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Abstract We compare the properties of optically dark GRBs, defined by the optical-to-X-
ray spectral index βOX < 0.5, and normal ones discovered by the Swift satellite before the
year 2008 in a statistical way, using data collected from the literature and online databases.
Our sample includes 200 long bursts, 19 short bursts, and 10 with measured high redshifts
(z >∼4). The ratio of dark bursts is found to be ∼ 10% − 20%, and is similar among long
bursts, short ones, and the high-z sub-sample. The result for long bursts is consistent
with both the pre-Swift sample and studies by other authors on smaller Swift samples.
The existence of dark short GRBs is pointed out for the first time. The X-ray derived
hydrogen column densities of dark GRBs clearly prefer large values compared with those
of normal bursts. This supports the dust extinction scenario as the main cause of dark
GRBs. Other possibilities like very high redshifts and non-standard emission mechanisms
are less likely, although not fully excluded.
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1 INTRODUCTION

There has been a long-standing problem of optically “dark” Gamma-Ray Bursts (GRBs) since the
discovery of afterglows. Nearly 90% of well-localized GRBs have an identified X-ray afterglow (De
Pasquale et al. 2003; Gehrels et al. 2007). However, some of them elude optical detection. In the
BeppoSAX satellite era, over ∼ 60% − 70% of GRBs with optical follow-ups failed to show an optical
counterpart (Fynbo et al. 2001; Lazzati et al. 2002). The long time lag between BeppoSAX detection
and the optical follow-up was suspected to be at least partly responsible since a GRB afterglow decays
rapidly in brightness. The HETE-2 mission, with better GRB localizations and rapid coordinate dis-
semination ability, reduced the optical non-detection fraction to ∼ 10%, once claimed as the end of the
“dark burst” mystery (Lamb et al. 2004).

The problem resurfaced quite unexpectedly in the Swift era. The Burst Alert Telescope of the satel-
lite can localize a triggered GRB with high precision (∼ 3 ′) almost instantly (Gehrels et al. 2004). The
X-Ray Telescope and Ultra-Violet/Optical Telescope onboard routinely perform follow-up observations
starting from just a few minutes after the onset of a GRB. A large global network of ground fast-response
telescopes, on alert for a BAT GRB trigger, can slew for optical follow-ups within minutes (e.g., Zheng
et al. 2008), followed then by big telescopes used for deep searches. Precise XRT localization (∼ 5 ′′)
helps in optical counterpart identification. However, defying all those advantages, the detection rate in
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early UVOT observations (< 1 h) turned out to be only∼ 30% (Roming et al. 2006). Recently, Melandri
et al. (2008) and Cenko et al. (2009) found a significant incidence of dark bursts in their respective sys-
tematic ground follow-ups, which went deeper than the UVOT. Those authors utilized a more physical
definition of dark bursts (Jakobsson et al. 2004), which evaluates the optical brightness relative to the
X-rays.

Several suspects have been proposed as the cause of optical darkness. 1) For a GRB at very high
redshift (z >∼ 4), the hydrogen Lyα blanketing and absorption of intervening host-galaxy or intergalactic
medium may greatly suppress the flux in an observer-frame wavelength below 1215(1+ z) Å (Lamb &
Reichart 2000). However, GRBs with such a confirmed high redshift are still rare. 2) Extinction by dust
in the host galaxy of a dark burst may be very high (e.g., Djorgovski et al. 2001; Rol et al. 2007; Jaunsen
et al. 2008), working together with the relatively high GRB redshift which may shift UV photons, which
have much larger extinction coefficients than optical ones, into the observing optical band (Klose et al.
2003). 3) The optical light curve may have decayed very rapidly before the optical search started (e.g.,
Berger et al. 2002), a scenario seemingly no longer relevant in the Swift era. 4) Last but not least, some
GRBs may have an intrinsically low efficiency in optical afterglow emissions (e.g., Jakobsson et al.
2005; Oates et al. 2006; Urata et al. 2007) relative to X-rays, lower than that predicted by the standard
afterglow model.

In this paper, we study the large sample of GRBs detected by the Swift satellite up to the end of
the year 2007, comparing the statistical properties between optically dark bursts and normal ones. Our
sample and data selection are described in Section 2, and detailed analysis is in Section 3. Implications
of our results for the various dark burst scenarios are discussed in Section 4. We compare our studies
with similar ones in Section 5.

2 THE GRB SAMPLE AND DATA SELECTION

We selected a sample from the GRBs detected by Swift BAT up to the end of the year 2007, collecting
the redshifts, BAT fluences between 15 − 150 keV, R-band flux densities and X-ray integral fluxes of
0.2−10 keV at 11 h after the BAT trigger, and intrinsic hydrogen column densities N H. The 0.2−10 keV
X-ray integral flux was converted to the flux density at 3 keV using the measured X-ray spectral index
(or using the mean value 1.1 if no measured value was found). Optical fluxes have been corrected for
Galactic extinction (Schlegel et al. 1998). We derived the optical-to-X-ray spectral index at 11 h, β OX

(Fν ∝ ν−β), from the ratio of the R-band flux density to the 3 keV one, in order to distinguish the
optically dark bursts from the GRB sample (Jakobsson et al. 2004).

For the sake of convenience, we labeled our GRBs with optical detections as “OT” and those with
only optical upper limits as “UL.” We excluded GRBs without a detected X-ray afterglow since a mea-
sured X-ray flux is essential for our dark burst definition.

