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Abstract We believe the Babcock-Leighton process of poloidal field generation to be
the main source of irregularity in the solar cycle. The random nature of this process may
make the poloidal field in one hemisphere stronger than that in the other hemisphere at
the end of a cycle. We expect this to induce an asymmetry in the next sunspot cycle. We
look for evidence of this in the observational data and then model it theoretically with
our dynamo code. Since actual polar field measurements exist only from the 1970s, we
use the polar faculae number data recorded by Sheeley (1991, 2008) as a proxy of the
polar field and estimate the hemispheric asymmetry of the polar field in different solar
minima during the major part of the twentieth century. This asymmetry is found to have
a reasonable correlation with the asymmetry of the next cycle. We then run our dynamo
code by feeding information about this asymmetry at the successive minima and compare
the results with observational data. We find that the theoretically computed asymmetries
of different cycles compare favorably with the observational data, with the correlation co-
efficient being 0.73. Due to the coupling between the two hemispheres, any hemispheric
asymmetry tends to get attenuated with time. The hemispheric asymmetry of a cycle ei-
ther from observational data or from theoretical calculations statistically tends to be less
than the asymmetry in the polar field (as inferred from the faculae data) in the preceding
minimum. This reduction factor turns out to be 0.43 and 0.51 respectively in observational
data and theoretical simulations.
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1 INTRODUCTION

Although solar activity appears reasonably symmetric in the two hemispheres after short-term variations
are averaged, some cycles have been known to be stronger in one hemisphere. The aim of the present
paper is to analyze the asymmetries in solar cycles during the twentieth century and then to simulate
these asymmetries with a solar dynamo model.

The solar magnetic cycle is believed to be produced by a flux transport dynamo operating in the
sun’s convection zone (Wang, Sheeley & Nash 1991; Choudhuri, Schissler & Dikpati 1995; Durney
1995; Dikpati & Charbonneau 1999; Nandy & Choudhuri 2001, 2002; Kiiker, Riidiger & Schultz 2001;
Choudhuri 2003; Guerrero & Mufioz 2004). Fairly sophisticated models of the solar dynamo that ex-
plain various regular features of the solar cycle have been constructed. There is, however, not yet a



116 A. Goel & A. R. Choudhuri

convergence of the values of important parameters. In the model of Chatterjee, Nandy & Choudhuri
(2004), the value of turbulent diffusivity for the poloidal field in the interior of the solar convection zone
is taken to be 2.4 x 10'2cm? s~ On the other hand, Dikpati & Gilman (2006) take a value about 50
times smaller.

In order to model the hemispheric asymmetry, we need to understand how the irregularities of
the solar cycle arise in the flux transport dynamo theory. We believe that the stochastic fluctuations
in the dynamo process give rise to the irregularities (Choudhuri 1992). Choudhuri, Chatterjee & Jiang
(2007) identify the Babcock—Leighton process of the production of the poloidal field as the main source
of randomness in the solar dynamo, whereas other aspects of the dynamo process are assumed to be
deterministic. In the Babcock—Leighton process, the poloidal field is produced from the decay of tilted
bipolar sunspots. The tilt of bipolar sunspots is caused by the Coriolis force acting on the rising flux
tubes (D’Silva & Choudhuri 1993), whereas buffeting of the flux tubes by convective turbulence causes
a scatter in the tilt angles around the average given by Joy’s law (Longcope & Choudhuri 2002). Because
of this scatter in tilt angles, the Babcock—Leighton process appears not to be a deterministic process.
Observational data, as plotted in figure 3 of Jiang, Chatterjee & Choudhuri (2007), also indicate that
the polar field produced at the end of a cycle is not correlated with the strength of the cycle. On the
other hand, Dikpati & Gilman (2006) use the sunspot area data as the source function for the poloidal
field, which amounts to assuming the Babcock-Leighton process to be fully deterministic and which is
incorrect in our opinion. Dikpati & Gilman (2006) have predicted that the next cycle 24 will be 30%-—
50% stronger than the last cycle, which is in the variance of the prediction of Choudhuri, Chatterjee &
Jiang (2007) and Jiang, Chatterjee & Choudhuri (2007). They believe that it will be 30%—-35% weaker.

