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Abstract In this paper it is given a brief review of the current limits on the magnitude of CPT
and Lorentz Invariance violations, currently predicted in connection with quantum gravity
and string/M-theory, that can be derived from astrophysical and cosmological data. Even if
not completely unambiguous, these observational tests of fundamental physics are comple-
mentary to the ones obtained by accelerator experiments and by ground or space based direct
experiments, because potentially can access very high energies and large distances.
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1 INTRODUCTION

Einstein (1905) introduced the postulate of the constancy of the velocity of light in empty space, justifying
it on the bases of the negative result of the Michelson-Morley experiment (Michelson & Morley 1887).
Since then the covariance of physical laws under the group of Lorentz transformations, usually nicknamed
the “Lorentz invariance”(LI), has been proven to hold locally within a very high accuracy in tests done
on the Earth or nearby space. A modern version of the Michelson-Morley experiment has been performed
comparing the frequency of solid state resonant cavities, in two orthogonal mode while in rotation respect
to the Cosmic Microwave Background Radiation (CMBR) reference frame. Nevertheless the accuracy of
the measurements is of the order of 10−7 for resonators in motion with the Earth (Saathoff et al. 2003) and
of 10−10 for rapidly spinning ones (Stanwix et al. 2006). As we will discuss briefly in the remaining part
of this introduction, this level of accuracy cannot exclude that Special Relativity Theory could be only an
approximation of the physical reality, that could be violated by tiny perturbations introduced by conceivable
mechanism.

Around the middle of the last century, the development of a fully Relativistic Quantum Field Theory
(RFQT) has pointed out that there is a strong logical connection between the Lorentz invariance and the
matter and antimatter duality. This is not unexpected since the very existence of antimatter is a consequence
of the relativistically covariant Dirac equation (Dirac 1933). Following an early indication by Schwinger
(1951), Pauli (1955) introduced the idea that for every process occurring in nature there is an allowed one,
occurring with the same probability, in which each particle is replaced with its corresponding antiparticle,
having reversed spin and following a trajectory that is the reflection under space and time inversion of
the original ones. This is now called the “Schwinger-Pauli-Luders CPT theorem” because Lüders (1957)
showed that assuming

1. Lorentz Invariance;
2. Locality;
3. Unitarity;
4. Correct connection between spin and statistics
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it is possible to prove that the successive application of charge conjugation C, parity reflection P and time
reversal T in any order leave the Hamiltonian invariant. As a complement Greenberg (2002) has also proved
the “inverse-CPT theorem”, showing that if under any circumstances CPT invariance is violated, then also
Lorentz invariance will be.

In certain sense the CPT invariance is more fundamental than Lorentz invariance, because, as we will
show later, it is possible to conceive modifications of the Hamiltonian of the fundamental interactions
which violates Special Relativity, but are invariant under CPT transformations, acting equally on particles
and antiparticles.

The CPT theorem points out what could be the physical origin of Lorentz violations. In particular the
second hypothesis that leads to it is “locality”, which demands that space-like separated events should not
influence each other (Wess 1989). There are at least three good theoretical reasons to suspect that locality
could not hold for arbitrary small distances:

1. The unavoidable singularities of the General Theory of Relativity (GRT) (Hawking 1982) that makes
the structure of space-time very complex at distances of the order of the Planck length � P =

√
�G/c3 �

1.66 × 10−35 m. The fabric of space-time has been vividly described as a “foamy” structure (see e.g.
Wheeler & Ford 1998), turbulently perturbed by black holes continuously popping out of the vacuum
and evaporating in times of the order of ∆t = c�P.

2. String/M-theories are intrinsically non local theories (Amati et al. 1989) where the ordinary concept
of point-like components of matter is substituted by two dimensional object with a finite, even if very
small, dimensions. The space-time structure of the string theory is discontinuous on a scale ∆t∆x ≥
c�2

s , being �s the size of the string (Yoneya 1989). If string theory has incorporates gravity, one of the
characteristic length of the theory should be �grav

s = �P, but might exist other characteristic lengths,
corresponding to different type of interactions, with � s > �P (Lykken 1996).

