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Abstract We consider the effects of advection, radial gradients of pressure and radial drift
velocity on the structure of accretion disks around black holes. Models with large accretion
rate are investigated, where there is no continuous local solution. Continuous solutions for
advective disks exist for all accretion rates. Despite the importance of advection on it’s struc-
ture, the disk remains geometrically thin.
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1 INTRODUCTION

The ‘standard’ model of accretion disk around black holes (Shakura & Sunyaev 1973) is based on a number
of simplifying assumptions. In particular, it is assumed that an accretion flow has a small radial velocity,
small geometrical and large optical thicknesses, and rotates with a nearly Keplerian angular velocity. These
assumptions allow to neglect the radial gradient terms in the vertically averaged differential equations,
reducing these equations to a set of algebraic equations. For the optically thick and low accretion rate disk
with luminosity L � LEdd, these assumptions are generally considered to be reasonable.

It was realized, however, that the inward advection of the heat, neglected in the standard model, be-
comes important at higher accretion rates. The advection can crucially modify the properties of the inner-
most parts of the disk - the disk becomes hotter and thicker, and its rotation laws deviate from the Keplerian
one. Initial attempts to solve the problem included only the effects of heat advection and radial pressure
gradient in models with small values of the viscosity parameter, α = 10−3 (Paczyński & Bisnovatyi-Kogan
1981). Extensive investigation of optically thick accretion disk models with advection for a wide range of
the parameters Ṁ and α was done by (Abramowicz et al. 1988). The local disk structure equations with-
out the advection terms give rise to two branches of solutions, optically thick and optically thin, which do
not intersect if ṁ < ṁcr (Artemova et al. 1996). For larger accretion rates there are no solutions of these
equations extending continuously from large to small radii. It was argued by (Artemova et al. 1996) that for
the accretion rates larger than ṁcr advection becomes critically important and would allow to exist global
solutions also for ṁ > ṁcr. Transonic solutions had been constructed by (Artemova et al. 2001) for the
optically thick advective accretion disks. For some choices of Ṁ and α the latter solutions were not consis-
tent in that respect that the effective optical depths was less than unity in the inner disk regions. This effect
leads to violation of the optically thick disk approximation used by (Artemova et al. 2001) and can result in
significant changes in the structure of the inner regions. In the paper by (Artemova et al. 2006) the solutions
for advective accretion disks with arbitrary optical depth have been obtained, which are described below.

2 BASIC EQUATIONS

We consider equations describing the one-dimensional, height-averaged stationary accretion disk model.
These equations account for the effect of advection and are adopted for the general case of the disk vertical
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optical depth, with smooth transition between optically thin and optically thick accretion regimes. Here are
the mass conservation equation,

Ṁ = 4πrhρv, (1)

the radial and angular momentum equations,
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which include the heat advection, viscous dissipation, and radiative cooling rates for arbitrary vertical opti-
cal depth, with the radiation pressure as (Artemova et al. 1996)
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, Ptot = Pgas + Prad, Pgas = ρRT. (4)

Different optical depths are connected with scattering τ0, by Thomson opacity κ, bremsstrahlung absorption
τα, and effective optical depth τ∗

τ0 = κρh, τα � 5.2 · 1021 ρ2T 1/2h

acT 4
, τ∗ =

√
τα(τ0 + τα). (5)

Here ΩK =
√

GM/r(r − 2rg)2 is the Keplerian angular velocity in framework of the potential ϕ g =
GM/(r − rg) (Paczyński & Wiita 1980), 2rg = 2GM/c2, � = Ωr2, �in is a constant defined by the global
solution, h = cs/ΩK is the disk half-thickness, and cs =

√
Ptot/ρ. Viscous stress tensor was used in the

form trφ = αPtot (Shakura & Sunyaev 1973). The system of Equations (1–3) is reduced to the system of
two ordinary differential equations,
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where N and D denote algebraical expressions, depending only on r, v, c s, and �in. Explicit forms of N
and D are given by (Artemova et al. 2006). The physical solution pass the singular points of Equation (6),
defined by conditions D |r=rs = 0, N |r=rs = 0. There is an ‘inner’ singular point in the global accretion
disk solutions, associated with the sonic point near the black hole last stable orbit at 6r g (Paczyński &
Bisnovatyi-Kogan 1981). This point can be a saddle or nodal-type point (see Fig. 1). The used form of
the viscosity results in appearance of the second ‘outer’ singular point located in the subsonic region at
r � 6rg , which is always of a saddle type (Artemova et al. 2001). So the continuous global solution with
two singular points is always unique.