Although the polar field produced at the end of a cycle is not correlated with the strength of the
cycle, observational data show that the strength of the cycle is correlated quite well with the polar field
at the preceding minimum. This is seen in figure 2 of Jiang, Chatterjee & Choudhuri (2007). In fact,
Schatten et al. (1978) proposed long ago that the strength of the polar field at a solar minimum can be
used to predict the strength of the next cycle. Svalgaard, Cliver & Kamide (2005) and Schatten (2005)
have used the weakness of the present polar field to predict that the next cycle 24 will be weak. Jiang,
Chatterjee & Choudhuri (2007) showed that only a reasonably high value of turbulent diffusivity can
give rise to the observed correlation between the polar field at the minimum and the strength of the
next cycle. How this correlation arises is explained through figure 1 of Jiang, Chatterjee, & Choudhuri
(2007). If the diffusivity is high, then the poloidal field generated at the solar surface by the Babcock—
Leighton process diffuses to the tachocline in a few years. Since the next cycle is caused by the toroidal
field produced from this poloidal field in the tachocline by differential rotation, it is obvious that the
next cycle would appear correlated with the preceding polar field which is formed by the poleward
advection of the poloidal field due to meridional circulation. On the other hand, if the diffusivity is low,
then the poloidal field produced at the surface cannot diffuse to the tachocline and has to be carried
to the tachocline by the meridional circulation. This takes about 20 years so that a particular cycle is
not correlated with the polar field in the immediately preceding minimum. Dikpati & Gilman (2007)
could predict a strong cycle after a minimum with a weak polar field only because they used a low
diffusivity. This would never be possible in a high-diffusivity model. Jiang, Chatterjee & Choudhuri
(2007; Sect. 5) provided several independent arguments about why the diffusivity is likely to have their
assumed higher value. Yeates, Nandy & Mackay (2008) have recently carried out a thorough study of
the effects of diffusivity on a fluctuating dynamo and have confirmed the findings of Jiang, Chatterjee
& Choudhuri (2007).

If the Babcock-Leighton process of poloidal field generation is the source of randomness in the solar
dynamo, then a theoretical model based on mean field equations has to be corrected by feeding the ac-
tual value of the observed polar field at the solar minimum (Choudhuri, Chatterjee & Jiang 2007). Since
reliable polar field measurements are available only from the mid-1970s, Choudhuri, Chatterjee & Jiang
(2007) and Jiang, Chatterjee & Choudhuri (2007) attempted to model only the last three solar cycles. As
these last three cycles were only weakly asymmetrical between the hemispheres, they are not particularly
convenient for studying the physics of hemispheric asymmetry, although Jiang, Chatterjee & Choudhuri
(2007) presented some calculations of hemispheric asymmetry. Jiang, Chatterjee & Choudhuri (2007)
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pointed out two other works which provide proxies for the polar field at earlier minima: (i) the po-
lar faculae numbers analyzed by Sheeley (1991); and (ii) large-scale magnetic moments obtained by
Makarov et al. (2001) from the positions of dark filaments. While Jiang, Chatterjee & Choudhuri (2007)
carried out some correlation analyses based on these data, they were not used in dynamo modelling.
Since Sheeley (1991) has provided both the north and south polar faculae numbers during 1906-1990,
we can use these results to estimate the asymmetries in the polar field during the various solar minima
of the twentieth century. Jiang, Chatterjee & Choudhuri (2007) stressed the fact that polar fields inferred
from the faculae data may not always be reliable. Since it is still the best that we can do to model the
asymmetries of earlier cycles, it is instructive to see what we get from this approach. While revising this
paper in response to the referee’s report, we came across a recent paper of Sheeley (2008) in which he
extends his polar faculae analysis until 2006, so we have been able to include these additional data in
this revised version of the paper.

The randomness of the Babcock-Leighton process may give rise to a stronger poloidal field in
one hemisphere compared to the other. Just as the polar field at the minimum gives an indication of
the strength of the next cycle, we may expect that a hemispheric asymmetry in the polar field may be
indicative of a hemispheric asymmetry in the solar activity during the next cycle. We find a reasonably
good correlation in the observational data. The theoretical dynamo model with our assumed value of
diffusivity qualitatively reproduces this correlation. In spite of a large scatter in the data, we can clearly
see some interesting patterns.