We chose Nysewander et al. (2009) as our main data source except for the N H values. Those authors
made a comprehensive data compilation of the GRBs with X-ray or optical follow-up observations
detected before the year 2008 by various satellites, after a thorough literature search to find the best
data. Note that if no 11-h R-band or X-ray observational data were available, data extrapolation was
done by them. For that purpose, a power-law temporal decay of the X-ray flux, with a slope of 1.2, that
of the optical flux, with a slope of 0.85 for long bursts and of 0.68 for short bursts, and an optical spectral
index of 1.0 were assumed. A similar compilation made by Gehrels et al. (2008) for the Swift GRBs only
extends to 2007 July. For some of the GRBs observed by Melandri et al. (2008), extrapolating the R-
band upper limits reported there (usually of combined images) to 11 h results in values significantly
deeper than in Nysewander et al. (2009), so those deeper values were adopted. We replaced the R-band
slope value 1.1, which was assumed in Melandri et al. (2008), with 0.85 when doing extrapolation in
order to maintain data uniformity. Finally, we found three Swift bursts, GRB 050502B, GRB 060602B,
and GRB 060807, that were somehow missed from Nysewander et al. (2009). We included two of them,
collecting data from other literature, but we rejected GRB 060602B which suffered from incredibly
large Galactic extinction.
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Two kinds of intrinsic NH values were compiled by us. Both were derived from X-ray spectral data-
reductions taking into account the host-galaxy gas absorption, with solar metallicity assumed, while the
Galactic NH was fixed to the value of Dickey & Lockman (1990). For one kind, i.e., N 0

H, the redshift of
the host galaxy was simply fixed at zero. For the other, the measured host-galaxy redshift was adopted
and we designated the fitting intrinsic column density as N z

H. We first collected the N z
H values in Grupe

et al. (2007), followed by more from the UK Swift/XRT GRB spectrum repository 1 (Evans et al. 2007),
and the rest from other literature. For the GRBs without measured redshifts, the UK repository provided
us with the N 0

H values, while for those of known z, we searched the GRB Coordinates Network 2 (GCN)
Circulars and Reports for N 0

H. The UK repository had not yet responded to a few cases of late reported
z by the time this paper was written. For those, we multiplied N 0

H by (1 + z)2.1 to get empirical N z
H

values. The fitting NH for the XRT Windowed Timing data and that for the Photon Counting data could
be different if both were available; we chose the latter, as Butler & Kocevski (2007) suggested that it
may better reflect the true value. In some cases, no gas absorption above the Galactic value was needed
at all, so the intrinsic NH value had to be left open.

Our final sample, which consists of 229 Swift BAT GRBs in total, is listed in Tables 1 and 2.
Among those, we seek out the ten with measured high redshifts (z >∼4) to make a high-z sub-sample
(Table 2) whose R-band fluxes must have been significantly diluted by intergalactic H Lyman blanketing
absorptions. The remaining 219 include 200 long bursts (T 90 > 2 s; Table 1) and 19 short bursts (T90 <
2 s; Table 1). Note that all the high-z sub-sample members are also long bursts.

Following Jakobsson et al. (2004), we define dark bursts as those with βOX < 0.5. This definition
has operational advantages over the “optical non-detection” one that was typically described by a more
or less arbitrary threshold in the limiting apparent magnitude (e.g., R ∼ 23 within 2 d; Djorgovski et al.
2001). More importantly, it has a clear physical meaning. The standard afterglow model assumes that
there is synchrotron radiation from relativistic electrons accelerated by the forward-external shock. For
slow cooling, which is certainly the case at an epoch as late as 11 h, the X-ray or optical spectrum above
νc must be∝ ν−p/2, and that of νm < ν < νc proportional to∝ ν−(p−1)/2 (see Zhang & Mészáros 2004
for a review). Below νm, the spectrum can rise to higher frequencies but a corresponding rising light
curve has not been observed at a late time, so this case can be excluded. The electron spectral index p is
typically ∼ 2 − 2.5. As for p > 2, which is most reasonable in shock acceleration physics, βOX cannot
be smaller than 0.5 in order to be compatible with the standard afterglow model. To allow for some
measurement errors, we designated the boundary cases, i.e. with 0.5 < βOX < 0.6, as “gray” bursts.
Rol et al. (2005) proposed another method to identify dark bursts by comparing optical fluxes/upper
limits with model extrapolations from the X-rays for any specific GRB. This may be more precise than
using βOX, but it seems difficult to implement for a large sample.

3 DATA ANALYSIS

3.1 The Optical Flux versus X-ray Flux Diagram

The R-band flux densities and the 3-keV X-ray flux densities of our sample are plotted in Figure 1. Both
long bursts (circles) and short bursts (triangles) are included. For our high-z sub-sample (z >∼4), two
kinds of βOX values are shown (squares and asterisks; see Sect. 4.1). OT events are denoted by filled
symbols, while UL events by open ones. Three lines are drawn to show the slope positions corresponding
to βOX = 0.5 (red), 0.6 (green), and 1.25 (black), respectively. Most of our sample is confined between
βOX = 0.5 and βOX = 1.25, as expected if 2 < p < 2.5 in the context of the standard afterglow model.

Excluding the UL events, of which only the upper limits of βOX are available, there is only one
burst with βOX > 1.25. This is the peculiar GRB 060128, which is sub-luminous, an X-ray flash, and
associated with a supernova (Pian et al. 2006), and its βOX = 1.76. Campana et al. (2006) claimed that
its large first-day optical fluxes, behaving uniquely and peaking near 11 h, were powered by SN shock
breakout rather than a genuine GRB afterglow (see also Wang et al. 2007).

1 http://www.swift.ac.uk/xrt spectra/
2 http://gcn.gsfc.nasa.gov/
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Table 1 Swift GRB Sample Catalog

ID Redshift† BAT Fluence‡ Flux Density Flux Density βOX Intrinsic N⊕
H Intrinsic N⊕

H
z [15–150 keV] R @ 11 h 3 keV @ 11 h @ 11h @ z = 0 @ GRB z

10−7 erg cm−2 µJy 10−3 µJy 1021 cm−2 1021 cm−2

Short bursts

OT
————
βOX < 0.5
——
070809 1.0 0.7 20.2 0.48 0.12
βOX ≥ 0.6
——
050724 0.258 9.98 29.1 6.0 1.16 1.27a

051221A 0.547 11.50 7.5 32.0 0.74 1.58a

051227 6.99 0.5 3.8 0.66 0.79
060313 11.30 9.9 12.9 0.90
061006 0.4377 14.20 6.0 7.1 0.92 1.8a

061201 0.111 3.34 2.0 8.7 0.74 0.33 0.41⊗
070714B 0.92 7.2 2.9 3.1 0.93 4.65a

071227 0.383 2.2 2.2 1.2 1.02 0.57 1.32⊗
UL
————
βOX < 0.5
——
061210 0.4095 11.10 0.7 45.1 0.37 6.8 13.98⊗
070724A 0.457 0.3 0.2 6.0 0.48 1.99 4.39⊗
βOX ≥ 0.6
——
050509B 0.226 0.09 0.4 0.9 0.83 0.0018a

