength data classification. The data were adopted from different databases, includ-
ing the Sloan Digital Sky Survey (SDSS) Data Release five, USNO, FIRST and ROSAT.
We then studied the discrimination of quasars from stars and the classification of quasars,
stars and galaxies with the sample from optical and radio bands and with that from opti-
cal and X-ray bands. Moreover, feature selection and feature weighting based on Random
Forests were investigated. The performances based on different input patterns were com-
pared. The experimental results show that the random forest method is an effective method
for astronomical object classification and can be applied to other classification problems
faced in astronomy. In addition, Random Forests will show its superiorities due to its own
merits, e.g. classification, feature selection, feature weighting as well as outlier detection.
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1 INTRODUCTION

With the development and implementation of large space-based and ground-based survey projects, such
as 2dF, 2MASS, NVSS, FIRST and SDSS, the amounts of astronomical data and information become
larger and larger. How to extract knowledge from a huge volume of data by automated methods is an
important task for astronomers. The automatic classification of objects from catalogs or other sources of
data is a common statistical problem in many astronomical surveys. So far, there has been much work
done on this issue. The Neural Network algorithm was used for spectral classification of galaxies (Sodré
& Cuevas 1994) and for morphological classification of galaxies (Storrie-Lombardi et al. 1992; Adams
& Woolley 1994). Learning Vector Quantization (LVQ) was applied to the classification of astronomical
objects classification (Zhang & Zhao 2003). Bayesian Belief Networks (BBN), Multilayer Perceptron
(MLP) networks and Alternating Decision Trees (ADtree) were compared for their ability to separate
quasars from stars (Zhang & Zhao 2007). Support vector machines (SVMs) have also been successfully
applied to automatic classification (Zhang & Zhao 2003, 2004). Decision trees, e.g. REPTree, Random
Tree, Decision Stump, Random Forest, J48, NBTree and ADTree were investigated to classify active
objects from non-active objects (Zhao & Zhang 2007).

In this paper, we explore an effective method, Random Forests, in which votes for class member-
ship are polled from a large random ensemble of tree classifiers. The random forest method has many
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successful applications in astronomy, for example, Breiman et al. (2003) used this method to identify
quasars from the FIRST survey. Albert (2007) applied it in the analysis of data from the ground-based
gamma telescope MAGIC. Carliles et al. (2007) employed it to estimate galaxy redshifts with color
features and spectroscopic redshifts from SDSS DR6. Bailey et al. (2007) presented the classification
results of Random Forests to different images in the context of the Nearby Supernova Factory super-
nova search. This paper is organized as follows: Section 2 introduces the principal of Random Forests;
Section 3 describes the samples used; the results and discussions are given in Section 4; finally the
conclusion summarizes this paper in Section 5.

2 METHOD

A random forest is an ensemble (i.e., a collection) of unpruned decision trees. Random forests are
often used when we have very large training datasets and a very large number of input variables
(hundreds or even thousands of input variables). A random forest model is a classifier that consists
of many decision trees and outputs the class that is the mode of the class output by individual trees
(Breiman 2001). Regarding the principle and software of Random Forests, we refer readers to the web-
site (http://www.stat.berkeley.edu/users/breiman/RandomForests/cc home.htm).

Each tree is constructed using the following algorithm:

1. Let the number of training cases be N , and the number of variables in the classifier be M .
2. We are told the number m of input variables to be used to determine the decision at a node of the

tree; m should be much less than M .
3. Choose a training set for this tree by choosing N times with replacement from all N available

training cases (i.e. take a bootstrap sample). Use the rest of the cases to estimate the error of the
tree, by predicting their classes.

4. For each node in the tree, randomly choose m variables on which to base the decision at that node.
Calculate the best split based on these m variables in the training set.

5. Each tree is fully grown and not pruned (as may be done in constructing a normal tree classifier).

The advantages of random forests are:
• For many data sets, it produces a highly accurate classifier.
• It handles a very large number of input variables.
• It estimates the importance of variables in determining classification.
• It generates an internal unbiased estimate of the generalization error as the forest building pro-

gresses.
• It includes a good method for estimating missing data and maintains accuracy when a large pro-

portion of the data are missing.
• It provides an experimental way to detect variable interactions.
• It can balance error in the class population of unbalanced data sets.
• It computes proximities between cases, useful for clustering, detecting outliers, and (by scaling)

visualizing the data.
• Using the above, it can be extended to unlabeled data, leading to unsupervised clustering, outlier

detection and data views.
• Learning is fast.