3. In string theory, gravity is just one of the many possible excitations of a string (or other extended object)
living over some background metric space. The existence of such background metric space, over which
the theory is defined, is needed for the formulation and for the interpretation of the theory. The “Loop
Quantum Gravity” theory (Rovelli 1998) is an attempt to eliminate this background space-time. In
this theory the space-time has a kind of “polymeric” structure with minimal space cell with volumes
∆V ∼ �3

p (Rovelli & Smolin 1995).

In any case the indeterminacy principle states that to resolve a length scale � we need energies of the order of
Λ = �c/� = (�P/�)MP where MP =

√
�c/G = 1.22× 1019 GeV is the Planck mass. Naı̂ve expectations

of the orders of magnitude for CPT violations, motivated by dimensional considerations, will be

∆H ≈ E2

Λ
. (1)

At low energies the Hamiltonian is of the order of magnitude of the mass of the particle, therefore
CPT symmetry can be tested in the laboratory measuring the difference of mass between particles and
antiparticles. The best constraint has been obtained from the limits on the mass difference between the

neutral strange mesons K 0 − K
0

recently obtained from the KLOE experiment at the Daphne ϕ-factory
(LNF-INFN) (Ambrosino et al. 2006)

|mK0 − m
K

0 |
mK0

< 1.26 × 10−18 (95% C.L.), (2)

that from Equation (1) is predicted to be ≈ 0.5 × 10−19.
Astrophysical and cosmological test of the CPT/LI violations, that I will discuss in the rest of this

paper are complementary to local tests, because test modifications of physical law over large spatial scale
D ∼ 1026 m and long times t0 ∼ 13.7 Gy.

2 PARAMETERIZATIONS OF THE CPT/LI VIOLATIONS

Many different theoretical frameworks for CPT/LI have been investigated in detail (see e.g. Mattingly 2005
for a recent review). The closer to physical intuition is the “Modified Dispersion Relations” (MDR) frame-
work, that has the advantage of supplying a relatively model independent parametrization of the CPT/LI, at
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the expense of rigor and completeness. Nevertheless this approach is, in my opinion for an experimentally
oriented paper.

Assuming that the CPT/LI violating Hamiltonian of a free particle or field can be written H = H free +
∆H where ∆H is a small perturbation of the standard Hamiltonian H free =

√
p2 + m2, whose order of

magnitude will be given by Equation (1), we can put

E2 − p2 − m2 = F (E, p), (3)

where the R.H.S. term of this equation can be expanded in Taylor series as

F (E, p) = F (1)
µ pµ + F (2)

νρ pνpρ + F
(3)
σκλ pσpκpλ + · · · , (4)

where pµ ≡ {E, p} is the four momentum. It is worth noticing that we can derive many qualitative feature
of CPT/LI violations from this relatively simple Ansatz.

– From a phenomenological point of view there is no a priori reason to expect that the coefficients in
Equation (4) are universal, even if the fundamental Lorentz violation is universal (for a discussion on
this assumption see e.g. Alfaro 2005). At least we expect from Equation (1) a dependance from the
energy, that at low momentum is a dependence from the mass. In general we must assume an implicit
dependence from all the conserved quantum numbers of the particle, namely intrinsic spin, charges,
flavor, etc.

– Only the odd terms of Equation (4) are CPT violating (“CPT odd”) while even terms are CPT conserv-
ing (“CPT even”), therefore we have the relation:

F
(n)

µ1µ2···µn
= (−1)nF

(n)
µ1µ2···µn , (5)

where obviously F
(n)

is the coefficient for the corresponding free antiparticle.
– Moreover the odd terms violate also P and T conjugation. This make a distinction between the right-

handed and the left-handed component of a particle (or field) with spin, because under P and T the
four-momentum of the field changes direction while the spin conserve its direction. In practice we will
have

F
(n)
µ1µ2···kµ

= ζn|F (n)
µ1µ2···µn |, (6)

where ζ = ±1 will be the polarization index of the particle, with ζ = +1 if the spin is s ↑↑ p and
ζ = −1 if s ↑↓ p. This fact induces a spin precession in the propagation of the particle in vacuum
(birefrangence of the vacuum).