050813 1.8 0.44 2.6 0.1 1.38 6.4 55.62⊗
051210 0.85 2.1 1.4 1.00 2.5
060801 0.80 0.5 0.1 1.16 2.75a

061217 0.827 0.42 2.5 0.2 1.28 5.9 20.92⊗
070209 0.22 13.6 1.8 1.22
070429B 0.904 0.63 0.3 0.5 0.87 5.9 22.81⊗
070729 1.0 5.4 0.5 1.26 0.39

Long bursts

OT
————
βOX < 0.5
——
050219B 158.00 3.4 172.2 0.41 1.24
050401 2.90 82.20 2.5 97.2 0.44 19.5b

050713A 51.10 2.1 97.3 0.42 2.61
051008 50.90 0.4 44.9 0.30 3.15
060510A 80.50 20.0 1072.1 0.40 0.11
060923A 8.69 0.3 18.3 0.38 0.96
061222A 79.90 0.3 858.2 -0.1 2.59
070306 1.4959 53.80 5.0 431.7 0.33 3.34 26.0e

070419B 73.60 10.7 446.7 0.43 0.57
070508 0.82 196.00 2.8 183.7 0.37 2.34 8.23⊗
070802 2.45 2.8 0.6 20.7 0.46 11.0a

071021 13 1.4 39.8 0.48 1.37
071025 65 3.0 167.8 0.39 0.82
0.5 ≤ βOX < 0.6
——
050315 1.949 32.20 16.0 205.2 0.59 6.6b

050915A 8.50 1.0 16.0 0.56 0.89
060908 2.43 28.00 0.8 14.2 0.55 2.6a

061121 1.314 137.00 23.2 377.8 0.56 8.1b

070129 29.80 3.0 69.5 0.51 0.498



Statistical Studies of Optically Dark GRBs in the Swift Era 1107

Table 1 – Continued.

ID Redshift† BAT Fluence‡ Flux Density Flux Density βOX Intrinsic N⊕
H Intrinsic N⊕

H
z [15–150 keV] R @ 11 h 3 keV @ 11 h @ 11h @ z = 0 @ GRB z

10−7 erg cm−2 µJy 10−3 µJy 1021 cm−2 1021 cm−2

070721B 3.626 36 1.1 18.3 0.56 0.029 0.72⊗
071118 5.0 5.0 65.6 0.59 1.55
βOX ≥ 0.6
——
041223 167.00 25.4 92.4 0.76 0.31
050126 1.29 8.38 1.5 6.2 0.75 1.1a

050215B 2.27 1.5 12.7 0.65
050306 115.00 38.5 31.1 0.97
050318 1.44 10.80 45.2 37.9 0.96 1.6b

050319 3.24 13.10 24.3 162.1 0.68 0.9a

050406 2.44 0.68 4.6 4.7 0.94 1.1 14.73⊗
050416A 0.6535 3.67 5.5 49.3 0.64 6.1b

050525A 0.606 153.00 151.9 58.9 1.07 2.1b

050603 2.821 63.60 87.6 107.0 0.91 4.4a

050607 5.92 0.7 4.7 0.68 0.6
050712 10.80 18.2 37.8 0.84 0.4
050721 36.20 23.8 85.7 0.77 1.25
050801 1.56 3.10 18.4 8.4 1.05 5.1 25.60⊗
050802 1.71 20.00 14.4 65.3 0.73 0.263 3.1b

050820A 2.612 34.40 103.2 681.8 0.68 0.262 3.89⊗
050824 0.83 2.66 19.9 38.3 0.85 0.37a

050826 0.297 4.13 36.4 6.5 1.17 5.3b

050908 3.350 4.83 8.1 6.0 0.98 0.21c

050915B 33.80 5.4 23.2 0.74 1.8
050922C 2.198 16.20 23.9 27.2 0.92 2.5a

051006 13.40 11.4 5.3 1.04 5.46
051016B 0.9364 1.70 4.9 59.2 0.60 7.8b

051109A 2.346 22.00 29.0 196.2 0.68 5.1a

051109B 0.080 2.56 3.1 6.2 0.85 0.98 1.4b

051111 1.55 40.80 41.6 24.8 1.01 18.5b

051117A 43.40 6.9 17.3 0.82 0.81
060108 2.03 3.69 0.6 7.3 0.60 2a

060110 15.70 59.4 30.9 1.03 0.41
060111A 12.00 3.3 20.3 0.69 1.32
060111B 16.00 3.9 15.8 0.75 2.2
060115 3.53 17.10 5.2 14.6 0.80 12.9b

060116� 24.10 5.34 16.4 0.79 5.74
060124 2.296 4.61 92.8 997.2 0.62 7.7b

060202 0.783 21.30 3.3 26.7 0.66 3.74 12.60⊗
060203 8.98 5.4 18.2 0.77 0.71
060204B 29.50 3.3 28.2 0.65 1.16
060218 0.0331 15.70 1082.2 9.1 1.59 4.0b

060323 6.22 2.4 6.3 0.81 0.041
060418 1.490 83.30 30.4 17.4 1.02 8.2b

060428A 13.90 110.0 302.8 0.80 1.33
060428B 8.23 6.3 12.6 0.85 0.62
060502A 1.51 23.10 9.4 86.7 0.64 5.7b

060505 0.089 9.44 2.2 24.8 0.61 0.81 0.97⊗
060507 44.50 8.4 32.7 0.76 0.48
060512 0.4428 2.32 18.3 10.4 1.02 2.5b

060526 3.221 12.60 45.9 27.7 1.01 11.4b

060604 2.68 4.02 8.6 43.0 0.72 22.2b

060605 3.78 6.97 24.8 19.7 0.97 3.4a

060607A 3.082 25.50 33.6 109.3 0.78 5.0b

060614 0.125 204.00 70.8 268.5 0.76 0.143 0.3b

060707 3.425 16.00 8.1 60.9 0.67
060708 4.94 9.1 27.6 0.79 0.31
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Table 1 – Continued.

