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Abstract An aliasing effect brought up by mass assignment onto Fast Fourier
Transformation (FFT) grids may bias measurement of the power spectrum of large scale
structures. In this paper, based on the Beylkin’s unequally spaced FFT technique, we pro-
pose a new precise method to extract the true power spectrum of a large discrete data
set. We compare the traditional mass assignment schemes with the new method using the
Daub6 and the 3rd-order B-spline scaling functions. Our measurement of Poisson samples
and samples of N -body simulations shows that the B-spline scaling function is an opti-
mal choice for mass assignment in the sense that (1) it has a compact support in real space
and thus yields an efficient algorithm (2) without any extra corrections. The Fourier space
behavior of the 3rd-order B-spline scaling function enables it to be able to accurately re-
cover the true power spectrum with errors less than 5% up to k ≤ kN . It is expected that
such a method can be applied to higher order statistics in Fourier space and will enable us
to have a precision capture of the non-Gaussian features in the large scale structure of the
universe.
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1 INTRODUCTION

The power spectrum is one of the most important statistical measures of the clustering strength of large
scale structures. It encodes rich information about the physical universe as well as the structure for-
mation. In the current CDM paradigm of hierarchical clustering driven by gravitational instability, the
power spectrum reflects the typical scales of physical processes in the structure formation, while its
positive-definiteness enables us to place tight constraints upon the majority of cosmological parameters
and distinguish various theoretical models. Accordingly, the precision measurement of power spectra
has been a central issue in the statistical study of the large scale structure of the universe.

Realizing the importance of the power spectrum in characterizing how galaxies cluster was initial-
ized by Yu & Peebles (1969). Since then, the power spectra of galaxies has been measured for a number
of redshift surveys, notably the CfA and the Perseus-Pisces redshift surveys (Baumgart & Fry 1991),
the radio galaxy survey (Peacock & Nicholson 1991), the CfA redshift survey (Park et al. 1994), the
QDOT survey (Feldman, Kaiser & Peacock 1994), the 1.2 Jy IRAS survey (Fisher et al. 1993), the 2 Jy
IRAS survey, (Jing & Valdarnini 1993), the CfA and SSRS extensions (Vogeley et al. 1992; da Costa et
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al. 1994), the Stromlo-APM redshift survey (Tadros & Efstathiou 1996) and the Las Campanas survey
(Lin et al. 1996). Also, the real-space power spectrum has been extracted from the APM Galaxy Survey
(Baugh & Efstathiou 1993, 1994) by inversion of both the angular correlation and 2-D power spectrum.
In particular, the Fourier analysis of the 2dFGRS (e.g. Percival et al. 2002) and the SDSS (e.g. Tegmark
et al. 2004; Percival et al. 2007) directly flags the epoch of precision cosmology.

The first practical method for measuring the power spectrum using a 3-dimensional redshift survey
was described by Baumgart & Fry (1991). They pointed out that one can simply measure the galaxy
power spectrum by enclosing the survey volume in a box and Fourier transform the data. In the most
influential paper by Feldman, Kaiser & Peacock (1994), they proposed a variant to the one of Baumgart
& Fry (1991), in which each galaxy is assigned a weight computed from an auxiliary random sample
to account for the selection function and the window function so that the estimator reaches an optimal
value.

For a given galaxy distribution, the Fourier transformation is evaluated directly by the trigonometric
summation

ρ̂g(n) =
Ng∑

i=1

wie
2πn·xi/L , (1)

where xi is the position of the ith galaxy, wi is its weight, and Ng is the total number of galaxies in
the catalog. The power spectrum is then |ρ̂g(n)|2. The direct summation can only be calculated for a
few thousand of galaxies; a more efficient approach is to use Fast Fourier Transformation (FFT) so that
it is computationally feasible to analyze an extremely large number of objects. In order to apply the
FFT technique, essentially one needs to partition the discrete particle distribution onto a grid, which is
referred to mass assignment or binning. The binning procedure consists of a convolution of a distribution
with a binning function W and the subsequent sampling on a finite number of grids. It is well known that
the binning will result in spurious features in the Fourier power spectrum at scales around the Nyquist
frequency of the FFT grid (e.g., Percival & Walden 1993; Baugh & Efstathiou 1994). Explicitly, we
have,

|ˆ̃ρg(n)|2 =
∞∑

n′=−∞
|Ŵ (n + Ln′)|2|ρ̂g(n + Ln′)|2 . (2)