We present a discussion of hemispheric asymmetry seen in the observational data in Section 2. Then
Section 3 presents calculations from our dynamo model in which magnetic field values in the two poles
during the minima are fed. The theoretical results of hemispheric asymmetry are discussed in Section 4.
Our conclusions are summarized in Section 5.

2 OBSERVATIONAL DATA

We use figure 1 of Sheeley (1991) to estimate the north polar faculae number (F'y) and the south polar
faculae number (F's) at successive solar minima when the polar faculae numbers had their maxima,
except that we use figure 2 of Sheeley (2008) for the last two solar minima. The values of F'y and Fs at
the beginnings of various cycles are listed in Table 1 along with the asymmetry factor

 Fn - Fs

Fag = —.
A5 7 Fx + Fs

@)

It should be noted that the polar faculae number plotted in figure 1 of Sheeley (1991) is often noisy
near the solar minima when this number has maximum values. So, when using F'as as a proxy for the
asymmetry in the polar field, the possibility of significant errors should be kept in mind. Since actual

Table1 Polar faculae numbers and total sunspot areas in the two hemispheres during the various cycles.

Cycle Polar faculae number Total sunspot area

Number at beginning of cycle during the cycle
Fx Fy Fas AN As Aas
15 28.3 31.6 -0.057 4.33 x10% 3.57 x10% 0.097
16 53.9 49.4 0.043 4.65 x10% 3.91 x10% 0.087
17 25.2 30.6 -0.097 6.00 x10% 5.96 x10% 0.003
18 51.5 33.0 0.219 7.43 x10% 7.03 x10% 0.027
19 64.8 44.1 0.190 10.55 x10* 7.39 x10% 0.176
20 66.2 36.9 0.284 6.94 x10% 4.91 x10* 0.171
21 245 29.2 -0.086 751 x10* 7.76 x10* -0.017
22 23.6 26.3 -0.053 6.38 x10% 7.24 x10% -0.063

23 16.0 16.3 -0.010 5.61 x10% 6.44 x10% -0.069
24 6.7 10.8 -0.231 - - _
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Fig.1 The observed asymmetry in sunspot area Aas of cycle n + p is plotted against the polar faculae
asymmetry Fags at the beginning of cycle n.

measurements of polar field from WSO have been available since 1976, Sheeley (1991, 2008) presented
comparisons of actual polar field values and the faculae numbers during the period when both types
of data were available. While the correlation between the two appears reasonably good, it is certainly
not extremely tight. Jiang, Chatterjee & Choudhuri (2007) pointed out that the polar field inferred from
the faculae number data of Sheeley (1991) did not always agree with the polar field inferred from the
parameter A(t) computed by Makarov et al. (2001) from the positions of dark filaments. It may be noted
that Li et al. (2002) also estimated the asymmetry of polar faculae data of Sheeley (1991) by a slightly
different method. Instead of using the maximum value of the polar faculae number as we have done, they
used the total number of polar faculae in the two hemispheres. The hemispheric asymmetries computed
by them are sometimes slightly different from our F'ss. Since we are interested in the asymmetry of the
polar field at the beginning of the cycle, we believe that F'ag is a better proxy for that than the asymmetry
computed by Li et al. (2002).

To compute asymmetries of sunspot cycles, we use the sunspot area data from the archive of Royal
Greenwich Observatory available at the website: http://solarscience.msfc.nasa.gov/greenwch.shtml.
Monthly averages of daily sunspot areas for the northern and southern hemispheres are available at this
website. We add up the monthly sunspot areas over one sunspot cycle to get a “total’ sunspot area during
the cycle in one hemisphere. Let us denote these ‘total” sunspot areas in the two hemispheres summed
over sunspot cycles by Ax and Ag. Table 1 also lists the values of Ay and Ag for various sunspot cycles
along with the asymmetry factor 4

N — 48

AN+ As @)

We will look into the behavior of the sunspot area asymmetry A og of cycle n + p against the polar
faculae asymmetry Fag at the beginning of cycle n.