ID Redshift† BAT Fluence‡ Flux Density Flux Density βOX Intrinsic N⊕
H Intrinsic N⊕

H
z [15–150 keV] R @ 11 h 3 keV @ 11 h @ 11h @ z = 0 @ GRB z

10−7 erg cm−2 µJy 10−3 µJy 1021 cm−2 1021 cm−2

060714 2.711 28.30 20.9 34.1 0.87 18.3b

060729 0.54 26.10 253.3 623.7 0.82 2.6b

060804 5.98 67.9 50.4 0.98
060904B 0.703 16.20 17.8 21.0 0.92 7.8b

060906 3.686 22.10 14.7 9.1 1.01 25.0a

060912A 0.937 13.50 10.3 26.8 0.81 4.8b

060926 3.208 2.19 3.3 5.4 0.87 25.0a

061007 1.261 444.00 10.9 53.6 0.72 5.2b

061019 25.90 146.4 64.7 1.05 6.9
061021 29.60 31.9 149.8 0.73 0.443
061110A 0.758 10.60 2.5 3.5 0.89 9.7b

061110B 3.44 13.30 0.7 4.8 0.68 30.0a

061126 1.1588 67.70 16.8 153.0 0.64 1.11 5.54⊗
061222B 3.355 22.40 1.2 3.4 0.80 41.8b

070110 2.352 16.20 18.9 41.9 0.83 1.3d

070208 1.165 4.45 3.4 11.7 0.77 5.9a

070224 3.05 3.2 9.9 0.79
070318 0.836 24.80 34.0 51.0 0.89 5.64a

070330 1.83 5.2 11.1 0.84 0.68
070411 2.954 27.00 13.9 49.7 0.77 15a

070419A 0.97 5.58 2.1 1.0 1.04 2.45a

070420 140.00 48.0 235.9 0.72 0.67
070506 2.31 2.10 8.1 18.2 0.83 3.0a

070518 1.62 3.3 4.0 0.91 0.15
070529 2.4996 25.70 8.2 15.1 0.86 15.8a

070611 2.04 3.91 11.4 8.5 0.98 1.5a

070616 192.00 49.0 20.5 1.06 0.85
070628 35 139.4 430.0 0.79 0.92
070721A 0.71 0.7 4.0 0.70 1.1
070810A 2.17 6.9 9.1 4.8 1.03 5.1a

070911 120 32.5 174.0 0.71 0.73
070917 20 6.6 47.9 0.67 14
071003 1.60435 83 180.1 123.7 0.99 0.48 2.2f

071010A 0.98 2.0 43.0 51.6 0.92 4 16.79⊗
071010B 0.947 44 48.3 324.6 0.68 2.4a

071011 22 26.6 76.4 0.80 3.4
071020 2.145 23 13.1 106.6 0.65 0.4 4.44⊗
071031 2.692 9.0 16.6 2.1 1.22 1.4a

071112C 0.823 30 5.6 17.3 0.79 1.2a

071122 1.14 5.8 3.7 1.2 1.09 1.8a

UL
————
βOX < 0.5
——
050713B� 31.80 2.26 387.6 0.24 2.15
050716� 61.70 0.32 24.4 0.35 0.8
060306 21.30 1.2 59.2 0.41 3.69
060319� 2.64 0.20 38.7 0.23 4.06
060719 15.00 0.1 16.9 0.24 3.91
061202 34.20 7.7 270.9 0.46 5.12
070219 3.19 0.1 7.6 0.35 3.19
070223� 17.00 0.35 20.0 0.39 4.5
070412 4.84 0.1 4.3 0.43 1.24
070521 0.553 80.10 0.2 106.0 0.09 5.53 13.94⊗
0.5 ≤ βOX < 0.6
——
050128� 50.20 7.87 158.2 0.53 0.091



Statistical Studies of Optically Dark GRBs in the Swift Era 1109

Table 1 – Continued.

ID Redshift† BAT Fluence‡ Flux Density Flux Density βOX Intrinsic N⊕
H Intrinsic N⊕

H
z [15–150 keV] R @ 11 h 3 keV @ 11 h @ 11h @ z = 0 @ GRB z

10−7 erg cm−2 µJy 10−3 µJy 1021 cm−2 1021 cm−2

050502B∗ 4.78 2.16 42.6 0.53 0.082
050803 0.422 21.50 8.2 124.7 0.57 1.34 26.5b

050922B 22.30 5.3 69.5 0.59 0.91
060814 0.84 146.00 8.9 175.5 0.53 2.89 10.40⊗
060904A 77.20 3.0 68.2 0.52 1.43
060923C 15.80 0.8 10.5 0.59 0.79
061004 5.66 0.4 6.0 0.57 0.12
070103 3.38 0.3 4.0 0.59 2.71
070328 90.60 9.8 188.6 0.54 2.02
070517 2.15 1.0 13.1 0.59 0.39
070621 43 1.0 19.8 0.53 4.4
βOX ≥ 0.6
——
050117 88.10 207.1 409.0 0.85
050124� 11.90 89.3 51.3 1.02
050219A 41.10 11.7 24.3 0.84 0.48
050223 0.5915 6.36 7.7 4.5 1.01
050326 88.60 20.3 97.5 0.73 1.44
050410 41.50 14.3 10.6 0.98 0.01
050412� 6.18 0.19 1.5 0.66 0.17
050421 1.45 23.3 1.9 1.28 4.6
050422 6.07 1955.2 3.0 1.82 0.94
050509A 3.41 2.7 9.7 0.77 2.3
050528� 4.48 3.79 8.8 0.83
050714B 5.95 3.3 6.3 0.85 3.27
050717 63.10 14.3 3.3 1.14 1.6
050726 19.40 9.7 18.5 0.85 0.095
050819 3.50 4.2 6.1 0.89 0.18
050822 24.60 8.6 68.3 0.66 0.65
050827 21.00 6.7 72.9 0.62 2.23
050916 9.29 16739.7 23.6 1.83 1.2
051001 17.40 2.1 7.2 0.77 1.53
051016A 8.37 9.7 1.5 1.19 3.42
051021B 8.35 813.1 5.3 1.63 0.48
051117B 1.77 12.4 1.6 1.22 2.4
060105 176.00 44.1 47.6 0.93 1.85
060109 6.55 35.4 18.4 1.03 2.28
060123 1.099 3.0 99.7 63.0 1.00 0.99
060211A 15.70 5.5 10.5 0.85 0.45
060211B 4.38 2.8 5.2 0.86 0.55
060219 4.28 0.9 1.9 0.84 3.51
060312 19.70 652.4 16.3 1.44 1.02
060322 52.20 68.6 13.5 1.16 1.9
060403 13.50 223.0 9.6 1.37 2.5
060413 35.60 6702.5 266.5 1.38 6.9
060421 12.50 6173.4 12.5 1.78 2.3
060427 4.99 1.3 4.3 0.78 0.92
060501 12.20 4.8 2.7 1.02 14
060515 14.10 24.0 3.2 1.21 2340
060602A� 0.787 51.23 48.0 21.0 1.06
060712 12.40 17.5 9.3 1.03 1.46
060717 0.65 1.1 1.6 0.89 2.6
060805A 0.72 4.8 2.1 1.05 0.65
060807� 4.94 16.84 37.3 0.83 1.05
060813 54.60 98.9 169.8 0.87 0.64
060825 4.53 1.09 15.9 0.58 0.63
060919 5.46 29.8 3.3 1.24 9.3
060923B 4.80 91.2 23.0 1.13 3
060929� 8.30 1.58 3.8 0.82 1.05



1110 W. K. Zheng et al.

Table 1 – Continued.