3 SAMPLE AND PARAMETER SELECTION

The sample we used in this paper was cross-identified from different survey catalogs, i.e. the Sloan
Digital Sky Survey (SDSS) DR5, the Faint Images of the Radio Sky at Twenty centimeters (FIRST), the
ROSAT All-Sky survey (RASS) and USNO-B1.0 catalogs.

The SDSS survey (York et al. 2000) uses a dedicated, wide field, 2.5m telescope at Apache Point
Observatory, New Mexico. Imaging is carried out in drift-scan mode using a 142 mega-pixel camera
in five broad bands, u, g, r, i and z, spanning the range from 3000 to 10 000 Å. The corresponding
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magnitude limits for the five bands are 22.0, 22.2, 22.2, 21.3 and 20.5, respectively. The Fifth Data
Release (DR5) of the SDSS includes all survey quality data taken through June 2005 and represents the
completion of the SDSS-I project. It includes five-band photometric data for 215 million unique objects
selected over 8000 deg2 , and 1 048960 spectra of galaxies, quasars, and stars selected from 5740deg 2

of that imaging data.
The FIRST survey began in 1993. It uses the VLA (Very Large Array, a facility of the National

Radio Observatory (NRAO)) at a frequency of 1.4 GHz and it is slated to observe 10 000 deg 2 of the
North and South Galactic Caps, to a sensitivity of about 1 mJy with an angular resolution of about
5 arcsec. The images produced by an automated mapping pipeline have pixels of 1.8 arcsec, a typical
rms of 0.15 mJy, and a resolution of 5 arcsec; the images are available on the Internet (see the FIRST
home page at http://sundog.stsci.edu/ for details). The source catalog is derived from the images. A new
catalog (Becker et al. 2003) of the FIRST Survey has been released that includes all data taken from
1993 through September 2002, and contains about 811 000 sources covering 8422 deg 2 in the North
Galactic cap and 611 deg2 in the South Galactic cap. The new catalog and images are accessible via the
FIRST Search Engine and the FIRST Cutout Server.

The RASS survey uses an imaging X-ray Telescope (Trumper 1983) and the data are well suited for
investigating the X-ray properties of astronomical objects. The RASS Bright Source Catalog (RBSC)
includes 18 811 sources, with a limiting ROSAT PSPC count rate of 0.05 counts s−1 in the 0.1–2.4keV
energy band (Voges et al. 1999). The typical positional accuracy is 30 arcsec. Similarly, the RASS Faint
Source Catalog (RFSC) contains 105924 sources and represents the faint extension to the RBSC (Voges
et al. 2000). The RBSC and RFSC catalogs contain the ROSAT name, position in equatorial coordi-
nates, the positional error, the source count rate (CR) and error, the background count rate, exposure
time, hardness-ratios (HR1 and HR2) and their errors, extent (ext) and likelihood of extent (extl) and
likelihood of detection. From the count rate A in the 0.1–0.4keV energy band and the count rate B in the
0.5–2.0keV energy band, HR1 is given by: HR1 = (B-A)/(B+A). HR2 is determined from the count rate
C in the 0.5–0.9 keV energy band and the count rate D in the 0.9–2.0keV energy band by: HR2 = (D-
C)/(D+C). CR is the ROSAT total count rate in counts s−1. The parameters of the ext and extl are the
source extent in arcseconds and the likelihood of the source extent in arcseconds, respectively. The ext
is the amount by which the source image exceeds the point spread function. The parameters of the ext
and extl reflect whether sources are point sources or extended sources. For example, stars or quasars
are point sources; galaxies or galaxy clusters are extended sources. Thus the ext and extl are useful for
classification of these kinds of objects.

The USNO-B1.0 is a catalog that presents positions, proper motions, magnitudes in various opti-
cal passbands and star/galaxy estimators for 1 045913 669 objects derived from 3648832 040 separate
observations (Monet et al. 2003). The data were taken from scans of 7 435 Schmidt plates taken from
various sky surveys during the last 50 years. The catalog is expected to be complete down to V = 21;
the estimated accuracies are 0.2 arcsec for the positions at J2000, 0.3 mag in up to 5 colors, and 85%
accuracy for distinguishing stars from non-stellar objects.