– From dimensional argument we expect

∣∣∣F (1)
k pk

∣∣∣ ≈ ∣∣∣F (2)
ji pjpi

∣∣∣ ≈ ∣∣∣F (3)
qrsp

qprps
∣∣∣ ∼ O

( |p|3
Λ

)
, (7)

while for n > 3 will be ∣∣∣F (n)
µ1µ2···µnpµ1pµ2 · · · pµn

∣∣∣ ∼ O
( |p|n

Λn−2

)
. (8)

As a consequence at leading order it will be necessary to consider the first 3 terms of the dispersion
relation’s expansion, that are expected to have about the same order of magnitude.

3 TESTS ON A PREFERENTIAL DIRECTION IN SPACE-TIME

The coefficient of the first term on R.H.S. of Equation (4) is a four-vectorwith the dimensions of a mass, that
assign a preferential direction in space-time, sometimes called in the literature the “Chern-Simons term”.
We can write the MDR of a photon, including only the directional term in the form

ω =
√

k2 + 2ζγ(ξ0ω − ξ · k), (9)
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where we have put F
(1)
µ ≡ {ξ0/2,−ξ}. Solving this equation we have the explicit form of the MDR

ω = ζγξ0 ±
√

k2 + ζ2
γξ2

0 − 2ζγξ · k � ±k + ζγ(ξ0 ∓ |ξ| cos θ)

where θ is obviously the angle between k and ξ. The ambiguity of the sign is only apparent because the
lower sign is meaningful only in the case that k < 0, but in this case cos θ < 0. Therefore the true physical
solution is

ω � k + ζγ(ξ0 − |ξ| cos θ). (10)

As we said before the polarization index ζγ is +1 for a right-handed circularly polarized wave and −1 for
the opposite polarization, therefore this vacuum birefrangence effect could be detected in the propagation of
polarized radiation. A linearly polarized wave is represented by the superposition of two circularly polarized
waves

Ψ = Ψ0

{
e−iα−ω+tε+ + eiα−ω−tε−

}
, (11)

where α is the initial polarization angle. It is evident that the polarization angle as a function of time will be
α(t) = α0 + (ω+ − ω−)t from which we have that the polarization plane of radiation emitted by a source
at cosmological redshift z will rotate at Earth by an angle

∆α = 2

z∫
0

(ξ0(z) − |ξ(z)| cos θ)
dz

(1 + z)H(z)
. (12)

It is interesting that this rotation would be independent upon the wavelength of the radiation, being distin-
guishable from the interstellar Faraday rotation that is ∝ λ2.

Nodland & Ralston (1997) claimed that data on polarized radiation emitted by distant radio galaxies
show a marginal statistical evidence (3σ) for a systematic rotation depending on the angle θ between the
propagation wave vector k of the radiation and a direction roughly localized in a region 19h ≤ α ≤
23h,−20◦ ≤ δ ≤ +20◦, that could be explained by |ξ| � 10−41 GeV. But this claim was not confirmed by
a reanalysis of the same data with different statistical techniques (Loredo et al. 1997). A search to a sample
of 160 radiogalaxies with 0.3 < z < 2.12 Carroll & Field (1997) found

ξ0 = (0.8 ± 1) × 10−41h0 GeV |ξ| = (1.5 ± 1.9) × 10−41h0 GeV. (13)

Independently Wardle et al. (1997) from observation of the polarization in the optical V band of 3C265
(z = 0.82) found a mean deviation of −1.4◦ ± 1.1◦, that yields a limit from Equation (12) at present time,
assuming a moderate evolution |ξ| ∝ (1 + z) the upper limit

|ξ| ≤ 2 × 10−41 GeV (95% C.L.). (14)

This limit indicates that a directional term is strongly suppressed, even respect to the dimensional estimate
(�ω)2/MP ∼ 4 × 10−37 GeV.