ID Redshift† BAT Fluence‡ Flux Density Flux Density βOX Intrinsic N⊕
H Intrinsic N⊕

H
z [15–150 keV] R @ 11 h 3 keV @ 11 h @ 11h @ z = 0 @ GRB z

10−7 erg cm−2 µJy 10−3 µJy 1021 cm−2 1021 cm−2

061002 6.77 11.0 2.5 1.14 2
061028 9.66 7.2 2.7 1.07 0.34
061102 2.79 11.0 0.2 1.49 0.86
070107 51.70 42.4 147.9 0.77 0.5
070220� 14.71 1.60 33.8 0.83 1.53
070227 16.20 49.7 22.5 1.05 1
070429A 9.10 17.6 28.0 0.88 0.38
070509 1.75 3.5 2.6 0.98 4.2
070520A 2.50 1.5 0.8 1.03 2.35
070520B 9.25 4.0 2.1 1.03 1.28
070531� 10.80 5.0 3.4 0.99 0.22
070612B 16.80 47.0 21.9 1.04 4.7
070704 126.5 1.952 22.4 1.18 4
070714A 1.5 3.2 8.5 0.81 4.7
070805 7.2 25.5 8.7 1.09
070808� 12 1.88 3.0 0.88 8.3
070920B 6.6 6.0 9.5 0.88
071028A 3.0 24.6 8.8 1.08 0.18
071101 0.76 415.3 1.6 1.70 2.6

SectionR-band and X-ray fluxes mainly adopted from Nysewander et al. (2009) unless specified otherwise.
†http://www.mpe.mpg.de/∼ jcg/grbgen.html; http://swift.gsfc.nasa.gov/docs/swift/archive/grb table.html/.
‡http://swift.gsfc.nasa.gov/docs/swift/archive/grb table.html/; Sakamoto et al. (2008).
∗ 050502B; supplemented by us: http://www.swift.ac.uk/xrt curves/00116116/; Prabhu (2005).
� 060807; supplemented by us: http://www.swift.ac.uk/xrt curves/00223217/; Duscha et al. (2006).
�Deeper optical observations of Melandri et al. (2008) were adopted to replace the Nysewander et al. (2009)
values.
⊕References for NH: [a] http://www.swift.ac.uk/xrt spectra/ (all NH @ z = 0 values unless specified other-
wise); [b] Grupe et al. (2007); [c] Goad et al. (2005); [d] Troja et al. (2007); [e] Jaunsen et al. (2008); [f] Perley
et al. (2008).
⊗Values derived from NH @ z = 0 multiplied by (1 + z)2.1.

Table 2 Swift High-redshift GRB Catalog

ID Redshift Fluence‡ Flux Density Flux Density† βOX1 Flux Density†† βOX2 Intrinsic N⊕
H

Section

z [15–150 keV] 3keV @ 11 h R @ 11 h @ 11 h Rext @ 11 h @ 11 h @ GRB z Ref
10−7 erg cm−2 10−3µJy µJy µJy 1021 cm−2

050505 4.27 24.90 117.7 4.7 0.50 8.0 0.57 24.0b 1,2
050730 3.967 23.80 273.6 15.2 0.55 33.7 0.66 12.4b 1,3
050814 5.3 20.10 42.4 2.1 0.53 16.2 0.81 7.3a 1,4
050904 6.295 48.30 1.3 <2.48 <1.03 20.0 1.31 39.3b 1,5
060206 4.048 8.31 63.2 82.7 0.98 101.9 1.01 5.1a 1,6
060210 3.91 76.60 267.9 1.3 0.21 2.88 0.29 19.5b 1,7
060223A 4.41 6.73 1.2 3.6 1.09 >1.09 27.0a 1
060510B 4.9 40.70 4.3 0.4 0.62 1.32 0.78 45.5b 1,8
060522 5.11 11.40 8.9 3.7 0.82 >0.82 21.0a 1
060927 5.47 11.30 3.7 0.315 0.60 4.1 0.95 12.0a 1,9

‡http://swift.gsfc.nasa.gov/docs/swift/archive/grb table.html/; Sakamoto et al. (2008).
† True R-band observational results.
†† Values extrapolated from the NIR/IR observations.
⊕ References for NH are the same as in Table 1.
Section References: [1] Nysewander et al. (2009); [2] Hurkett et al. (2006); [3] Pandey et al. (2006); [4] Jakobsson et al.
(2006); [5] Rumyantsev et al. (2005); [6] Curran et al. (2007b); [7] Curran et al. (2007a); [8] Melandri et al. (2006); [9]
Ruiz-Velasco et al. (2007).
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A significant fraction of both the OT events and UL events lies below the βOX = 0.5 criterion line,
and hence are classified as dark bursts (red symbols). The true dark fraction could be underestimated
since some UL events, with an upper-limit βOX not much larger than 0.5, would have possibly turned
out to be dark had their optical flux densities been measured. The majority of the dark bursts are long
bursts and only three are short, while there are a few more long events, but no short ones, in the “gray”
region (0.5 < βOX < 0.6; green symbols).

Fig. 1 R-band flux density versus the 3 keV X-ray flux density at 11 h. Dark bursts (βOX < 0.5) are
drawn in red, those of 0.5 < βOX < 0.6 in green, and the others in black. Triangles present short
bursts, and circles long bursts. A filled symbol means optical detection being reported (labeled OT),
while an open one indicates optical upper limits only (labeled UL). For the 10 high-redshift bursts
(z >∼ 4), two values are given for each (see Sect. 4.1), one square and the other asterisk. Also plotted are
lines indicating βOX = 0.5 (red), 0.6 (green), and 1.25 (black), respectively.