After cross-matching, we collect 6479 quasars, 785 stars and 27 984 galaxies with SDSS DR5,
FIRST and USNO-B1.0 measurement as the first sample (S1), and also get 6362 quasars, 2357 stars and
5333 galaxies with SDSS DR5, ROSAT and USNO-B1.0 measurement as the second sample (S2). The
description of the samples is listed in Table 1.

We choose the five model magnitudes from SDSS DR5 and correct the magnitudes by Galaxy
extinction using the dust maps of Schlegel et al. (1998). All the following SDSS magnitudes (u, g, r, i, z)
or colors (u− g, g − r, r − i, i− z) are dealt with in this way. The attributes from the FIRST survey are

Table 1 Description of Samples

Sample Catalogs No. of Quasars No. of Stars No. of Galaxies

S1 SDSS DR5, FIRST, USNO 6 479 785 27 984
S2 SDSS DR5, ROSAT, USNO 6 360 2 357 5 333
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Table 2 Mean Values of Parameters for S1

Parameters Catalogs Quasars Stars Galaxies

u − g SDSS 0.56 ± 0.76 1.89 ± 0.79 1.85 ± 0.84
g − r SDSS 0.30 ± 0.36 0.97 ± 0.46 1.17 ± 0.44
r − i SDSS 0.19 ± 0.22 0.58 ± 0.45 0.53 ± 0.19
i − z SDSS 0.11 ± 0.18 0.30 ± 0.26 0.34 ± 0.13
r SDSS 18.70 ± 1.11 18.38 ± 1.45 17.32 ± 1.56
log(fpeak) FIRST 0.90 ± 0.72 0.49 ± 0.47 0.40 ± 0.38
log(fint) FIRST 0.92 ± 0.75 0.58 ± 0.51 0.48 ± 0.43
fmaj FIRST 2.11 ± 2.19 3.80 ± 3.64 3.84 ± 3.36
fmin FIRST 0.64 ± 1.00 1.37 ± 2.13 1.10 ± 1.70
fpa FIRST 98.01 ± 56.41 88.77 ± 54.47 89.44 ± 54.19
z + 2.5 log(fpeak) SDSS,FIRST 20.65 ± 2.16 18.71 ± 1.65 17.46 ± 1.67
z + 2.5 log(fint) SDSS,FIRST 20.70 ± 2.23 18.94 ± 1.71 17.67 ± 1.72
B − R USNO-B1.0 −0.48 ± 1.33 −0.64 ± 3.27 −0.82 ± 3.65

Table 3 Mean Values of Parameters for S2

Parameters Catalogs Quasars Stars Galaxies

u − g SDSS 0.32 ± 0.41 1.68 ± 1.07 1.68 ± 0.90
g − r SDSS 0.22 ± 0.29 0.90 ± 0.79 1.02 ± 0.47
r − i SDSS 0.18 ± 0.21 0.51 ± 0.71 0.45 ± 0.30
i − z SDSS 0.14 ± 0.21 0.25 ± 0.62 0.31 ± 0.29
r SDSS 18.18 ± 1.08 18.58 ± 1.76 17.66 ± 1.65
log(CR) RASS −1.46 ± 0.33 −1.48 ± 0.34 −1.44 ± 0.39
HR1 RASS −0.09 ± 0.53 0.05 ± 0.61 0.22 ± 0.58
HR2 RASS 0.11 ± 0.58 0.10 ± 0.56 0.17 ± 0.52
ext RASS 3.77 ± 8.24 4.70 ± 11.44 8.96 ± 21.11
extl RASS 0.46 ± 2.93 0.83 ± 5.83 9.14 ± 126.25
u + 2.5 log(CR) SDSS, RASS 15.06 ± 1.05 17.47 ± 2.70 16.76 ± 2.20
B − R USNO-B1.0 −0.43 ± 1.13 −0.34 ± 3.24 −0.96 ± 2.67

log(fpeak), log(fint), fmaj, fmin, fpa, while from the RASS survey are log(CR), HR1, HR2, ext, extl;
those from the USNO-B1.0 catalog are the B and R magnitudes. For S1, the attributes that we used are
u− g, g − r, r− i, i− z, r, log(fpeak), log(fint), fmaj, fmin, fpa, z + 2.5 log(fpeak), z + 2.5 log(fint),
B −R. The attributes of z + 2.5 log(fpeak) and z + 2.5 log(fint) can be viewed as radio-to-optical flux
ratios. For S2, u − g, g − r, r − i, i − z, r, log(CR), HR1, HR2, ext, extl, u + 2.5 log(CR), B − R are
considered. The attribute of u + 2.5 log(CR) can be taken as an X-ray-to-optical flux ratio.