The FT of the smoothed density, ˆ̃ρg(n) is generally not equal to ρ̂g(n). The binning effect relies on
the slope of the true power spectrum, thus the correction for this effect is model-dependent (Peacock
& Dodds 1996). In a recent paper, Jing (2005) suggests an iterative method to reconstruct the true
power spectrum from the alias sum Equation (2). Very recently, Cui et al. (2008) discussed in detail
the sampling effects that the mass assignment scheme can bring to the measurement of the true power
spectrum using FFT: smearing effect, aliasing effect and anisotropic effect. Rather than try to iteratively
correct the aliasing effect, they proposed using particular mass assignment schemes that have minimum
sampling effects.

During the last decade, algorithms for the fast evaluation of summation Equation (1) have also
been developed and rendered in numerous applications in numerical analysis and statistics. Early ef-
forts of implementation include Lagrange interpolation method (Press & Rybicki 1989; Brandt 1991),
and Taylor expansion to correct for deviations from an equally spaced grid (Sullivan 1990). However,
these approaches do not provide a very efficient algorithm, especially in multi-dimensional space. A
much faster algorithm was suggested by Dutt & Rokhlin (1993) by generalizing the interpolation with
Gaussian bells. Within the framework of multi-resolution analysis (MRA), Beylkin (1992) proposed an
approach for the fast evaluation of the Fourier transformation of singular functions, which indeed fur-
nishes a simple and efficient algorithm for Unequally Spaced Fast Fourier Transformation (USFFT). A
similar approach, called space adaptive FFT, was presented by Fang & Feng (2000). In this paper, we
will discuss the merits of using the mass assignment scheme based on the model of Beylkin (1992) in
measuring the power spectrum with FFT.

The structure of this paper is organized as follows. In Section 2, we will briefly introduce the
Beylkin’s unequally spaced FFT algorithm for an irregular data set. Then, the mass assignment using B-
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spline scaling functions is presented with its advantages for estimating a power spectrum. In Section 4,
we demonstrate its numerical performance calibrated by Poisson random samples and the Virgo N -body
simulation sample. Summary and concluding remarks are in Section 5.

2 BEYLKIN’S ALGORITHM FOR UNEQUALLY SPACED FAST FOURIER TRANSFORM

Without loss of generality, all of the formulae hereafter are written in one-dimensional forms since
the generalization to multi-dimensional space is straightforward. In general, we need to evaluate the
trigonometric summation

n̂(ξ) =
Ng−1∑

i=0

wie
i2πξxi (3)

for the data set {wi}Ng

1 in configuration of xi ⊆ [0, 1]. For a galaxy distribution, {xi} are positions of
the galaxies and {wi} are their weights. Equation (3) can be written in an alternative form,

n̂(ξ) =
∫

n(x)ei2πxξdx , (4)

with

n(x) =
Ng∑

i=1

wiδD(x− xi) . (5)

If we consider an extension of the period of n(x), the 1-periodic function can be simply given by
ñ(x) = n(x− [x]) in R, here [·] denotes for integer part of a real number.

Now we can perform a multi-resolution analysis (MRA) (Daubechies 1992; Fang & Thews 1998)
to express a certain function at various levels of spatial resolution, which forms a sequence of functional
spaces 0 ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ · · · ⊂ L2(R). Suppose a set of functions {φ(x − k); k ∈ Z} form
an orthonormal basis for V0. These functions dilate by a scale 2j and translate by 2−jk, so that they
compose an orthogonal basis for Vj

{φj,k(x) = 2j/2φ(2jx− k) |k ∈ Z} , (6)

and φ is called the basic scaling function. Projection of a function f ∈ L2(R) onto Vj is an approxima-
tion to f at scale j, and converges to f when j →∞.