Figure 1 shows plots of A g of cycle n + p against Fiag at the beginning of cycle n for four values
of p: —1, 0, 1 and 2. When we are dealing with a small number of data points, it should be kept in mind
that the value of the correlation coefficient » may not always have a high statistical significance. Even
in the case of ‘null hypothesis’ where there is actually no correlation, the probability that V' data points

Aas
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would give a correlation coefficient higher than |r| is given by

erfc IrlvN
V2
(see, for example, Press et al. 1988, sect. 13.7). For the four panels in Figure 1 corresponding to p =
—1,0, 1,2, the probability of the null hypothesis turns out to be 27%, 4.4%, 17% and 79% respectively.
We have the best correlation when p = 0. There may be weak correlations in the cases p = 1 or
p = —1, though we cannot make any definitive statement on the basis of the limited data. It is clear that
the correlation disappears for p = 2. In normal data analysis, the null hypothesis is usually ruled out if
its probability is less than 5%. Only in the case p = 0 can we rule out the null hypothesis and conclude
with a reasonable degree of confidence that there is a real correlation.

Although we may not be able to assert this with a very high degree of statistical significance, it
appears that the asymmetry of the poloidal field produced at the end of a sunspot cycle is the major
factor determining the asymmetry of the next cycle. This would be possible only if the information
about the poloidal field asymmetry at the solar surface can be communicated within a few years (~ 5
years) to the tachocline which is the breeding ground for sunspots during the next cycle. As argued by
Jiang, Chatterjee & Choudhuri (2007) and confirmed by Yeates, Nandy & Mackay (2008), this requires
a diffusivity of the order 2.4 x 10'2cm? s~ as used by Chatterjee, Nandy & Choudhuri (2004) and
Choudhuri, Chatterjee & Jiang (2007). If the diffusivity is assumed to be 50 times smaller than that
in Dikpati & Gilman (2006), then diffusion cannot carry any information from the solar surface to
the tachocline in a reasonable time. This has to be done by the meridional circulation, which has an
advection time of about 20 years. By using such a low value of diffusivity in their numerical simulations,
Charbonneau & Dikpati (2000) found that the polar field at the beginning of cycle n had the maximum
correlation with the strength of cycle n + 2, and there was virtually no correlation with cycle n (see their
figure 9).

Choudhuri, Chatterjee & Jiang (2007) found that the effect of a sudden disturbance in their dynamo
model persists for about 15-20 years (see their figure 2). It is intriguing to note that a ‘memory’ of 15-20
years is consistent with what we see in Figure 1. If we tentatively allow that there is a weak correlation
in the p = 1 case (which is suggested in the plot, but not established at a high level of statistical
significance), then we conclude that the correlation becomes weaker from the p = O tothe p = 1
case and disappears in the p = 2 case. This would suggest a ‘memory’ of order 15-20 years. While
it may be unlikely that all the parameters used by Chatterjee, Nandy & Choudhuri (2004), Choudhuri,
Chatterjee & Jiang (2007) and Jiang, Chatterjee & Choudhuri (2007) have exactly the correct values, the
values of quantities like diffusivity probably have been chosen correctly within a factor of 2 or 3, since
‘memory’ from this model is in good agreement with the limited observational data that we have. If
the “memory’ is longer than a cycle, then the randomness introduced by the Babcock—Leighton process
at the end of a cycle does not erase all the effects of the previous cycle completely. Bushby & Tobias
(2007) have argued against very long memories in a complex nonlinear system like the solar dynamo.
On the other hand, Charbonneau, Beaubien & St-Jean (2007) suggested that the ‘even-odd’ effect in the
solar cycle is caused by period doubling, which would imply a memory that is at least as long as what
we are suggesting.

The last important point to note in the observational data is that the correlation line for the p = 0
case in Figure 1 has a slope of 0.43. Even if the polar field asymmetry at a minimum is the primary cause
of the asymmetry in the next cycle, it seems that the asymmetry in the cycle is statistically expected to
be only 0.43 times the polar asymmetry. In other words, the asymmetry tends to get reduced as the
cycle progresses. Chatterjee & Choudhuri (2006) studied the coupling between the two hemispheres
and showed that, for a dynamo with high diffusivity, the two hemispheres remain coupled even after the
introduction of asymmetries. Therefore, we expect that the hemispheric asymmetries continuously get
washed away until the randomness in the Babcock-Leighton process creates fresh asymmetries towards
the end of a cycle.