The statistical properties of S1 and S2 are summarized in Tables 2–3. From Tables 2–3, it is clear that
the properties of galaxies are very similar to stars due to the fact that galaxies are made up of stars, but
quasars show different traits from stars and galaxies. Tables 2–3 also indicate that the features selected
as the input of classifiers are reasonable and applicable to discriminate quasars, stars and galaxies;
especially for separating quasars from non-quasars.

4 RESULTS AND DISCUSSIONS

The random forest classifier is firstly applied to separately classify quasars from stars with S1 and
S2. Since the random forest can compute the feature weight of each attribute, the method may be used
for feature weight and feature selection. Therefore, we use it on S1 and S2, respectively. The weight
values of each attribute for the two samples are shown in Tables 4 and 5. It is obvious that, for S1, the
important attributes in sequence are u− r, g − r, r − i, i − z, r, log(fpeak), log(fint), log(fmaj), fmin,
fpa, z+2.5 log(fpeak), z+2.5 log(fint), B−R; while for S2, the attributes are u−g, g−r, r−i, i−z, r,
log(CR), HR1, HR2, ext, extl, u+2.5 log(CR), B−R. In the following experiments, the feature weight
is adopted from Tables 4–5, the feature selection is done by using a cutoff value which is 18.00 for S1
and 30.00 for S2, in other words, the features whose weight is larger than the cutoff value are kept. As
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Table 4 Feature Weight for Each Feature of S1

Parameter Feature weight

u − g 142.353
g − r 96.731
r − i 67.797
i − z 60.550
r 44.559
log(fpeak) 36.147
log(fint) 30.680
fmaj 20.998
fmin 19.061
fpa 16.725
z + 2.5 log(fpeak) 12.867
z + 2.5 log(fint) 10.668
B − R 1.535

Table 5 Feature Weight for Each Feature of S2

Parameter Feature weight

u − g 196.366
g − r 81.819
r − i 59.084
i − z 48.853
r 43.924
log(CR) 35.813
HR1 29.164
HR2 18.859
ext 11.293
extl 8.649
u + 2.5 log(CR) 3.871
B − R 1.241

Table 6 Classification Result of Quasars and Stars using S1

Sample All Feature Weighted Feature Selected Feature
classified ↓ known → quasars stars quasars stars quasars stars
quasars 6430 119 6431 118 6423 110
stars 49 666 48 667 56 675
Accuracy(%) 99.24±0.20 84.84±3.57 99.26±0.22 84.95±3.58 99.14±0.37 85.99±3.70
Total accuracy(%) 97.69±0.44 97.71±0.43 97.72±0.40

a result, for the following feature selection situation, u − r, g − r, r − i, i − z, r, log(fpeak), log(fint),
log(fmaj) and fmin are selected for S1, while u − g, g − r, r − i, i − z, r and log(CR) are chosen
for S2. Then, we classify quasars from stars with all features, the weighted features and the selected
features by a 10-fold cross-validation, respectively. The experimental results are shown in Tables 6–7.
For S1, the classification accuracy of quasars is above 99.00% for the three situations, while that of stars
is better than 84.00%. The whole accuracy is superior to 97.60%. For S2, the classification accuracy
of quasars is better than 98.00%, and that of stars is higher than 96.00%. The overall accuracy is more
than 98.00%. Tables 6–7 indicate that the classification result with S2 is better than that with S1. That
is to say, it is easier to discriminate quasars from stars based on optical and X-ray information than
based on optical and radio information. Tables 6–7 also show that the performance with the weighted
features or the selected features is slightly better than that with all features. This is due to the fact that
the random forest model builder is able to target the most useful variables. As a result, if we have many
input features, we generally do not need to do any feature selection before we begin model building.