In terms of scaling functions, we can decompose the density distribution n(x) at scale j by

n(x) =
∑

k

εj
kφP

j,k(x) , (7)

in which φP
j,k(x) is the 1-periodic scaling function constructed such that

φP
j,k(x) =

∞∑
n=−∞

φj,k(x + n) =
√

N
∞∑

n=−∞
φ(N(x + n)− k), (8)

where N = 2j . The scaling function coefficients (SFCs) {εj
k} are given by the inner product

εj
k =

∫
n(x)φP

j,k(x)dx (9)

=
√

N

∫ ∞

−∞
n(x)φ(Nx− k)dx, (10)
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which describes the density fluctuation filtered on the scale of k/2j at position l (Fang & Thews 1998;
Feng & Fang 2004) for 0 ≤ k, l ≤ N − 1. Taking the periodicity of the function n(x), the domain of
integration changes to [0, 1] and yields

εj
k =

√
N

∫ 1

0

n(x)
∑

l∈Z
φ(Nx− k −Nl)dx. (11)

Using Poisson’s summation formula, we have
∑

l∈Z
φ(Nx− k −Nl) =

1
N

∑

l∈Z
e2πi(k−Nx)l/N ¯̂

φ(l/N), (12)

and hence, in Fourier space, Equation (11) could be written in the form

εj
k =

1√
N

∑

l∈Z

¯̂
φ(l/N)n̂(l)e2πikl/N , (13)

with the Fourier transformation of n(x) and φ(x) defined by

n̂(l) =
∫ 1

0

n(x)e−2πilxdx, (14)

and

φ̂(ξ) =
∫ ∞

−∞
φ(x)e−2πixξdx, (15)

in which the symbol “¯” denotes the complex conjugate. Splitting the summation of Equation (13) into
segments of length N gives

εk =
1√
N

N−1∑

l=0

( ∑

m∈Z

¯̂
φ(l/N + m)n̂(l + Nm)

)
e2πikl/N . (16)

Alternatively, we have

|F (l)− n̂(l)| ≤
∑

m=±1,±2,...

|φ̂(l/N + m)|
|φ̂(l/N)| |n̂(l + Nm)|, (17)

with

F (l) =
1√

N
¯̂
φ(l/N)

N−1∑

k=0

εke−2πikl/N . (18)

Obviously, the summation in Equation (18) is taken over an integer grid and can be performed by stan-
dard FFT technique. If the scaling function is chosen in such a way that the left hand side of the above
equation (Eq. (17)) is small enough, F (l) provides a good approximation to n̂(l), and thus Equation (18)
leads to a simple and efficient algorithm for evaluating the Fourier transformation of an unevenly sam-
pled data set. In summary, it can be implemented in the following three steps,

(1) For a given density distribution n(x), calculate the scaling function coefficients εj
k using

Equation (10),

εj
k =

√
N

Np∑

i=1

wiφ
P (Nxi − k) . (19)

Usually, the scaling function is chosen to have a compact support. In this case, the summation
of cycling through the whole sample reduces adding up contributions from neighboring particles
around position k.
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(2) Perform the discrete Fourier transformation in Equation (18) by the standard FFT technique.
(3) Multiply the summation by the tabulated values of 1/

¯̂
φ(l/N).

The efficiency of the algorithm rests on the scale dependence of the basis functions in both real
and wave-number space; we will demonstrate that a higher order B-spline scaling function could be an
appropriate choice, which will lead to a fast algorithm for given precisions.

3 MEASURING FOURIER POWER SPECTRUM VIA FFT

3.1 Mass Partition using B-spline Basis Functions

Mathematically, mass assignment tries to approximate the singular Dirac δD function with a set of basis
functions. To achieve high computational efficiency, it is usually required that the window function have
a compact support in real space, while for minimizing the aliasing effect, the window function shall be
close to a top hat in Fourier space.

As noted by Beylkin (1992), the wavelets with compact support do not afford an efficient algorithm
since the Fourier transformation of compactly supported wavelets does not decay fast enough. One good
choice is to use a higher order B-spline which satisfies the requirement of localization in the real space
and fast decay in wave-number space. In what follows, we will give a brief description of the basic
properties of a n-th order B-spline, which will be useful in the implementation.