120 A. Goel & A. R. Choudhuri

One may wonder whether we would get plots similar to what we see in Figure 1 when we try to
correlate the total polar faculae number F'x + Fj at the beginning of cycle n with the “total’ sunspot area
AN + Ag during cycle n + p. Some plots of this kind are shown in figures 2 and 3 of Jiang, Chatterjee
& Choudhuri (2007). When we estimate the polar field at the beginning of cycle n from the value of
A(t) computed by Makarov et el. (2001) and correlate it with the “total” sunspot area of cycle n + p, we
get plots very similar to the plots in Figure 1. However, when we carry out such an exercise by taking
I\ + Fs as a proxy of the polar field, we do not get very clear plots. Even in the case p = 0, we do not
find a good correlation. It is intriguing that we get the interesting plots of Figure 1 by correlating the
asymmetries F'as and Aag, but we do not get such plots when we try to correlate F'x + Fs and An + Ag
for different cycles. While we do not have a proper explanation for this, we offer a tentative hypothesis.
The counting of faculae numbers involves some degree of human judgment. When Sheeley counted
faculae numbers in the same plates once in 1990 and again in 2007, the results differed by a factor of
1.38 (Sheeley 2008). So, even when the same human being does all the countings, the faculae numbers
of different cycles may be counted at different times and the results may not be standardized. On the
other hand, the asymmetry of a cycle is obtained from faculae counts of the north and south poles within
a few months. Presumably, these are counted by a human being within a short interval of time and more
or less in the same way. To calculate the asymmetry Fag as given by Equation (1), we have to take a
ratio of the faculae numbers such that any lack of standardization gets eliminated. Hence, so it is possible
that the asymmetry Fas is a better proxy for the polar field asymmetry than F'x + Fs is a proxy for the
average polar field. In support of this hypothesis, we draw the reader’s attention to table 1 of Li et al.
(2002), where the polar faculae data of Sheeley (1991) from the Mount Wilson Observatory (MWO) are
listed along with the polar faculae data from the National Astronomical Observatory of Japan (NAQJ)
for four cycles. It seems that the total number of faculae decreased from cycle 20 to cycle 21 according
to the MWO data, but increased according to the NAOJ data. However, the asymmetries for cycles 20
and 21 computed from these two different data sets turned out to be very similar!

3 THENUMERICAL DYNAMO MODEL

We now carry out an analysis of the asymmetry in solar activity on the basis of the standard dynamo
model presented by Nandy & Choudhuri (2002) and Chatterjee, Nandy & Choudhuri (2004). The basic
equations for the standard axisymmetric a£2 solar dynamo model can be found in Chatterjee, Nandy &
Choudhuri (2004). In order to solve these governing equations, we make use of the solar dynamo code
SURYA developed by the research group at the Indian Institute of Science. This code and a detailed
guide (Choudhuri 2005) is available upon request by sending an e-mail to Arnab Rai Choudhuri (email
address: arnab@physics.iisc.ernet.in). The code SURYA has been the basis for dynamo calculations
presented in several papers (Chatterjee, Nandy & Choudhuri 2004; Choudhuri, Chatterjee & Nandy
2004; Chatterjee & Choudhuri 2006; Choudhuri, Chatterjee & Jiang 2007; Jiang, Choudhuri & Wang
2007; Jiang, Chatterjee & Choudhuri 2007; Yeates, Nandy & McKay 2008).

As discussed earlier, the Babcock-Leighton process of poloidal field generation from the decay of
tilted bipolar sunspot pairs involves randomness. Hence, in order to analyze the irregularities of the
solar cycles, we have to force-feed the observational data for the poloidal field at the solar minima. To
accomplish this, Choudhuri, Chatterjee & Jiang (2007) adopted the following method. Cycle 22 was
chosen as the average cycle and the observed value of the polar field at a solar minimum was divided by
the value of the polar field at the beginning of cycle 22 to arrive at a numerical factor ~. This factor v is
essentially a measure of the observed poloidal field at a solar minimum. Now let A ,,;;,, be the amplitude
of the scalar function A(r, @) which gives the poloidal field at the minima of a relaxed solution of the
dynamo code. The code was stopped at successive minima, when A(r, §) above r > 0.8 R o would be
multiplied by a constant factor such that its amplitude becomes equal to A ,;,,, where ~ is the numerical
factor appropriate for that minimum. Values of A(r, §) below r < 0.8 R were left unchanged to ensure
that only the poloidal field created in the previous cycle would be updated, but any poloidal field created
in still earlier cycles, which may be present at the bottom of the convection zone, was not changed.
Choudhuri, Chatterjee & Jiang (2007) used a single ~ for the whole Sun at every minimum. On the
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Fig.2 The solid line represents the monthly averaged sunspot number taken from observation, while
the dash-dotted line represents the theoretical monthly averaged sunspot number calculated by feeding
the polar faculae data of Sheeley (1991, 2008) in the dynamo code.