3 NUMERICAL RESULTS

We look for solutions of three types of accretion disk models: (i) non-advective models with optical
depth transition, (ii) advective models with optical depth transition, and (iii) advective models in the op-
tically thick approximation. In the case of the small accretion rates, ṁ <∼ 0.1, where ṁ = Ṁ/ṀEdd,
ṀEdd = 4πcGM/κc2, the models of all types are very similar at all radial distances. When increasing the
accretion rates, the models of different types deviate significantly from each other at the small radial dis-
tances, whereas they remain similar at the larger radial distances. Below we present a comparable analysis
of the models, focusing on the models with large accretion rates, ṁ >∼ 10.
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Fig. 1 Schematic illustration of behaviour of the integral curves in the vicinity of a global solution for
transonic accretion disks. Two singular points exist at r = (rs)in and (rs)out. The outer singular point at
(rs)out is always of a saddle type. The inner singular point at (rs)in locates close to the last stable black
hole orbit at 6rg and changes its type from a saddle to nodal one with increase of α as shown on panels (a)
and (b), respectively. Only the separatrix (thick line) which passes through both singular points represents
the global solution.

Fig. 2 Radial dependence of the Thomson scattering depth τ0 (left panel) and the effective optical depth τ∗
(right panel) for the models without advection, with α = 0.5 and MBH = 10 M�. Dashed lines correspond
to solutions with ṁ < ṁcr = 36. The three upper lines on the left panel correspond to the optically thick
family of solutions with ṁ = 10, 20, 30 (from top to bottom). The three lower lines correspond to the
optically thin family of solutions with the same ṁ = 10, 20, 30 (from bottom to top). On the right panel,
the two upper dashed lines correspond to the optically thick solutions with ṁ = 20, 30 (from top to bottom)
and the two lower lines correspond to the optically thin solutions with ṁ = 20, 30 (from bottom to top).
Dotted lines on the left and right panels correspond to the unphysical solutions with ṁ = 36 (left and right
inner lines) and ṁ = 50 (left and right outer lines).

Global solutions of Equations (1–3) without the advection terms, for all radial range, exist only if the
accretion rates ṁ < ṁcr, where the critical accretion rate ṁcr depends on α and MBH. In particular,
ṁcr = 36 for α = 0.5 and MBH = 10 M�; and ṁcr = 9 for α = 1 and MBH = 108 M�. Figure 2 shows
the radial dependence of the Thomson scattering depth (left panel) and the effective optical depth (right
panel) for models with α = 0.5, MBH = 10 M�, and different ṁ.
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Fig. 3 Radial dependence of the Thomson scattering depth τ0 (left) and the effective optical depth τ∗ (right)
for the model with α = 0.5, MBH = 10 M�, and ṁ = 30. The dashed lines correspond to the solutions
without advection. The solid lines correspond to the solution with advection and optical depth transition.

Fig. 4 Radial dependence of the Thomson scattering depth τ0 (left) and the effective optical depth τ∗
(right) for models with α = 0.5, MBH = 10 M�, and ṁ = 50. Dotted lines correspond to the unphysical
solutions without advection. The solid lines correspond to the global solution with advection and optical
depth transition.

We have found solutions of Equations (1–3) with the advection terms for the optically thick family,
which coincide closely with the non-advective solutions of this family at radii, r >∼ 102rg . At smaller radii,
there are significant deviations between these solutions. In Figures 3 and 4, one can compare the radial
profiles of τ0 and τ∗ for the advective and non-advective solutions in the case when ṁ is close to ṁ cr.
Figure 5 shows the radial dependence of τ0 and τ∗ (left and right panels, respectively) for the advective
models with optical depth transition. The set of solutions is characterized by α = 0.5 and M BH = 10 M�,
and corresponds to ṁ = 0.1, 1, 10, 20, 30, and 50.

Figure 6 shows the radial dependence of the effective optical depth (left panel) and midplane tempera-
ture (right panel) for the advective models with and without the optical depth transition (solid and dashed
lines, respectively). Note the significant increase of the temperature up to 6 × 10 8 K and corresponding
drop of the effective optical depth down to 10−3 inside the radius ∼ 20rg in the model with optical depth
transition. This is an illustrative example of the super-Eddington accretion, which can be discriminated in
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Fig. 5 Radial dependence of the Thomson scattering depth τ0 (left) and effective optical depth τ∗ (right)
for models with α = 0.5 and MBH = 10 M�. The set of solutions with advection and optical depth
transition is presented for different values of accretion rates ṁ = 0.1, 1.0, 10.0, 20.0, 30.0, and 50.0
shown, respectively, by solid, dotted, dashed, long dashed, dot-dashed, and dot-long dashed lines.