B-splines are symmetrical, bell shaped functions constructed from the n + 1 fold convolution of a
rectangular pulse β(0)(x):

β(0)(x) =





1 if |x| < 0.5
0.5 if |x| = 0.5

0 otherwise
(20)

β(n)(x) = (β(0)
+1 ∗ β

(0)
+2 ∗ · · ·β(0)

+n ∗ β
(0)
+(n+1))(x), (21)

where the symbol “∗” denotes the operation of convolution. β(n)(x) is a piecewise polynomial of degree
n. In practical calculations, the B-splines can be computed using recursion over the spline order,

β(n)(x) =
(n + 1)/2 + x

n
β(n−1)(x + 1/2) +

(n + 1)/2− x

n
β(n−1)(x− 1/2) . (22)

Note that B-splines with n = 0, 1, 2 correspond to traditional mass assignment schemes: the Nearest
Grid Point (NGP), the Cloud In Cell (CIC) and the Triangular Shaped Cloud (TSC), respectively.

The Fourier transformation of β(n)(x) is related to the n + 1 fold convolution construction of the
B-splines,

β̂(n)(ξ) =
( sinπξ

πξ

)n+1

. (23)

The n-th order B-spline has a compact support of [−n+1
2 , n+1

2 ]. As β does not form an orthogonal
basis, they could be part of a biorthogonal system. The corresponding dual scaling function can be
constructed similar to that spanned by the B-splines. We apply the current orthogonalization scheme to
construct its dual base γ, ∫ ∞

−∞
β(n)(x− k)γ(n)(x− l)dx = δkl . (24)

It follows from the above orthogonality condition that, in the wavenumber space,

γ̂(n)(ξ) =
β̂(n)(ξ)
a(n)(ξ)

(25)
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with the periodic function

a(n)(ξ) =
∞∑

l=−∞
|β̂(n)(ξ + l)|2 =

n∑

l=−n

β(2n+1)(l)ei2πlξ . (26)

It is noticed that the dual scaling function γ is not compactly supported. Orthogonalizing the B-spline
basis using the function a(n)(ξ) leads to the Battle-Lemarié scaling function in Fourier space,

ϕ̂(n)(ξ) =
β̂(n)(ξ)√
a(n)(ξ)

. (27)

It can be shown that, in terms of the Battle-Lemarié scaling function, the Dirac δ function could have a
finite representation,

δD(x− y) →
∑

k∈Z
ϕn

j,k(x)ϕn
j,k(y) . (28)

The above equation actually asserts the completeness of a set of basis functions, which is also a basic
condition for mass assignment functions.

Taking the n-th B-spline as basis functions, it follows from Equation (16) that

F (ξ)√
a(n)(ξ)

= n̂(ξ/N)ϕ̂(n)(ξ) +
∑

l=±1,±2,...

n̂(N−1(ξ + l))ϕ̂(n)(ξ + l) (29)

with

F (ξ) =
1√
N

N−1∑

k=0

εke−2πiξk , (30)

in which εk is the scaling coefficients decomposed in terms of B-spline functions.
In Figure 1, we compare the Fourier space behaviors, W 2(ξ), of the traditional mass assignment

schemes: NGP, CIC, TSC, and the Daubechies scaling function Daub6, as well as the 3rd-order orthog-
onalized B-spline functions, i.e., Bettle-Lemarié scaling function (BL 3rd), as indicated. The overlap
region of W 2(ξ) with W 2(ξ − 1) (or W 2(ξ + 1)) indicates the strength of the aliasing effect. It is ob-
vious that the FFT power spectrum based on mass assignment function with a perfect top-hat in Fourier
space does not suffer from sampling effects. Thus, the best assembly of the Fourier window function
W 2(ξ) of 3rd-order Bettle-Lemarié scaling function to a top-hat ensures its best performance in mea-
suring the true power spectrum with FFT.

3.2 Power Spectrum of Density Fluctuations

For a given cosmic density field ρ(r), the density contrast δ(r) is defined by

δ(r) =
ρ(r)− ρ̄

ρ̄
. (31)

The cosmological principle ensures that ρ(r) in a sufficiently large volume Vµ can be a fair representa-
tion of the overall cosmic field. The Fourier transform of δ(r) is simply

δ(k) =
1
Vµ

∫

Vµ

δ(r)eik·rdr . (32)

The power spectrum is defined by
P (k) = 〈|δ(k)|2〉 , (33)

where 〈...〉 means the ensemble average.
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NGP
CIC
TSC
Daub6
BL 3rd

Fig. 1 Shapes of different mass assignment functions in Fourier space: the NGP (Nearest Grid Point),
CIC (Cloud-In-Cell), TSC (Triangular Shaped Cloud), Daub6 (Daubechies 6) and BL 3rd (3rd-order
Battle-Lemarié) mass assignment functions. Three sets of curves are of W 2(ξ + 1), W 2(ξ) and
W 2(ξ − 1), respectively.