Feng et al. (2006) speculate that a preferred space-time direction in the Universe could be originate by
a scalar field φ that might constitute the so called “quintessential dark energy” (for a recent review see e.g.
Copeland et al. 2006). In this case in the CMBR rest frame the four-vector ξµ is time-like, being ξ0 = φ̇. We
can estimate the order of magnitude of the vector from observations of the expansion rate of the Universe
using the equation (Ratra & Peebles 1988)

φ̇2 =
16π

M2
P

(1 + wφ)ρφ, (15)

where ρφ is the dark energy density and pφ = wφρφ its equation of state. A recent estimate (Riess et al.
2004) sets an upper limit w ≤ −0.76 at 95% C.L. from which, assuming ΩV = 0.732 ± 0.018 (Spergel
et al. 2006), we estimate from Equation (15) ξ ′

0 < 10−41 h0 GeV. In the solar system frame, moving
with V � 370 km s−1 respect to CMBR, the components of the four vector would be ξ 0 = γ ξ′0 and
|ξ| = γβξ′0 � 1.2 × 10−3ξ0.
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4 TEST OF CPT-ODD VIOLATIONS FROM THE POLARIZATION OF THE CMBR

In the MDR framework, expressed by the expansion of Equation (4) in a space-time isotropic Universe,
neglecting directional effects that appears from experiments very suppressed, the dispersion relation for
photons at leading order is

ω =
√

k2 + ζγ
ηγ

MP
k3 � k

(
1 + ζγ

ηγ

MP

k

2

)
, (16)

where ηγ is an adimensional parametrization of the magnitude of CPT-odd LI violations. From this disper-
sion relation, we obtain the phase velocity of light

cγ(ω, ζγ) =
ω

k
� 1 + ζγ

ηγ

MP

ω

2
, (17)

where we have preserved the measured value cγ = 1 for ω � MP.
The two circular polarization of the photons will propagate with different phase velocity (cosmological

birefrangence)

∆v(ω) = cγ(ω, +1) − cγ(ω,−1) =
ηγ

MP
ω. (18)

As in the case of directional term, illustrated in the previous Section 3, the plane of polarization of a linearly
polarized wave from a source at redshift z is rotated of an angle, that in this case, substituting

ω(z) =
2πcγ

λ
(1 + z), (19)

where λ will be the detected wavelength of the photon, will be

∆α(z) � 2π

MP
λ−1

z∫
0

ηγ(z)
H(z)

dz. (20)

We observe that the adimensional CPT-odd coefficient is expected to be by dimensional argument η γ ∝
�ω/Λ, making the effective dependence of the rotation angle ∝ λ−2, distinguishable from the interstellar
Faraday rotation that is as we said before ∆αF ∝ λ2.

The detailed maps of CMBR temperature and polarization, obtained from WMAP (Page et al. 2006),
offer an intriguing possibility to set limits to the cosmological birifrangence at redshifts 0 ≤ z ≤ 1100 (as
proposed earlier by Lue et al. 1999).

– From fits of WMAP and BOOMERANG data Feng et al. (2006) and Xia et al. (2007) obtain the limit

∆α = −6.2◦ ± 3.8◦

– From wavelet fits of WMAP 3-year data Cabella et al. (2007) obtain a rotation of polarization of the
CMBR

∆α = −2.5◦ ± 3◦

The rotation of polarization expected from Equation (20), averaged over the spectrum of the CMBR, as-
suming an evolution ηγ(z) = ηγ(0)(1 + z), is

∆αCPT � 11.7◦ h−1
0 ηγ . (21)

The result of Cabella et al. (2007) is close to being a significant negative experiment, because gives the
upper limit

ηγ < 0.2 h0 (95% C.L.), (22)

that imposes the energy scale of CPT-odd violations for photons to be Λ ≥ 5 h−1
0 MP.