Fig. 6 Radial dependence of the effective optical depth τ∗ (left) and the midplane temperature T (right) for
models with MBH = 10 M�, α = 0.5, and ṁ = 48. The dashed and solid lines correspond to the advective
optically thick solution and to the advective solution with the optical depth transition, respectively.

observations due to production of soft and hard-x-rays excesses. The models with the accretion rates smaller
than the critical one, ṁ < ṁcr, do not show the prominent effectively optically thin regions and relative
temperature increase. As an example, we show the model characterized by α = 0.1, M BH = 10 M�, and
ṁ = 50 < ṁcr with the optical depth transition (Fig. 7), in which the central temperature is increased till
T = 4 × 107 K, only by factor of 2 larger than the maximum temperature in the optically thick counterpart
of this model. In the paper (Chen & Wang 2004) a unified model of accretion disks around black holes with
optical depth transition was constructed. These authors considered the set of accretion disk models with
α <∼ 0.3 and ṁ which did not exceed ṁcr. The maximum temperature in the solutions of (Chen & Wang
2004) did not exceed T ≈ 6 × 107 K, whereas our solutions show the temperatures up to 8 × 108 K in the
effectively optically thin region. So, the solutions of (Chen & Wang 2004) don’t differ quantitatively from
the solutions obtained in the optically thick approximation.
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Fig. 7 Radial dependence of the effective optical depth τ∗ (left) and the midplane temperature T (right) for
the models with MBH = 10 M�, α = 0.1, and ṁ = 50. Line correspondence is the same as in Fig. 6.

Fig. 8 Ratio of the gas pressure to total pressure βs at the inner singular point, (rs)in (left panel), and
position of the inner singular points (rs)in (right panel) as a function of the mass accretion rate Ṁ for the
models with α = 0.5 and MBH = 10 M�. Line correspondence is the same as in Fig. 6.

The difference between the advective models with and without the optical depth transition is visible
in the position of the inner singular point (rs)in, and the ratio of the gas to total pressure at this point,
βs = Pg/Ptot, as functions of ṁ, see Figure 8.

4 CONCLUSIONS

1. Solutions for advective disks exist for all luminosities 2. At high luminosities the solution represents
disk, which is optically thick outside, and optically thin inside. 3. The temperature in the optically thin
region is about a billion K, and may be responsible for appearance of hard tails.
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DISCUSSION

KEN EBISAWA: According to the “slim disk” model, the disk is optically thick to the last stable orbit,
when the luminosity is high. Does your calculation support this idea? Can advection dominated disk be
optically thick in the inner region when L > LEdd ?

GENNADY BISNOVATYI-KOGAN: No. Our calculations have shown, that inner parts of the disk have
effective optical depth less than unity at ṁ ≥ ṁcr, what is around L ≥ LEdd. “Slim disk” model with
optically thick prescription is not self-consistent at L > LEdd.

WOLFGANG KUNDT: Can you please comment on how realistic you judge the assumption of an advec-
tive flow in the disk?

GENNADY BISNOVATYI-KOGAN: Advective disk model is the only existing global model at large
luminosities L ≥ LEdd, in the inner parts of the accretion disk, when we consider equations averaged over
the disk thickness.

ANONYMOUS REFEREE’s Comment:
There is one important point in this paper which is not clear to me, and it is not clear either in the

previous paper by Artemova et al. 2001. It concerns the outer boundary condition and the overall topology
apart from the inner sonic point. It is clear from a number of papers that for CONSTANT ANGULAR
MOMENTUM flow there are three singular points and the flow proceeds as subsonic at outer edge to
supersonic close to black hole and the change subsonic/supersonic takes place EITHER at outer or at inner
singular point. There is also a possibility of TWO sonic points if we consider solutions with shocks, so
we then have a sequence: subsonic - supersonic - shock - subsonic - supersonic. The paper deals with
angular momentum being a function of radius, but nevertheless Figure 1 is not clear. Flow starts as roughly
Keplerian at the outer edge, which is clearly subsonic, so what is happening at outer sonic point? Does
the flow become supersonic with respect to the local speed? If so, then why is must pass through another
sonic point if it is already supersonic? How the Figure 1 would look like if the local Mach number is plotter
instead of just velocity? Is the local sound speed itself equal zero somewhere?
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GUENNADI BISNOVATYI-KOGAN As it is indicated in the paper (see the end of Section 2), the outer
singular point is situated in the subsonic region, and does not have transonic nature. The nature of singular
points in the advective disks was described by Artemova et al. (2001) for different viscosity prescriptions.
The topology, shown in Figure 1 is related to αP prescription, which is used in the present calculations due
to its larger numerical simplicity. This is not mathematically consistent approach, because the component
trφ of the stress tensor have algebraic form, instead of differential for in the hydrodynamic Navier-Stokes
equations. Appearance of the outer singular point in the subsonic region is an artifact of this approach,
which nevertheless leads to quite reliable physical results. In the paper of Artemova et al. (2001) two vis-
cosity prescriptions have been investigated. It was obtained that in the conventional differential presentation
of the viscosity only ONE inner “transonic” singular point is present, while the outer one does not exist. It
was shown also, that mathematical inconsistence, implied by αP viscosity have a minor influence on phys-
ical results, and both prescriptions lead to very similar results in most cases. It follows from the property,
revealed by Artemova et al. (2001), that when you start integration from the outer boundary all integral
curves (including the one started from the keplerian conditions) soon converge to the unique curve. This
convergent curve is rather close to the Keplerian one at most part of the accretion disk, and deviations from
he last one are important at approach to the last stable orbit, or to the inner singular (“sonic”) point.