A real galaxy catalog or data from an N -body simulation is a discrete realization of the underlying
continuous density field; the number density could be written in the form of n(r) =

∑
i wiδ

D(r − ri),
where ri is the position of the ith object, wi is its weight. For a flux-limited galaxy survey, wi is specified
by the selection function. The direct evaluation of the Fourier transformation of the discrete density field
gives

δd(k) =
1
N

∑

i

wie
ik·ri − δK

k,0
(34)

where N is the total number of objects and δK is the Kronecker symbol. It is easy to show that the true
power spectrum can be measured simply by

P (k) ≡ 〈|δ(k)|2〉 = 〈|δd(k)|2〉 − 1
N

(35)

Obviously, subtracting 1/N corrects for the shot noise in the power spectrum estimated from a sample
of discrete objects. Practically, for a given mass assignment function, the measured power spectrum
Pfft(k) computed by the FFT is related to the true one by

P fft(k) =
∑
n
|Ŵ (k + 2kNn)|2P (k + 2kNn) +

1
N

∑
n
|Ŵ (k + 2kNn)|2 (36)

where the summation is taken over 3D integer vector n and kN is the Nyquist wavenumber. Comparing
with Equation (35), the true power spectrum and shot noise are biased by W 2(k) and its replicated
aliasing terms.

In order to reconstruct the true power spectrum from the aliasing sum, Jing (2005) proposed an
iterative method which has been shown to work well using N-body simulation tests. Here, we assert that
the task can be accomplished in a more elegant way. If we adopt the 3-order B-spline scaling function
for the mass assignment, as indicated in Figure 1, |W (k)|2 resembles quite well a top-hat function in
Fourier space within Nyquist sphere |k| ≤ kN . This property ensures that the estimated power spectrum
is hardly biased by the aliasing effect; therefore while using the FFT we can simply obtain the true
power spectrum for a sample of discrete objects without any corrections besides the shot noise.
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4 NUMERICAL TESTS

In this section, we will apply the Beylkin’s algorithm to measure the power spectra of simulations to
demonstrate its accuracy and performance.

4.1 Poisson Samples

For a Poisson random sample, the power spectrum Pshot(k) = 1/N , where N is the number of particles.
To test this, we generate 10 random poissonian samples, each of which consists of N = 2563 particles
randomly distributed in a cubic box. In Figure 2, we show the average values and 1σ errors of the power
spectrum measured from these 10 samples. Note that since we do not input any additional power to the
distribution of the random particles, the power spectrum measured using FFT contains only the second
term in Equation (36). Different mass assignment schemes are employed to tabulate the grid density for
comparison, including the three usually used mass assignment functions: NGP, CIC, TSC, as well as the
unequally spaced Daubechies 6 (Daub6) and 3th-order B-spline scaling functions.

The upper and lower panels in Figure 2 correspond to the computations with 2563 and 5123 grids
respectively. The results for each scheme are displayed using different symbols as indicated in the figure.
According to Equation (36), the measured FFT power spectra for these Poisson random samples are
1
N

∑
n |Ŵ (k + 2kNn)|2, and should be 〈NPshot(k)〉 ≡ 1 for the NGP, the Daub6 and the 3-order

B-spline scaling functions, and much smaller than 1 for the CIC and TSC schemes. These are confirmed
by the tests shown in Figure 2 based on calculations carried out on both the 5123 and 2563 grids.

Poisson Sample

Lmesh=256

NGP
CIC
TSC
Daub6
B-spline 3rd

Poisson Sample

Lmesh=512

NGP
CIC
TSC
Daub6
B-spline 3rd

Fig. 2 The power spectra with 1-σ errors estimated from 10 Poisson random samples. Symbols as
indicated in the figure represents the result using NGP, CIC, TSC, Daub6 and 3rd-order B-spline scaling
functions for mass assignments upon a 2563 grid (left panel) and a 5123 grid (right panel).