38 G. Auriemma

5 TEST OF CPT-ODD VIOLATIONS FROM GRB’S

Unpolarized radiation can be represented by the superposition of two equal amplitude waves, with opposite
circular polarization. The group velocity of the photon in vacuum will at leading order will be

vγ(ω, ζγ) =
∂ω

∂k
� 1 + ζγ

ηγ

MP
ω, (23)

slightly different from the phase velocity given by Equation (17). This introduce a time spread ∆t ∝
vγ(ω, +1) − vγ−(ω,−1) that is, for a source at redshift z given by

∆t(z) � 4π

MP
λ−1

z∫
0

ηγ(z)
H(z)

dz, (24)

where we will assume as in the previous section ηγ(z) = ηγ(0)(1 + z).
Amelino-Camelia et al. (1998a) suggested that GRB could be used to constraint the vacuum disper-

sion of radiation, due to their short intrinsic duration and high energy emission. However it appears that
the present limits that can be obtained by this method cannot really access the Planck scale. In fact from
Equation (24) we derive a time spread for a burst in the hard X-ray band

∆t(z = 1) � 22.7
(

�ω

200 keV

)
ηγ h−1

0 µs. (25)

The shortest time scale ever detected has been observed in the exceptional GRB920229 (Schaefer & Walker
1999), observed by BATSE to have a rise time τ = 220± 30 µs. From the negligible time dispersion of the
rise of the burst among the low energy channel (25–50keV) and the most populated channel (100–300keV),
that we estimate < 130 µs, and assuming a redshift z ≈ 1 (Amelino-Camelia et al. 1998b), we can set a
limit ηγ < 5− 6 h0 which implies Λ > 0.2 h−1

0 MP. Similar limits are obtained with an accurate statistical
analysis of a sample of 35 GRB’s with known redshift (Ellis et al. 2006).

The observation of linear polarization of the prompt emission from GRB at cosmological distances
could set stringent limits to the birifrangent propagation, that is implied by Equation (17). In fact linear po-
larized γ-ray photon with different energies will be rotated by an amount given by Equation (20). Therefore
the observation of linear polarizations in the prompt emission of GRB’s could give a very strong limit to
the vacuum birifrangence (Mitrofanov 2003).

Fan et al. (2006) from the observation of the afterglows of GRB020813 and GRB 021004 in the UV
band could set the limit |ηγ | ≤ 10−7, if one can rule out an intrinsic origin for the rotation of the polarization
vector at various energies.

6 TESTS ON CPT VIOLATIONS FROM THE CRAB NEBULA

The dispersion relation of charged particles (electron or protons), in a space-time isotropic Universe, can be
put in the form (Myers & Pospelov 2003)

E(p, ζp) =

√
m2 + (1 + εp)p2 + (η′

p + ζpηp)
p3

MP
, (26)

where the coefficients εp, ηp and η′
p are adimensional, expected to be ∝ MP/Λ. In this formula we have

introduced a distinction between the C-even part of the coefficient of cubic modification to the dispersion
relation η′

p and its C-odd part ηp. It is evident from this expression that the maximum attainable phase
velocity of particle, for E � MP, will be

cp �√1 + εp �= 1. (27)

In the moderate ultrarelativistic regime m � E � MP we assume the C-even parameter η ′
p = 0 and we

have

E � pcp

(
1 +

m2

2p2c2
p

+ ζp
ηp

2MPc2
p

p

)
. (28)
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Deriving this equation and substituting E ≈ p cp we find the group velocity of the De Broglie wave associ-
ated to the particle

v(E, ζp) =
∂E

∂p
� 1 − m2

2E2
+ ζp

η

MPc2
p

E. (29)

From this we calculate the energy and helicity dependent Lorentz factor at leading order

γ(E, ζp) =
1√

1 − v2

c2
p

�
(

m2

E2
− 2ζp

ηp

MPc2
p

E

)−1/2

. (30)

The peculiarity of this formula is that for ζp = +1 (right-handed particles) the Lorentz factor shows an
apparent divergence that is likely canceled by higher order terms, while for ζ p = −1 (left-handed particles)

it has a maximum value γmax � 1.7 × 107/η
1/3
p for E � 14.7/η

1/3
p TeV.