3.2 Short Bursts

In terms of their βOX distribution, the difference between the 19 short bursts and 210 bursts is not
significant, as indicated by the K-S test p-value which is 0.4 for OT events only or 0.2 if UL events
are included. The optical afterglows of short bursts as a whole are fainter than those of long bursts
(Kann et al. 2008), but so are their X-ray afterglows and prompt emissions (Nysewander et al. 2009).
Consequently, they occupy the lower-left region of Figure 1 (see also Gehrels et al. (2008) but for a
much smaller sample). Compared with long bursts, they are not preferentially optically dark relative to
X-rays.

In our sample, three short bursts are dark, i.e., one OT (GRB 070809) and two UL events (GRB
061210 and GRB 070724A). Gehrels et al. (2008), however, found no optically dark short bursts. We
note that GRB 061210 (the XRT observation which started 2 d later) was not included in their sample,
and neither was the optical upper limit of GRB 070724A. The classification of GRB 070809 is tricky
since our βOX value, 0.48, and theirs, 0.51, are actually very similar, both bordering the β OX = 0.5
separation line.

Although the Swift satellite allows statistical studies on the optical darkness of short bursts to be
performed for the first time, the current sample is still small. In the following sections, we will focus on
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the optical darkness of long bursts. GRB 060614 and GRB 060505 were also listed by us as long bursts
despite the on-going hot debates on their exact nature (e.g., Fynbo et al. 2006; Zhang et al. 2007b).

3.3 Long Bursts

The total dark ratio of our Swift long burst sample is >∼12%, or possibly even >∼18% if all the gray
UL events are regarded as potential dark bursts. The ratio matches both the pre-Swift result well, as
concluded by Gehrels et al. (2008), and that of our short bursts. Including the 10 high-z events would
not change the conclusion (see Sect. 4.1). By comparison, Cenko et al. (2009) reported a dark fraction
as large as ∼ 50% in the GRB sample that were followed up by the Palomar 60-inch telescope, and
Melandri et al. (2008) found that most of the GRBs observed but undetected by the 2-m Liverpool
and Faulkes telescopes are dark bursts. Those samples are much smaller than ours and their data inter-
/extrapolation methods are somewhat different. The 23 Cenko GRBs before 2008 are all included in
our sample, and contribute only 4 dark bursts and 2 gray ones according to our β OX values. However,
those authors only tabulated the βOX values at 1000 s. As a test, we interpolated or extrapolated their
observed optical photometry to 11 h and recalculated βOX and obtained only 3 dark bursts and 3 gray
ones. Regarding the Swift GRBs in Melandri et al. (2008), as stated in 3.1, the R-band upper limit
reported there was adopted in our sample if it resulted in the best available constraint on β OX.

The left panel of Figure 2 shows the βOX histograms of all the long bursts of our sample (dashed
black) except for the high-z ones, upper for the 113 OT events and lower for the 87 UL ones. The
distributions of the Jakobsson et al. (2004) sample of 52 pre-Swift GRBs (solid pink) are also plotted for
comparison.

The Swift OT distribution is somewhat asymmetric, peaking around 0.8, with more below the peak
value than above it. There are 13 dark bursts (βOX < 0.5) identified and 7 gray ones (0.5 < βOX < 0.6).

Fig. 2 Left: βOX histogram distributions of the Swift (dashed black) and pre-Swift (solid pink) long
bursts, with OT events shown in the upper panel and UL events in the lower panel. The filled color of
red indicates dark bursts, while green shows gray bursts. Upper right: Histogram distributions of the
X-ray afterglow flux density at 3 keV and 11 h of the Swift OT (dashed black) and UL (solid red) long
bursts. Lower right: Histogram distribution of the R-band afterglow flux density at 11 h of the Swift OT
long bursts (dashed black) compared with that of the pre-Swift ones (solid pink; Jakobsson et al. 2004)
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The pre-Swift sample is much smaller, which may account for its narrower distribution, among which
Jakobsson et al. (2004) found no dark bursts. However, according to the statistics, the two samples are
not significantly different, with a K-S test p-value as large as 0.9.

The Swift UL distribution seems biased towards large βOX compared with the OT events (K-S test p-
value as small as 0.004), not unexpected since their βOX values are simply also upper limits. However,
one still finds 10 dark UL cases and 12 gray ones. Like the OT samples, the Swift and pre-Swift UL
samples are also not significantly different, with a K-S test p-value of 0.2. Note that all the 5 dark bursts
identified in the pre-Swift sample were UL events.

As shown in the upper right panel of Figure 2, the 11-h 3-keV X-ray flux densities of the Swift
UL events are, on average, lower than the OT ones (K-S test p-value of 4 × 10−4). The mean value
of the former is ∼ 10−2.0±0.8 µJy, while the latter is ∼ 10−1.5±0.6 µJy. We have also found a similar
trend regarding the BAT fluence of the two samples, although the statistical significance is not as high
(K-S test p-value of 0.04). On the one hand, weaker gamma-ray bursts also tend to release less energy
during the afterglow stage, both in X-rays and in optical photons. On the other hand, optical afterglow
detections rely on quick and accurate BAT and XRT localizations to become efficient, the latter clearly
being favored by large BAT fluence and large X-ray flux densities.

The optical afterglows of the Swift OT events are, on average, much fainter than the pre-Swift ones
of Jakobsson et al. (2004) , demonstrating not only the ever-improving ensemble of GRB-dedicated
optical facilities but also the excellent synergy between Swift detections and ground-based follow-up
observations. The respective 11-h R-band flux density distributions plotted in the lower right panel of
Figure 2 have a mean value of ∼ 0.03±0.1 mJy for Swift and of ∼ 0.2±0.8 mJy for pre-Swift. The two
distributions are different with a K-S test p-value as small as 0.008. The corresponding distributions of
the UL events are, however, indistinguishable (K-S test p-value of 0.8).