4.2 Virgo Cosmological Simulation

We analyze the z = 0 output of an LCDM N -body simulation by the Virgo Consortium (Kauffman et
al. 1999), where the cosmological parameters are Ωm = 0.3, ΩΛ = 0.7, Γ = 0.21, h = 0.7, σ8 = 0.9
and its force soft length is 20h−1kpc. The simulation was evolved in a periodic cubic box of side length
239.5h−1Mpc with 2563 CDM particles.

We measured the power spectrum of the Virgo sample in the same way as we did with Poisson
samples, where the shot noise term (second term of Eq. (36)) is subtracted. Different scaling functions
have been chosen, including the 3rd-order B-spline and the Daub6 scaling functions. For comparisons,
we also make measurements using the NGP, CIC and TSC mass assignment schemes. The results for the
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Virgo LCDM

Lmesh = 256

NGP
CIC
TSC
Daub6
B-spline 3rd

Virgo LCDM

Lmesh = 512

NGP
CIC
TSC
Daub6
B-spline 3rd

Fig. 3 The power spectra measured from the Virgo N-body simulation sample. Symbols as indicated in
the figure are estimated with NGP, CIC, TSC, Daub6 and 3rd-order B-spline scaling functions for mass
assignments upon a 2563 grid (left panel) and a 5123 grid (right panel).

dimensionless power spectrum ∆2(k) ≡ 2πk3P (k) are presented in Figure 3, in which 2563 (upper)
and 5123 grids (lower) have been used. To have a visual inspection of the accuracy achieved by different
methods, we also plot the prediction using the fitting formula for a nonlinear power spectrum obtained
by Smith et al. (2003) as solid lines.

Without correcting the smearing effect and the aliasing effect, the power spectrum obtained using
the NGP, CIC and TSC algorithms significantly underestimated the true power spectrum. Both the results
for Daub6 and 3rd-order B-spline scaling functions seem to work remarkably well at all scales up to
k ≤ kN , and are in good agreement with the Smith et al. (2003) prediction.

To assess the precision of the Beylkin’s algorithm, we examine the numerical errors of the power
spectrum using the 3rd-order B-spline scaling function. In the case of computation with the 2563 grid,
the maximum errors are not more than 7% within the wavenumber range of k considered, meanwhile
for those of the 5123 grid, the error level is as low as < 4% even at k ≥ 0.6kN .

The power spectrum estimated from a discrete data set can be also recovered extremely well by
the FFT technique based on B-spline scaling functions, capable of reaching the same level of accuracy
without any corrections as the Jing’s iteration correction algorithm. Another advantage is that it can be
easily implemented with only minor modifications of those traditional methods. We conjecture that it
can be further applied to estimate higher order cosmic statistics by Fourier analysis, for which there
are no reliable methods available yet to compensate the aliasing. Moreover, we address the issue that
although we have used the 3rd-order B-spline scaling function throughout this paper, in principle, the
higher the order of the scaling function, the better the approximation to the Fourier transformation is.
However, because the computational cost in a d-dimensional space scales as (n + 1)d with the order
of B-spline scaling function n, an algorithm with very high orders may be less efficient. To balance the
two ends, we numerically tested the dependence of accuracy on the orders of B-spline scaling functions.
Our result indicates that for n = 3, 5, 7, there are little differences at k ≤ kN . As the computational cost
for a 3rd-order B-spline scaling function is ∝ 43, slightly more than the TSC ∝ 33, it suffices to use the
3rd-order B-spline scaling function for the power spectrum measurement.

5 CONCLUSIONS

Based on a well developed technique originally proposed by Beyklin, we described a new precise
method for estimating the power spectrum of discrete samples. We demonstrate the efficiency and the
accuracy of the algorithm with samples of N-body simulations. The prominent feature of this method
is that the true power spectrum can be simply recovered without extra corrections for sampling effects
of aliasing and anisotropics which resulted from mass assignment. The algorithm can be readily gen-
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eralized to perform Fourier analysis of galaxy surveys to estimate not only the power spectrum of the
density field, but also possibly of the peculiar velocity field.