Several observable modifications of familiar e.m. radiation processes follow from this fact, as we will
show in the rest of this section, can be understood easily from kinematical considerations. We begin with
the Compton scattering

e± + γ → e± + γ. (31)

Following a well known method (Blumenthal & Gould 1970) we consider the scattering as occurring in the
Thomson limit ω̃ ′ � ω̃ in the rest frame of the electron, where ω̃ and ω̃ ′ are the incoming and outgoing
energy of the photon. In order to calculate these energies in the electron rest frame, we consider that from
Equation (16) follows that, also in presence of CPT/LI violations we have

ω2 − k2c2
γ(ω, ζγ) = 0 (32)

in any inertial reference. Condition that is realized by the pseudo-Lorentz transformations:

ω′ = ω
cγ − v cos θ√

c2
γ − v2

; k′ =
ω′

c′γ
; tan θ′ =

√
c2
γ − v2 sin θ

cγ cos θ − v
. (33)

Using these transformations we have the energy of the incoming and outgoing photons in the electron rest
frame:

ω̃ = ω
cγ(ω, ζγ) − v cos θ√

c2
γ(ω, ζγ) − v2

; ω′ = ω̃′ cγ(ω̃′, ζγ) − v cos θ′√
c2
γ(ω̃′, ζγ) − v2

. (34)

The maximum energy in the laboratory of the scattered photon will be approximately

ωmax
IC � ω

cγ(ω′) + v

cγ(ω) − v
(35)

that tends to the well known standard expression ωmax
IC = ωγ2(1 + β)2 in the Lorentz invariant limit.

We observe that the corrections to the nominator of Equation (35) are negligible, while they determine
the order of magnitude of the denominator. In practice we will put c e = 1 (see later in this section for a
justification of this assumption) and use the approximation

ωmax
IC � 4ω

(
m2

E2
+ ζγ

ηγ

Mp
ω − 2ζe

ηe

Mp
E

)−1

. (36)

Viewing the magnetic field as a collection of virtual photons with average energy ω B = eB/m that are
scattered by the fast electrons (see e.g. Lieu & Axford 1993), we can apply the theory of inverse Compton
scattering in presence of Lorentz violations outlined above. Therefore the maximum energy of the syn-
chrotron photons will be given by Equation (36) in the form

ωmax
Sync � 4ωB

(
m2

E2
+ ζγ

ηγ

Mp
ωB − 2ζe

ηe

Mp
E

)−1

. (37)
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In the general case ωB � E we can neglect the effect of CPT-odd violations of photon propagation, that is
constrained from Equation (22) to be ηγ ≤ 0.14 (assuming h0 = 0.7). Neglecting a quantity ≤ 2 × 10−33

the term in parenthesis at the R.H.S. of Equation (37) is exactly equal to the Lorentz factor of the electron
given by Equation (30).

As we have noted above this formula has a peculiar behavior for left-handed particle, but in usual
conditions the electrons are a mixture of left-handed and right-handed components. However for massless
particle the helicity is a good quantum number, therefore when E � m electrons (positrons) are almost
all left-handed (right-handed) like neutrinos (antineutrinos). Following Jacobson et al. (2003) we maximize
the equation

ωmax
Sync =

eB

E

(
m2

E2
+ 2

ηe−

MP
E

)− 3
2

(38)

taking E as an independent variable. The maximum is attained for an energy of the electron E =
10/η1/3 TeV with a Lorentz factor γ(E) = 1.58 × 107/η1/3, that gives the constraint

ηe− ≤ MP

m

(
0.35eB

m ωmax
Sync

) 3
2

. (39)

The Crab Nebula is an excellent astrophysical laboratory for testing this type of CPT-odd violations.
Assuming that synchrotron emission contribute to the γ-ray unpulsed spectrum of the Crab Nebula up
to a maximum energy of ≈ 100 MeV Jacobson et al. (2003) derive a constraint to the CPT-odd violation
parameter

ηe− ≤ 7 × 10−8

(
ωmax

Sync

100 MeV

)−3/2(
B

0.6 mG

)3/2

. (40)