4 DISCUSSIONS ON THE NATURE OF DARK BURSTS

4.1 The High-redshift Scenario

We have singled out the 10 GRBs that have measured redshifts approximately higher than 4 (see
Table 2), in order to check if some bursts are optically dark simply due to very high redshifts. For
z >∼4, the observed R-band flux is greatly depressed by the strong intergalactic or interstellar H Lyman
absorptions at λobs ≤ 1025(1 + z)Å (Lamb & Reichart 2000). Two values of βOX were calculated for
each burst among the high-z sample. The first, βOX1, was obtained directly from the observed R-band
flux, while to get βOX2, we extrapolated the observed NIR or IR flux (unaffected by Lyman absorptions
for the given redshift) to the R band adopting a spectral index of 1.

It can be shown that the high-z H Lyman absorption does contribute to a few dark bursts, but it is
unlikely to be a major factor for the Swift GRB sample. Taking the βOX1 values, the high-z sub-sample
members seem somewhat “darker” than those at lower redshifts. There are two events with β OX1 ≤ 0.5
and three with 0.5 < βOX1 ≤ 0.6. On the other hand, the βOX2 values (i.e., having been de facto
corrected for H Lyman absorption) decrease the number of high-z dark bursts and those with gray ones
both to 1. However, high-z GRBs identified so far are rare. Among the GRBs detected by Swift and with
measured redshifts, only a small fraction are located at z >∼4, or ∼ 10% up to the end of the year 2007.
However, we also sound a note of caution that, among our whole long GRB sample, 9 of the 13 dark
OT events, 9 of the 11 dark UL ones, and 10 of the 12 gray UL ones have no measured redshifts. Some
would turn out to be high-z events if their redshifts were measured.

4.2 Dust Extinction

It seems natural to hypothesize that dust extinction may account for at least some fraction of dark bursts,
in view of the compelling evidence for the connection of long GRBs with the deaths of massive stars
and with star-forming regions (see Woosley & Bloom 2006 and references therein). This scenario was
first proposed by Groot et al. (1998) and Paczyński (1998) to explain the failed optical detection of
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Fig. 3 Left: Histogram distribution of the intrinsic hydrogen column density N0
H (assuming z = 0), in

excess of the Galactic value, of dark bursts (solid red; both OT and UL events included) and normal ones
(dashed black; OT only). Right: The same as in the left but for the value measured in the host galaxy’s
rest-frame Nz

H. The meanings of the symbols and colors are the same as in Fig. 1.

Fig. 4 R-band optical (upper panel) and 3 keV X-ray (lower panel) flux density at 11 h as a function of
the Swift BAT fluence. The meanings of the symbols and colors are the same as in Fig. 1.
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GRB 970828, which can also be regarded as a prototypical dark burst by the β OX < 0.5 criterion of
Jakobsson et al. (2004). However, as pointed out by Lazzati et al. (2002) and De Pasquale et al. (2003), it
is complicated by theoretical predictions of possible dust destruction by strong GRB X-rays and/or UV
flashes along the line of sight in the circumburst environment (e.g., Waxman & Draine 2000; Fruchter
et al. 2001). On the other hand, although still rare, highly extinguished GRBs were discovered in multi-
band optical/IR observations, some of which are dark bursts according to β OX (e.g., Rol et al. 2007;
Tanvir et al. 2008; Jaunsen et al. 2008) while others seem not to be.

We used the hydrogen column density NH as a proxy for the strength of local dust extinction to
make statistical comparisons between dark bursts and normal ones, since the number of GRBs with
known optical extinction values is far too low for such a purpose. The N H(1022 cm−2)/AV values
were estimated to be 0.18, 0.7, and 1.6 for the Milky Way, LMC, and SMC, respectively (see Schady
et al. 2007 and references therein), although the values derived from GRB afterglow observations were,
in general, much smaller, possibly suggesting a lower dust-to-gas ratio in the GRB local environment
(Galama & Wijers 2001; Stratta et al. 2004; Kann et al. 2006; Starling et al. 2007; but see Schady et
al. 2007).

The N 0
H values for dark bursts are, on average, higher than for normal ones (left panel; Fig. 3). These

are the X-ray absorption column densities in excess of the Galactic values, assuming zero redshift for
the host galaxy (Evans et al. 2007). Neither short bursts nor high-redshift ones (z >∼4) are included.
For dark bursts (solid red) both OT and UT events are included, while for normal ones (dashed black)
only OT events are counted since some UL events of βOX > 0.5 could actually be dark. In total, 21
dark and 47 normal bursts are plotted in the figure. All but 5 of the dark bursts have N 0

H > 1021 cm−2,
corresponding to a ratio of ∼ 76%, while the same high-N 0

H ratio for normal ones is only ∼ 40%.
Applying a K-S test, we found that the probability that dark bursts and normal ones are drawn from the
same N0

H distribution is very small, only ∼ 0.4%. The histogram is only for long bursts. However, the
conclusion is not changed by including short bursts whose numbers are very small. Lin (2006) claimed
somewhat different results, but his dark bursts just meant no-detection by the UVOT and in total only
25 Swift GRBs were studied.

A more physically reasonable comparison can be made using the intrinsic N H values in the rest
frame of the GRB host galaxy, i.e., N z

H. Dark bursts are clearly inclined to have large N z
H values despite

possibly small statistics. This is shown in Figure 3 by an N z
H − βOX plot (right panel), instead of

a histogram since the number of dark bursts whose N z
H values are available is too small. Both long

(circles) and short bursts (triangles) are included, as well as high-redshift ones (squares and asterisks).
All the 9 dark bursts plotted here (red) have N z

H > 4× 1021 cm−2, as do most of the gray ones (green).
In contrast, the N z

H value of about half of the normal events (black) is well below 4 × 10 21 cm−2.
For further evidence of dust extinction dominating the formation of dark bursts, as suggested by

their very large NH, we looked to the literature for any measured optical extinction values of the dark
bursts in our sample. Our search, though by no means comprehensive, resulted in 4 bursts, which are
GRB 050401 (AV ≈ 0.6; Watson et a. 2006), GRB 060923A (AV ≈ 3; Tanvir et al. 2008), GRB
070306 (AV ≈ 4.9; Jaunsen et al. 2008), and GRB 070802 (AV ≈ 0.8−1.5; Elı́asdóttir et al. 2009; see
also Krühler et al. 2008). Remarkably, all of them experienced strong dust extinction. Moreover, after
correcting for their local optical extinction values, all had βOX > 0.5, i.e., they were no longer optically
dark! Note, the X-ray flux densities that we compiled have already been corrected for gas absorptions
because of the nature of the X-ray data reduction procedures (Evans et al. 2007).