other hand, Jiang, Chatterjee & Choudhuri (2007) used a function ~(6) of the latitude obtained from
WSO data of the poloidal field at different latitudes. We now follow the procedure of assigning two
different yx and ~ys values for the two hemispheres obtained from the north and south polar faculae
numbers during the minima. If we again take cycle 22 as an average cycle, we see in Table 1 that the
average value of polar faculae number (i.e. the average of north and south poles) at the beginning of that
cycle was 24.95. Dividing the numbers in the second and third columns of Table 1 by this, we get the
values of vy and vs.

On the basis of this methodology, we carry out simulations for cycles 15-23 by updating the poloidal
field at the minima with the help of the polar faculae number data of Sheeley (1991, 2008). Before
presenting the results of asymmetry, we show a theoretical sunspot number plot in Figure 2 along with
the observational data. As already pointed out by Choudhuri, Chatterjee & Jiang (2007) and Jiang,
Chatterjee & Choudhuri (2007), the absolute value of the theoretical sunspot number does not have a
particular physical significance. Consequently, we have scaled it appropriately to produce a good fit
with the observational data. We found that the theoretically calculated cycles vary in duration slightly
if we feed the poloidal field data at the minima by our procedure. It is believed that the duration of a
cycle is set by the time scale of the meridional circulation (Charbonneau & Dikpati 2000; Hathaway et
al. 2003), and helioseismology gives us information about the variation of meridional circulation only
from 1996 onwards. Most probably, it is the variation of meridional circulation with time which is the
primary cause of variation in the observed durations of cycles. Since we do not have any information
about meridional circulation variation at earlier times, we take the meridional circulation to be constant
in our model and do not try to match the observed variation of cycle durations. The total duration of
cycles 15-22 in our theoretical model turned out to slightly longer than the observed duration. We had
to shrink the time axis in the theoretical model by a factor of 0.86 to produce Figure 2.

It was mentioned by Chatterjee, Nandy & Choudhuri (2004) that one of the limitations of their
model (which we use here) is that the theoretical sunspot number at the minima remained significantly
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non-zero. We see in Figure 2 that there is no good match between theory and observations during the
solar minima. This was the case in the results of Choudhuri, Chatterjee & Jiang (2007) and Jiang,
Chatterjee & Choudhuri (2007) as well. The fits between theory and observations during the maxima
of most of the cycles seem reasonable, except for the two weak cycles 16 and 20, as well as the last
cycle 22. The two weak cycles 16 and 20 correspond to the two data points in figure 2(b) of Jiang,
Chatterjee & Choudhuri (2007) which are quite a bit away from the correlation line. As pointed out by
Jiang, Chatterjee & Choudhuri (2007), these two weak cycles were preceded by fairly high values of the
polar faculae number, which suggests a strong polar field in the previous minimum, whereas the polar
field inferred from the value of A(¢) as computed by Makarov et al. (2001) is on the lower side.

For the sake of comparison, we also carried out a calculation of cycles 16-23 by feeding the polar
field data at the minima inferred from the values of A(t) given by Makarov et al. (2001). The result
is shown in Figure 3. Note that, for this calculation, a single value of v was used at each minimum,
which was taken to be proportional to A(¢) at that minimum. We see that the fit between theory and
observation is better in this case. This was expected because the correlation plot given in figure 2(a)
of Jiang, Chatterjee & Choudhuri (2007) based on the data of Makarov et al. (2001) shows a tighter
correlation than the correlation plot given in figure 2(b) based on the polar faculae data of Sheeley
(1991, 2008).
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Fig.3 The solid line represents the monthly averaged sunspot number taken from observation, while
the dash-dotted line represents the theoretical monthly averaged sunspot number calculated by feeding
the polar field value inferred from the data of Makarov et al. (2001) in the dynamo code.