It is worth noticing that this limit is rather conservative, because the EGRET spectrum of the unpulsed
component of the Crab Nebula (Nolan et al. 1993) has a break at ∼ 1 GeV, suggesting a limit ∼ 30 times
smaller. Nevertheless we must point out that the limit obtained is consistent only if would be possible to
exclude that the synchrotron radiation is emitted by e+e− pairs, because in this case the limits applies only
to the electron component.1

No better limit can be obtained from the cutoff in the UHE part of the spectrum of the nebula, observed
by the HESS experiment at 14.3±2 TeV (Masterson et al. 2005). The emission of the nebula above∼ 1 GeV
is extremely well consistent (de Jager & Harding 1992; Atoyan & Aharonian 1996) with the expected flux
produced by Compton scattering of synchrotron, dust IR, and/or CMBR photons by the same electrons that
produce the synchrotron component. In fact if we apply Equation (36) derived above, we would expect in
any case ωmax

IC � 100 TeV. Very likely the cause of the∼ 10 TeV cut-off is to be searched in the absorption
process γ + γ → e+ + e− that is very effective when ωICωIR ≥ m2 (Telnov 1990).

In the derivation of the Equation (36) we have neglected ε e. It is worth noticing that from the UHE
emission from The Crab Nebula we can set also a stringent limit to the CPT-even LI violations. We consider
the process

γ → e+ + e− (41)

namely pair creation in vacuum. This process is forbidden by LI because the conservation of four-
momentum imposes

ω2 − k2 = (E2
+ − p2

+) + 2(E+E− − p+p− cos θ) + (E2
− − p2

−) , (42)

where the L.H.S. is null and the R.H.S. is > 2m2. If we use the MDR of Equation (26) including only the
CPT-even term, Equation (42) is written

ω2 − k2 = 2m2 + εe(p2
+ + p2

−) + 2(E+E− − p+p− cos θ) (43)

1 After the presentation of this paper an extended analysis of the effect of LV on the Crab Nebula emission has been discussed by
Maccione et al. 2007, with interesting results.
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that can be satisfied if ω = k when εe < 0. The threshold for the occurrence of the reaction (41) in presence
of CPT-even/LI violations is

ω ≥ 2me√−εe
. (44)

The fact that photons with Eγ > 20 TeV have been observed from the Crab Nebula set the constraint

|c2
e − 1| < 2.5 × 10−15 (45)

comparable with the limit inferred from observations of VHE γ-rays from the extragalactic source MK501
(Stecker & Glashow 2001).

7 GLOBAL TESTS OF SPECIAL RELATIVITY

As we have discussed before, the leading order CPT-even term in the expansion of Equation (4) induces
violation of Special Relativity that could be observed experimentally, because the limiting velocity for
massive particle is changed by Equation (27) (Coleman & Glashow 1999).

An important QED process is the Čerenkov emission in vacuum by protons

p → γ + p. (46)

This process is also forbidden in vacuum by LI because the four-momentum conservation imposes

E2 − p2 = E′2 − p′2 + 2(ωE′ − kp′ cos θ), (47)

but if LI holds the L.H.S of this equation is E 2 − p2 = m2
p while the r.h.s. is always > m2

p. On the contrary
if LI is violated from Equation (26) we have

εp(p2 − p′2) = 2(ωE′ − kp′ cos θ) (48)

that has solutions for εp > 0. Therefore the reaction (46) occurs over the threshold

p >
2mp√

3ε
. (49)

From the simple facts that HiRes (Abbasi et al. 2007) and AGASA (Takeda et al. 1998) has observed
primary cosmic rays with energies up to Ep ∼ 1019 eV we can derive the constraint

c2
p − 1 < 1.3 × 10−20. (50)

Greisen (1966) and Zatsepin & Kuz’min (1966) published independently a calculation of the interaction
of protons with the CMBR that should prevent cosmic rays with energy ≥ 10 20 eV to cross distance
d ≤ 50 Mpc (the so called GZK cut-off). The experimental situation is not clear at the moment, because
the data from the HiRes experiment (Abbasi et al. 2007) show an evidence at 5σ for the presence of a sharp
cut-off at 6×1019 eV while the AGASA data (Takeda et al. 1998) show a flattening (ankle) of the spectrum
above 1019 eV, reconstructing six events with energy ≥ 1020 eV.