Beyond the power spectrum in clustering analysis, the higher order statistics such as bispectrum and
trispectrum quantify the non-Gaussian features produced by the highly non-linear mode-mode coupling.
The precise measurements of non-Gaussian characters are helpful for discriminating among various
models for the structure formation. Though a good numerical technique has been well developed for
correcting the sampling effects in the precise measurements of the power spectrum (Jing 2005), practical
algorithms enabling us to make accurate estimation of higher order spectra are still absent. It is expected
that our unequally spaced FFT technique presented in this paper will provide an efficient tool to achieve
such a goal. Moreover, by virtue of B-spline scaling functions, it can also be applied in performing
N -body simulations.

Acknowledgements We thank the referee for providing constructive comments. This work is supported
by the National Science Foundation of China through grants 10373012, 10633049, 10643002 and the
973 program under No. 2007CB815402. JP and XY would like to acknowledge the fellowships of the
100-talents program set up by the CAS. The simulation in this paper was carried out by the Virgo
Supercomputering Consortium using computers based at the Computing Center of the Max-Planck
Society in Garching and at the Edinburgh Parallel Computing Center. The data are publicly available at
http://www.mpa-garching.mpg.de/Virgo.

References

Baumgart, D. J., & Fry, J. N. 1991, ApJ, 375, 25
Baugh, C. M., & Efstathiou, G. 1993, MNRAS, 265, 145
Baugh, C. M., & Efstathiou, G. 1994, MNRAS, 267, 323
Beylkin, G. 1992, SIAM J. Numer. Anal., 29, 1716
Brandt, A. 1991, Computer Physics Communications, 65, 24
Cui, W., Liu, L., Yang, X., Wang, Y., Feng, L., & Springel, V. 2008, ApJ, 687, 738
da Costa, L. N., Vogeley, M. S., Geller, M. J., et al. 1994, ApJ, 437, L1
Daubechies, I. 1992, Ten Lectures on Wavelets (Philadelphia, SIAM)
Dutt, A., & Rokhlin, V. 1993, SIAM J. Sci. Comput., 146, 1368
Fang, L. Z., & Feng, L. L. 2000, ApJ, 539, 5
Fang, L. Z., & Thews, R. 1998, Wavelet in Physics (Singapore: World Scientific)
Feng, L. L., & Fang, L. Z. 2004, ApJ, 601, 54
Feldman, H. A., Kaiser, N., & Peacock, J. A. 1994, ApJ, 426, 23
Fisher, K., Davis, M., Strauss, M. A., et al. 1993, ApJ, 402, 42
Jing, Y. P., & Valdarnini, R. 1993, ApJ, 406, 6
Jing, Y. P. 2005, ApJ, 620, 559
Kauffman, G., Colberg, J. M., Diaferio, A., et al. 1999, MNRAS, 303, 188
Lin, H., Kirshner, R. P., Shectman, S. A., et al. 1996, ApJ, 471, 617
Park, C., Vogeley, M. S., Geller, M. J., et al. 1994, ApJ, 431, 569
Peacock, J. A., & Nicholson, D. 1991, MNRAS, 253, 307
Peacock, J. A., & Dodds, S. J. 1996, MNRAS, 280, L19
Peebles, P. J. E. 1973, ApJ, 185, 413
Percival, D. B., & Walden, A. T. 1993, Spectral Analysis for Physical Applications (Cambridge: Cambridge

University Press)
Percival, W. J., Sutherland, W., Peacock, J. A., et al. 2002, MNRAS, 337, 1068
Percival, W. J., Nichol, R. C., Eisenstein, D. J., et al., 2007, ApJ, 657, 645
Press, W. H., & Rybicki, G. B. 1989, ApJ, 338, 277
Smith, R. E., Peacock, J. A., Jenkins, A., et al. 2003, MNRAS, 341, 1311
Sullivan, T. D. 1990, Sandia Report
Tegmark, M., Blanton, M., Strauss, M., et al. 2004, ApJ, 606, 702
Tadros, H., & Efstathiou, G. 1996, MNRAS, 282, 1381
Yu, J. T., & Peebles, P. J. E. 1969, ApJ, 158, 103
Vogeley, M. S., Park, C., Geller M. J., et al. 1992, ApJ, 391, L5