Secondly, the random forest classifier is utilized to discriminate quasars, stars and galaxies in S1
and S2, respectively. Based on the experimental results of Tables 6–7, the overall accuracy is nearly the
same for all three situations, so we only consider the situation with all the features used for classification.
The classification result of quasars, stars and galaxies with all the features is given in Tables 8–9. For all
kinds of objects, the accuracy of stars is the lowest, which may be due to stars composing of the smallest
sample. The overall accuracy adds up to 96.17% and 91.08% for S1 and S2, respectively. Clearly, the
performance in Table 8 is superior to that in Table 9, which means the information from optical and radio
bands is more useful for separating quasars, stars and galaxies than that from optical and X-ray bands.

The random forest classifier (Breiman 2001) applies random feature selection in the tree induction
process. Random forests generally exhibit a substantial performance improvement over single tree clas-
sifiers such as CART and C4.5. It yields generalization error rates that compare favorably to Adaboost,
yet is more robust to noise. Only in terms of accuracy, Support Vector Machines (SVMs) and Artificial
Neural Networks (ANNs) are slightly superior to Random Forests (Zhao & Zhang 2007). However, for
the ANN approach, the optimal architecture is not easy to obtain; moreover, it is inclined to become
stuck in local minima during the training stage. Although SVMs do not require the architecture to be
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Table 7 Classification Result of Quasars and Stars using S2

Sample All Feature Weighted Feature Selected Feature
Classified ↓ known → quasars stars quasars stars quasars stars
quasars 6281 87 6281 87 6297 86
stars 79 2270 79 2270 63 2271
Accuracy(%) 98.76±0.61 96.31±0.99 98.76±0.61 96.31±0.99 99.01±0.60 96.35±1.07
Total accuracy(%) 98.10±0.51 98.10±0.51 98.29±0.52

Table 8 Classification Result of Quasars, Stars and Galaxies using S1

Classified ↓ Known → Quasars Stars Galaxies
quasars 5783 70 364
stars 15 516 33
galaxies 681 199 27587
Accuracy(%) 89.26±1.47 65.732±4.79 98.58±1.65
Total accuracy(%) 96.17±0.30

Table 9 Classification Result of Quasars, Stars and Galaxies using S2

Classified ↓ Known→ Quasars Stars Galaxies
quasars 6005 67 409
stars 40 2055 188
galaxies 315 235 4736
Accuracy(%) 94.42±1.12 87.19±2.54 88.81±1.57
Total accuracy(%) 91.08±0.92

chosen before training, the optimal parameters in the models can be obtained only with much effort. In
addition, the ANN method shows its inferiority when faced with high dimensional data. For Random
Forests, we need not consider the dimensionality of data; this algorithm can automatically select the im-
portant attributes used for classification or regression. It picks out the important attributes and keeps the
original physical meaning of the attributes. Thus, astronomers conveniently know which attributes make
more contributions to a data set. Since the random forest method can implement feature selection, it may
be naturally used for data preprocessing when other classifiers (e.g. ANNs and SVMs) are employed.

5 CONCLUSIONS

The random forest algorithm was investigated for classification of multiwavelength data sets, which
is both a challenging and important classification problem in astronomy. Moreover, one of the most
important tasks in astronomy is to classify quasars, stars and galaxies; especially for discriminating
quasars from stars. In experiments, the random forest classifier performed well in the classification
of quasars, stars and galaxies as well as the separation of quasars from stars with data from optical
and X-ray bands or with data from optical and radio bands. While separating quasars from stars, the
results showed that the data from optical and X-ray bands outperformed that of the data from optical
and radio bands. Otherwise, when classifying quasars, stars and galaxies, the performance based on the
information of optical and radio bands showed its superiority. In terms of accuracies, the accuracy with
the selected features or with the weighted features was better or comparable to the accuracies obtained
by all features. Unlike artificial neural networks (ANNs), the random forest algorithm does not overfit,
and it does not require guidance. Moreover, the algorithm can estimate the importance of features used
for classification. Such estimation can be applied for feature extraction and/or feature weighting in
multisource data classification where it can reduce the dimensionality. When the random forest method
is applied for feature selection and other algorithms as the classifier, it can improve the efficiency of these
algorithms. Since Random Forests have so many advantages, they will be an effective tool in astronomy
which can be used for classification and feature selection/weighting. The random forest classifier created
by known samples should predict the type of unknown objects and choose the sources of interest for
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followup observation. Random Forests can also detect outliers, which can be very useful when some of
the cases may be rare or mislabeled. This is very important for astronomers who are eager to find rare
or unknown objects. As a result, the random forest algorithm will be an interesting and applicable tool
in astronomy.
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