Hopefully the experimental situation will be resolved in one way or the other by the Pierre Auger
Observatory, expected to be fully operational in few months from now, because Glashow (1999) showed
that UHE cosmic rays can play an important role in connection with tests of Special Relativity.

The reaction producing the GZK cut-off is the photoproduction reaction

p + γ → ∆+, (51)

where ∆+ is the lowest pion-nucleon resonance with a mass m∆ = 1232 MeV. The four momentum
conservation gives

E2
p − p2

p + 2(ωEp − k pp cos θ) = E2
∆ − p2

∆. (52)

Using the MDR expansion in the ultrarelativistic regime Ep � mp we have

m2
p + εpp

2
p + 2ω pp(

√
1 + εp − cos θ) = m2

∆ + ε∆p2
∆. (53)
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In the LI case εp = ε∆ = 0 the threshold for this reaction is

pp ≥ m2
∆ − m2

p

4ω
� 5 × 1019 eV/c (54)

perfectly consistent with the observed cut-off. However we can approximate p ∆ � pp because k � pp

therefore Equation (53) can be written

(εp − ε∆)p2
p + 2ωpp ≤ m2

∆ − m2
p (55)

that can be satisfied only if

ε∆ − εp <
ω2

m2
∆ − m2

p

� ×10−25. (56)

This shows that a tiny LI violation can eliminate the GZK cut-off. It is clear at this point that a secure
confirmation of the observation of the GZK cut-off would set a very strong limit to the validity of Special
Relativity. In fact from the dimensional estimate we expect ε∆− εp ∼ m∆ −mp/MP ∼ 2.4×10−20, more
than 4 order of magnitudes larger than the limit that could be inferred from the confirmation of the GZK
cut-off.

8 CONCLUSIONS

Astrophysical tests show that Einstein’s Special Relativity Theory is in quite good health, far beyond the
Planck scale. The final assessment of the evidence for GZK cut-off in the primary UHE cosmic ray spectrum
would secure an upper limit to CPT-even violations � 10−25.

The Crab Nebula promises to be an excellent particle physics laboratory for the search of CPT-odd
effects, that could allow the exploitation of electron beam energies up to ≈ 2500 TeV, but unfortunately the
interpretation of data is far from being lacking in ambiguity. For example if it could be demonstrated that
synchrotron emission is produced by negative electrons only, a limit to CPT-odd violations of the order of
� 10−8�P could be assessed.

The existence of a preferred direction in space-time, possibly connected with a quintessential dark-
energy, is constrained by the optical polarimetry of far distant galaxies to be very small < 5 × 10 −5�P, but
the scale of anisotropy estimated from the dark energy density is < 2.5× 10−5�P, close but not conclusive.
It is intriguing that in the future X and Γ-ray polarimetry of bright objects at cosmological distances, like
AGN and GRB, could improve the present limits, by order of magnitudes, if emission models are also
improved.

The polarization of the CMBR is another interesting source of data on possible CPT-odd violations in
the photon sector, but at present the results of WMAP allow to constraint the scale in the range ∼ 0.1� P.
The predicted sensitivity of the Planck satellite, to be launched about one year from now, can improve
significantly the above limit in the next decade.
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DISCUSSION

SERGIO COLAFRANCESC0 : I have two questions:

1. What is the effect of a possible primordial magnetic field on the bounds that one can get from CMBR
polarization ?

2. How the presence of muonic plasma can affect the limits you showed in the case of e +e− plasma ?

GIULIO AURIEMMA: To answer to your fist question, as I said the Faraday rotation angle is ∝ λ2, while
the CPT-odd terms induces a rotation∝ λ−2. I believe, a cancelation of the two effects could be in principle
possible, but certainly requires a very fine tuning of the B-field.

Concerning the second question I think that the presence of muons should not change the bound, be-
cause the synchrotron maximum is inversely proportional to the mass of the radiating particle. The real
problem is that in case of an equal mixture of electrons and positrons the limit that I have discussed does
not hold, because the emission of positron is not suppressed.