4 THEASYMMETRY CALCULATION

We now present the asymmetry calculations. Although polar field data are available from mid-1970s and
one can calculate the polar field asymmetry from these data for the last few solar minima, we use the
faculae data throughout, for the sake of uniformity and consistency. Asymmetry calculations for the last
3 cycles based on the polar field data have been presented by Jiang, Chatterjee and Choudhuri (2007).
However, as we already pointed out, these cycles were only mildly asymmetric and are not so useful in
the study of the physics of hemispheric asymmetry.
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Fig.4 The top panel plots the theoretical monthly averaged sunspot number in the northern
(solid line) and the southern (dash-dotted line) hemispheres. The bottom panel shows the
observational plot for the same.

The upper panel of Figure 4 shows the theoretical sunspot numbers in the two hemispheres from
our dynamo simulation as functions of time for cycles 15-23. The theoretical curve shown in Figure 2 is
nothing but the sum of the two curves shown in Figure 4. For the sake of comparison, the observational
data of monthly sunspot areas in the two hemispheres as functions of time are shown in the bottom
panel of Figure 4. Both in the theoretical and observational plots, the northern hemisphere is found to
be considerably more active than the southern hemisphere during cycles 19 and 20. These were the
cycles with the strongest asymmetry during the twentieth century. The areas below the curves in the top
panel of Figure 4 for a particular cycle give the theoretical total sunspot numbers Ny and Ng in the two
hemispheres for that cycle. We can then calculate the theoretical asymmetry of a cycle in the usual way:

Nx — N

Nyg = ———= .
A5 7 Ny + Ng

©)

The theoretically calculated values of asymmetry N ag for various cycles are listed in Table 2, along
with the values of observed asymmetry A s which were already listed in the last column of Table 1.
The fourth column of Table 2 gives the ratio of the theoretical asymmetry to the observed asymmetry,
whereas the last column lists the difference between them. For the cycles which had sufficient asym-
metry (i.e. more than 10%), we find this ratio to be of order 1. However, when the asymmetry is small
(i.e. less than 10%), it does not have much statistical significance and sometimes the theoretical and ob-
servational asymmetries even have opposite signs. Only for cycle 17, which had the weakest observed
asymmetry of only 0.3%, the ratio given in the third column of Table 2 is off from 1 by more than an
order of magnitude. However, we find in the last column that the difference between theoretical and
observational asymmetries in this case is quite small. We conclude that our theoretical dynamo model
produces the approximately correct value of asymmetry when it is sufficiently large.
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Table 2 Theoretical (Vas) and observed (Aas) asym-
metries in solar activity.

Cycle number NAS AAS X—iz— NAS — AAS
15 -0.044 0.097 -0.45 -0.141
16 -0.016 0.087 -0.18 -0.103
17 -0.047 0.003 -15.6 -0.050
18 0.103 0.027 3.81 0.076
19 0.132 0.176 0.75 -0.044
20 0.182 0.171 1.06 0.011
21 0.017 -0.017 -1.00 0.034
22 -0.115 -0.063 1.83 -0.052
23 -0.034 -0.069 0.49 0.035
24 -0.056 - - -

0.25

02k corr. coef. = 0.87
slope = 0.51 ]

0.151

0.1

theoretical asymmetry during the nth cycle
o
o
o

-0.2 -0.1 0 0.1 0.2 03
poloidal asymmetry at the beginning of cycle n

Fig.5 Theoretically calculated asymmetry in sunspot activity during cycle n is plotted against the
observed asymmetry in the polar faculae number at the beginning of the cycle.