Systematic rapid and deep afterglow observations simultaneously taken in many optical and NIR
bands are required to reliably constrain the local dust-extinction characteristics for dark and normal
bursts. The AV values cited above were derived assuming one of the Milky Way, LMC, and SMC
extinction laws, while the true cases in the GRB environments or host galaxies can be very different (Li
et al. 2008). Such an observational campaign is already being realized in the ongoing GROND project
(e.g., Krühler et al. 2008), as well as being proposed for future GRB space missions like SVOM (Basa
et al. 2008), JANUS (Roming et al. 2008), and EXIST (Grindlay et al. 2009).
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4.3 Non-standard Emission Mechanisms

Our studies do not exclude the possibility that some dark bursts are attributable to the intrinsic mecha-
nism by which the GRB afterglow emissions are produced. As shown in the left panel of Figure 3, one
long dark burst does have a very low N 0

H value. This is GRB 060510A with N 0
H = 1.1 × 1020 cm−2,

corresponding to marginal apparent dust extinction in the Milky Way, LMC, or SMC N H/AV relation-
ships. The redshift of the GRB is unknown. Of course, the intrinsic column density N z

H could be much
higher if it took place at a relatively high redshift. What is not included in the figure is the short dark
GRB 070809 with N 0

H = 1.2 × 1020 cm−2. Being a short GRB, it was very likely lying at z < 1 and
hence N z

H is also not expected to be large. Urata et al. (2007) also argued that the optical darkness of
GRB 051028, which was detected by the HETE-2 satellite, cannot be explained by local dust extinction
since the X-ray fitting NH is consistent with the Galactic value.

The dark burst criterion adopted by us is defined in the context of the standard afterglow model. It
assumes that both the X-ray and optical afterglows are just different segments of the same synchrotron
radiation spectrum of relativistic electrons that are accelerated in the forward shock when the GRB ejecta
collide with circumambient material (e.g., Sari et al. 1998). This paradigm has been seriously challenged
in the Swift era by several observational facts (see Zhang 2007a and references therein), in particular,
the occurrence of an early shallow-decay phase in many X-ray afterglow light curves (e.g., Liang et al.
2007), which was not often accompanied by similar behavior in the optical band, and the remarkable
paucity of a highly-expected achromatic LC jet break (e.g., Liang et al. 2008). Many remedies have been
proposed, including time-dependentmicrophysical parameters (e.g., Fan & Piran 2006), the contribution
by long-lived reverse shocks (e.g., Genet et al. 2007), X-rays dominated by “late prompt emission”
(Ghisellini et al. 2007), the importance of inverse-Compton scattering (Panaitescu 2008), scattering of
X-rays by dust (Shao & Dai 2007), etc. The X-ray and optical afterglows may result from different
emission mechanisms or regions, e.g., from relativistic forward and reverse shocks respectively. This
forward-reverse-shock model was proposed early on by Dai (2004) and then numerically studied by
Yu & Dai (2007) (see also Genet et al. 2007). It may be the emission from one of the two shocks that
leads to optically dark GRBs. In addition, for the pre-Swift dark GRB 001025A, Pedersen et al. (2006)
invoked an extra thermal component to fit the X-ray spectrum which also solves its optical-darkness
puzzle. Also, the afterglow emissions in the case of an electron energy spectral index p < 2, which can
naturally lead to βOX < 0.5, were calculated by Dai & Cheng (2001), although it is difficult to make
compatible with general acceleration mechanisms.

Finally, as shown in Figure 4, dark and normal bursts follow a similar correlation with the X-ray
flux density and γ-ray fluence (lower; see also Gehrels et al. 2008), while dark bursts lie considerably
below normal ones in the optical-γ diagram (upper). On the one hand, this indicates that early X-ray
abnormalities like flares and the shallow decay do not increase the apparent ratio of dark bursts. On the
other hand, this may further support the dust-extinction hypothesis for dark bursts since they are clearly
dim in the optical band rather than bright in X-rays.

5 COMPARISONS WITH OTHER STUDIES

We have compiled a large sample for statistical studies of the optical darkness of GRBs. The data set
is uniform in the sense that all the GRBs were detected by the same instrument, i.e. the Swift BAT.
Gehrels et al. (2008) have calculated βOX values or upper limits for a much smaller Swift sample,
consisting of only 41 long bursts and 10 short ones. On the one hand, they did not search for the GRBs
detected in the last 5 months of 2007 which we have done. On the other hand, they only considered
GRBs having optical measurements within a factor of 2 of 11 h. Probably as a consequence, we have
identified 3 dark short bursts but they found none. Notwithstanding, the dark ratio among long bursts
is similar between the two studies and is also consistent with the pre-Swift sample (De Pasquale et al.
2003; Jakobsson et al. 2004). In contrast, both Melandri et al. (2008) and Cenko et al. (2009) claimed a
dark-burst occurrence as high as ∼ 50% among the few dozen GRBs that have been observed with their
specific optical telescopes. However, the light curve slopes adopted there for optical and X-ray data
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inter-/extrapolation are different from ours. Moreover, the β OX in Cenko et al. (2009) was defined at
103 s. Nevertheless, their optical measurements have been taken into account when compiling our data
set, but with necessary modifications to meet our data definitions.

There are other optical-darkness statistics performed on Swift GRBs but using optical non-detection
as the dark-burst definition, e.g., Lin (2006) and Balázs et al. (2008). The former found no systematic
difference in X-ray NH between their “dark” and “bright” groups, totaling 25 GRBs, while the latter
came to a contradictory conclusion for a much larger sample. We cannot make direct comparisons
between these results and ours. Nardini et al. (2008) compiled the R-band upper limits of optically non-
detected Swift GRBs to argue that most belong to their “underluminous optical” family. More recently,
after the paper had been submitted, Perley et al. (2009) reported host galaxy studies of 14 “dark” GRBs,
mixing optical non-detection and the βOX < 0.5 criterion in order to get a decent sample size. Like
us, they identified dust extinction as the main cause of dark bursts. Finally, van der Horst et al. (2009)
proposed a new definition for dark bursts, i.e., βOX < βX − 0.5 where βX is the X-ray spectral index.
By doing so, they can exclude the potential cases of p < 2 being classified as optically dark.
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