In Figure 5, we plot the theoretically calculated asymmetry N ag for cycle n against the asymme-
try Fag in the polar faculae number at the beginning of cycle n, which is essentially the asymmetry
between vy and ~g values that have been fed into the code. The null hypothesis in this case has a prob-
ability of only 0.6%. We have to compare the theoretical Figure 5 with the corresponding observational
figure which is the plot for p = 0 in Figure 1. Compared to the slope of 0.43 in that figure, the slope in
Figure 5 has a somewhat higher value of 0.51. We consider this to be a remarkable agreement between
theory and observation. As we pointed out in Section 2, the coupling between the hemispheres tends to
reduce any asymmetry between the hemispheres. Hence, we find that the observed asymmetry A a5 ofa
cycle is less than the asymmetry F'ag of polar faculae number at the beginning of that cycle, which is an
indication of the source of asymmetry in the cycle. We now find that the theoretically calculated asym-
metry Nag of the cycle is also reduced compared to F'5g at the beginning of the cycle and the reduction
is by a factor which is comparable to the factor we see in the observational data. We believe that this is
again an indication that parameters like diffusivity, which are responsible for the coupling between the
hemispheres, probably have values in the correct ball park in our dynamo model. Figure 6 plots theo-
retical asymmetry N g against the observational asymmetry A og for different cycles. The correlation
coefficient of 0.73 is quite remarkable, judging from the fact that considerable uncertainties are involved
in using the polar faculae number as the proxy of the polar field. The probability of the null hypothesis
is only 2.9%, leading us to conclude that the theoretical results agree well with observational data.
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Fig.6 The theoretical asymmetry Nag of various cycles is plotted against the observa-
tional asymmetry Aas.

5 CONCLUSIONS

During the twentieth century, some cycles had hemispheric asymmetry larger than 17% as seen in
Table 1. It is possible that the hemispheric asymmetry of the solar activity plays an important role
in determining the character of the solar cycle. For example, there is some observational evidence that
there was a large hemispheric asymmetry at the time of the onset of the Maunder minimum (Sokoloff &
Nesme-Ribes 1994) and that this asymmetry may even have played some role in inducing the Maunder
minimum (Charbonneau 2005). However, to the best of our knowledge, not much systematic effort has
previously been done to study the asymmetry of solar activity with the help of dynamo models. While
we have taken the point of view that the Babcock-Leighton process is the source of irregularities in the
solar cycle, it should be remembered that it is not yet clear whether this alone can explain the Maunder
minimum or if something else is needed.

The randomness of the Babcock—Leighton process can make the poloidal field in one hemisphere
stronger than the other and we suggest that this induces an asymmetry in the solar cycle. We have di-
rect poloidal field data only from the mid-1970s. Cycles from that time onwards have been only mildly
asymmetric and hence are not particularly suitable for studying hemispheric asymmetry. Also, we need a
larger data set to draw any statistically significant conclusions. Therefore, we use the polar faculae num-
ber reported by Sheeley (1991, 2008) as the proxy of the polar field. In spite of uncertainties involved
in this procedure, we find that the asymmetry in the polar faculae number during a solar minimum is
correlated with the hemispheric asymmetry of the next cycle. The correlation becomes weaker with suc-
ceeding cycles, suggesting a memory of about 15-20 years. We point out that this type of correlation
is possible only if we assume a relatively high value of diffusivity like 2.4 x 10'2cm? s—! (Chatterjee,
Nandy & and Choudhuri 2004). A diffusivity of this order gives the right kind of memory when the
dynamo is subjected to a disturbance in the poloidal field generation (Choudhuri, Chatterjee & Jiang
2007).

When we run our dynamo code by feeding the appropriate asymmetry at successive minima and
model the sunspot cycles during the twentieth century, we get a qualitative agreement between theory
and observations. We know that the cross-hemispheric coupling tries to reduce any asymmetry between
the two hemispheres (Chatterjee & Choudhuri 2006). Both in observational data and theoretical simu-
lations, we find that the asymmetry of a cycle statistically tends to be less than the asymmetry in the
faculae number during the preceding minimum. The reduction factors also turn out to be comparable
in the observational data and theoretical simulations. This is quite a remarkable agreement, given the
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many uncertainties involved in our analysis. Solar physicists may have to wait for about half a century
to be able to carry out an analysis like the present analysis based on the actual measured polar field
asymmetries rather than using proxies like the polar faculae number. Such an analysis will be more sat-
isfactory than the present analysis, provided there will be some strongly asymmetric cycles in the next
half century. However, we hope that our methodology will provide the framework for any such future
analysis.
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